P1040914

Vision Problems from two face images?

Stereo?

Aging?

Color from Gray?

Face Recognition?

Novel View Rendering?

More???

 

 

  

 

MICAD 2021 invited talk is here; CVPR 2021 Workshop Keynote link. Recent Talk Slides on Deep Learning for Medical Imaging and Clinical Informatics, for SNMMI 2018, GTC Taiwan 2018, Sol Goldman International Conf. & Think Tank Meeting on Artificial Intelligence, 2018.  After elected into IEEE Fellow class for IEEE Computer Society in 2021 and I am elected as one of the IEEE Signal Processing Society Distinguished Industry Lecturers/Speakers in 2022. 


We have won a few paper awards, shared a few open datasets and gave a number of public lectures in recent years, as listed as follows.

Our work just won the AFSUMB 2021 YIA (Young Investigator Award, by Bowen Li) Sliver Award!

Our work were selected for MICCAI-MedIA Special Issues of Best Papers in both 2019 (Dakai Jin, Dazhou Guo, et al.) and 2020 (Jiawen Yao, Ling Zhang, et al.), two years in a row! + a few MICCAI NIH and Student Travel award papers.

Our work won MICCAI 2018 Young Research Publication Impact Award (the 5 year "test-of-time" award, by Dr. Holger Roth)!

Our work won MICCAI 2017 Young Scientist Award Final-list (by Dr. Adam Harrison)!

Our work won RSNA 2016, 2018, 2019, 2020 Research Trainee Award in Informatics Category (the "best research paper" award): RSNA 2018 DeepLesion Graph, Dr. Ke Yan; in RSNA 2016 (Radiology Big Data Self-learning, Dr. Xiaosong Wang)! my former NIH trainees won the same awards in RSNA 2019 (Dr. Yuxing Tang) and RSNA 2020 (DeepLesion Universal Lesion Measurement, Dr. Youbao Tang), respectively. ~Four times in five year, the rest is history.


NIH DeepLesion dataset is available for download (32000 CT cases from 11000 studies): https://nihcc.box.com/v/DeepLesion; news1; news2

NIH Chest X-Ray-14 dataset is available for download (112,120 frontal images from 32,717 unique patients): https://nihcc.app.box.com/v/ChestXray-NIHCC; Winner of 2017 NIH-CC CEO Award, arxiv paper

Lymph Node Detection and Segmentation datasets from our MICCAI 2014, 2015 papers are available for download! https://wiki.cancerimgingarchive.net/display/Public/CT+Lymph+Nodes

Pancreas Segmentation datasets from our MICCAI 2015 paper are available for download!  https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT


News on: https://www.training.nih.gov/postbac_distinguished_mentor_awards

New GTC 2017 talk on "Building Truly Large-Scale Medical Image Databases: Deep Label Discovery and Open-Ended Recognition" (May 10th, 2017, S7595), media link
New Google Tech Talk on "Deep Neural Networks in Medical Imaging and Radiology: Preventative and Precision Medicine Perspectives", Youtube link; May 11th, 2017.


Brief Bio:


I currently lead the gloabl Medical AI R&D efforts for DAMO Academy, Alibab Group. I had worked at PAII Inc., leading the division of Bethesda Research Lab from June 2018 until July 2021, after more than five productive years at National Institutes of Health, Clinical Center, Radiology and Imaging Science Department, and from NVIDIA AI-Infra division. I am an IEEE Fellow (Computer Society) on medical imaging, AI and oncology imaging; also serve as an Associate Editer for IEEE Trans. Pattern Analysis and Machine Intelligence (IF: 24.3), and IEEE Signal Processing Letters and Frontiers in Oncology. I have been happily serving as one of the active strong links between the MICCAI/TMI/MedIA community and IEEE Computer Society (CVPR/TPAMI). Our work have been selected for MICCAI 2020 and 2019 Medical Image Analysis special issues (selected best paper track), MICCAI 2018 young researcher publication impact award, MICCAI 2017 YSA runner up, MICCAI 2017 and 2016 travel awards; IEEE TMI most cited article in 10 years (Dr. Hoo-chang Shin), IEEE CVPR most cited medical imaging paper (Dr. Xiaosong Wang) in 10 years. Our two most important medical imaging dataset work both were published at IEEE CVPR 2017 (NIH ChestXray14) and 2018 (NIH DeepLesion). I also contributed to AAAI/NeurIPS/ICML in the past. My former NIH trainees won the RSNA Informatics best paper awards four times in the last 5 years (Xiaosong Wang 2016, Ke Yan 2018, Yuxing Tang 2019, Youbao Tang 2020)! I am also an elected MICCAI Board Member starting in Feb. 2021 and an elected IEEE Signal Processing Society Distinguished Industry Speaker starting in Jan. 2022 until 2023.


I pursue how to push modern medical image understanding and semantic parsing to fit into revolutionary clinical workflow practices. There are four key ingredients: software and hardware code development platforms; close R&D collaboration with physicians-in-the-loop; evaluation & validation via large scale clinical imaging datasets; and mapping the recent progresses in statistical learning, machine learning, computer vision and video computing (from 2D/3D to 3D and 4D) towards medical imaging & clinical Informatics. I am devoting my next 5~10 years to focus on computational translational medicine for postitive and large-scale patient impacts. I love patients and physicians! I won the Best Summer Intern Mentor Award 2013, NIH Clinical Center (only one from my institute); and  the Postbac Mentor of the Year Award 2015, NIH (one of three awardees in NIH), NIH Clinical Center CEO Award for Research Excellence and Impacts on Patient Care, 2017. Together with my Postdoc trainees whom I have fortunately worked  with, we won a couple awards: AFSUMB 2021 YIA (Young Investigator Award) Sliver Award (Mr. Bowen Li), MICCAI 2020 Medical Image Analysis Best Paper finalist (Dr. Jiawen Yao), MICCAI 2019 Medical Image Analysis Best Paper finalist (Dr. Dakai Jin), MICCAI 2018 Young Researcher Publication Impact Award (Dr. Holger Roth), RSNA 2018 Research Trainee Award (Dr. Ke Yan), MICCAI 2017 Young Scientist Award Runner-up (Dr. Adam P. Harrison), and RSNA 2016 Research Trainee Award (Dr. Xiaosong Wang).

I was a Senior Staff Scientist, Image Analytics and Informatics, at Siemens Corporate Research, from Nov. 2011 until Jan. 2013. I was a Staff Scientist at Siemens Computer Aided Diagnosis (CAD) Group, Siemens Medical Solutions at Malvern, Pennsylvania, from Nov. 2009 to Oct. 2011. I worked as a Research Scientist in Siemens Corporate Research (SCR), a Division of Siemens Corporation, Princeton, New Jersey from Oct. 2006 to Oct. 2009, closely collaborating with CAD group. I enjoyed working with a number of excellent Siemens colleagues and interns for a very productive period of time (~6.28 years). Our efforts result in 10+ deployed Siemens medical imaging product deliveries, 12 US/WO patents (granted & pending), 27 provisional patents and 20+ scientific publications.

 

I received my Ph.D. degree of Computer Science from Johns Hopkins University in 05/2007 and my advisor is Prof. Gregory D. Hager. I also worked closely with Prof. Laurent Younes and Prof. Rene Vidal, and deeply inspired by Prof. Donald Geman's teaching and discussions at Hopkins. I interned twice at Microsoft Research Beijing and Redmond during 2000~2001, and 2004 summer with Dr. Harry (Heung-Yeung) Shum and Dr. Kentaro Toyama, respectively (where I collaborate with Prof. Long Quan and Dr. Zhengyou Zhang). I was a graduate student (1996-1999) with Dr. Zhanyi Hu (my first mentor who introduced me into computer vision) at NLPR, CAS, Beijing, China. Obviously, I am the lucky one, mentored by many brilliant minds for many years. This is what I am passing by to my mentees heartily. My current academic/work/life mentors are Prof. Alan L. Yuille and Prof. Tze-Chen Yen (MD/PhD) whom I still work with closely.


Executive Director, PAII Bethesda Research Lab (link), 06/2018-07/2021.

IEEE Fellow (Contributions to Machine Learning for Cancer Detection and Diagnosis) class of 2021, Senior Member, since 2014

Elected Board Member, MICCAI society (link), 2021-2024

Asso. Editor, IEEE Trans. Pattern Analysis and Machine Intelligence (link), IEEE Signal Processing Letters (link), Frontiers in Oncology (link, Cancer Imaging and Image-directed Interventions)


Ph.D. in Computer Science, Johns Hopkins University, Baltimore, Maryland, May 2007 (Advisor: Gregory D. Hager)

MSE in Computer Science, Johns Hopkins University, Baltimore, Maryland, May 2004 (Advisor: Gregory D. Hager)

Internships at Microsoft Research Beijing & Redmond, 2000-2001, 2004 (Mentors: Harry Shum, Kentaro Toyama, Zhengyou Zhang, Long Quan)

Visiting Student in Electronic Engineering Department, Chinese University of Hong Kong (Advisors: Hung-Tat Tsui, Zhanyi Hu)

Graduate Student in Pattern Recognition and Intelligent Systems, NLPR, Institute of Automation, CAS, 1996~1999 (Advisor: Zhanyi Hu)

B.E. in ME & Automation Control, Beijing Polytechnic University, Beijing, China, July 1996


Recent Activities:


**Springer Book on Deep Learning and CNN for Medical Imaging Computing, 2017 (Leading Co-editor, Amazon link, cover); new 2019 edition in press (link)!
CVPR 2021 8th Workshop on Medical Computer Vision (MCV), Sixteen exciting invited talks (only), Nashiville, TN, June 20th, 2021
CVPR 2020 7th Workshop on Medical Computer Vision (MCV), Sixteen exciting invited talks (only), Seattle, WA, June 15th, 2020
CVPR 2019 6th Workshop on Medical Computer Vision (MCV), invited talks only, Long Beach, CA, June 16th, 2019
CVPR 2018 5th Workshop on Medical Computer Vision (MCV) and Health Informatics, invited talks only, Salt Lake City, UT, June 18th, 2018
CVPR 2017 4th Workshop on Medical Computer Vision (MCV) and Health Informatics, invited talks only, Honolulu, HI, July, 2017

CVPR 2016 3rd Workshop on How Big Data is Possible for Medical Image Analysis, invited talks only, Las Vegas, NV, July 1st, 2016

CVPR 2015 2nd Workshop on How Big Data is Possible for Medical Image Analysis, invited talks only, Boston, MA, June 11th, 2015


Academic Services: Area Chair of CVPR 2025, AAAI 2025, WACV 2025, ECCV 2024, CVPR 2024, WACV 2024, AAAI 2024, ICCV 2023, MICCAI 2023; CVPR 2022, AAAI 2022, MICCAI 2022; CVPR 2021, MICCAI 2021, ICIP 2021, AAAI 2021 (COVID-19 special track); CVPR 2020, AAAI 2020, WACV 2020; CVPR 2019; MICCAI 2018; CVPR 2017, ICIP 2017; MICCAI 2016; MICCAI 2015; Industry Co-chair for MICCAI 2023, MICCAI 2022, ICHI 2019; Demo Chair of CVPR 2017; Outstanding Reviewer Award: NeurIPS 2020, CVPR 2018, BMVC 2017

Associate Editor of IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI), IEEE Signal Processing Letter; Frontiers in Oncology; Editorial Board: Intelligent Oncology


Program/Paper Review Committee: ICML/NeurIPS/ICLR, IEEE CVPR, 2023, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009; IEEE ICCV 2021, 2019, 2017, 2015, 2013, 2011, 2009; ECCV 2020, 2018. 2016, 2012, 2010; ACCV 2016, 2014, 2012, 2010, 2009

MICCAI 2017, 2014, 2013, 2012, 2011, 2010, 2009, various MICCAI workshops, 2015, 2014, 2013, 2012 (Medical Computer Vision; Deep Learning in Medical Image Analysis)

Journal Paper Reviewer: IEEE Trans. PAMI, IEEE Trans. Image Processing, IEEE Trans. Medical Imaging, Medical Image Analysis, PLOS One, Pattern Recognition, Pattern Recognition Letter; Academic Radiology, Medical Physics, Computerized Medical Imaging and Graphics, IEEE Journal of Biomedical and Health Informatics

Wokshop Organizer/Co-organizer: IEEE CVPR Medical Computer Vision Workshop, 2015, 2012; NIPS workshop on Machine Learning for Clinical Data Analysis and Healthcare, 2013


Recent & not-so-recent invited Talks: 


Talk at MICAD 2021 invited talk https://www.youtube.com/watch?v=h-k9xkRYDXE; Talk by Dakai at CVPR-MCV 2020: https://www.youtube.com/watch?v=jqZM45aHixw

Talk at CVPR 2019 by Robin.ly: Le Lu, Executive Director @ PAII Inc. Bethesda Research Lab https://www.youtube.com/watch?v=pQhrE2Zd3d0

Google Tech Talk at Google Cloud AI, May 11th, 2017 https://www.youtube.com/watch?v=TlC1pDXVdSI&t=3341s

Talk at GTC, GTCx and GTC-DC http://registration.gputechconf.com/quicklink/7L1Rg10, April 6th, 2016, Silicon Valley, CA, USA (pdf)

Talk on "A Statistical Aspect of Imaging Analytics Based Computer-Aided Diagnosis" (Summary of my Siemens work in 2006~2013, still with some insights: pdf)


Research Interests:

__________________________________________________________________________________________________________


Deep Learning for Everything, :-)) (200+++)

Learning based 3D Volumetric, Surface, Curve Parsing for Medical Diagnosis

New Classification Paradigms for Computer-aided Diagnosis (MICCAI 2011, CVPR 2011, Ongoing)

Discriminative/Generative Feature Learning for Computer-aided Diagnosis (Ongoing)

Structure Parsing for Medical Imaging and Analysis (ICCV 2009, MICCAI 2009, MICCAI 2010, Ongoing)

Supervised Learning Approach for Medical Imaging and Analysis (CVPR 2008, ECCV 2008, CVPR 2010, CVPR 2011, Ongoing)

Supervised Discriminative Dimension Reduction (Ongoing)

Online Appearance Modeling for Tracking and Recognition (NIPS 2006, CVPR 2007)
New Clustering Method for Visual Data (ICML 2006)
Scene Analysis and Category Recognition (CVPR 2005)
Articulated Object Motion Modeling and Recognition (NIPS 2004)
Efficient Particle Filtering using RANSAC (FPIV 2004, IVC 2006)   
Real-time Video Mosacing with Medical and Non-medical Applications (CVPR 2003 Demo)
Graphical Models and Tree-Structured Object Tracking (
Life time interest, but never get a chance to do it, :-)) )

Publications (peer-refereed major conferences and journals):

______________________________________________________________________________________________________________________________________________________________________________________

2024


     312, Xianghua Ye*, Dazhou Guo*, Puyang Wang, Zhanghexuan Ji, et al.: Automatic Delineation of Thoracic RTOG Organs at Risk with A Deep Learning Model. Intelligent Oncology (pdf, in revision, 2024)

     311, Lisa Yao, Yingda Xia, Yun Su, Jiawen Yao, Le Lu, Ling Zhang, Xin Chen, Zaiyi Liu: A Colorectal Coordinate-Driven Method for Colorectum and Colorectal Cancer Segmentation in Conventional CT Scans. IEEE Transactions on Neural Networks and Learning Systems (in press, pdf, 2024)

     310, Puyang Wang, Dazhou Guo, Dandan Zheng, Minghui Zhang, Haogang Yu, Xin Sun, Jia Ge, Yun Gu, Le Lu, Xianghua Ye, Dakai Jin: Accurate Airway Tree Segmentation in CT Scans via Anatomy-aware Multi-class Segmentation and Topology-guided Iterative Learning. (pdf) CoRR abs/2306.09116, IEEE Trans. on Medical Imaging (in press, 2024)

     309, Jieneng Chen, Jieru Mei, Xianhang Li, Yongyi Lu, Qihang Yu, Qingyue Wei, Xiangde Luo, Yutong Xie, Ehsan Adeli, Yan Wang, Matthew P Lungren, Shaoting Zhang, Lei Xing, Le Lu, Alan Yuille, Yuyin Zhou: TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformersMedical Image Analysis (in press, 2024)

     308, Jing Xu, Kai Huang, Lianzhen Zhong, Yuan Gao, Wei Liu, Yanjie Zhou, Wenchao Guo, Yuanqiang Zou, Le Lu, Yu Wang, Xiang Chen and Shuang Zhao: RemixFormer++: A Multi-modal Transformer Model for Precision Skin Tumor Differential Diagnosis with Memory-efficient Attention. IEEE Trans. on Medical Imaging  (in press, pdf, 2024)

     307, Heng Guo, Jianfeng Zhang, Ke Yan, Le Lu, Minfeng Xuo: Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embedding. IEEE Journal of Biomedical and Health Informatics  (in press, 2024)

     306, Fan Bai, Xiaoyu Bai, Dakai Jin, Xianghua Ye, Le Lu, Ke Yan, Max Q.-H. Meng: DistAL: A Domain-Shift Active Learning Framework with Transferable Feature Learning for Lesion Detection. IEEE Trans. on Medical Imaging (in revision, 2024)

     305, Zhentao Tan, Yue Wu , Qiankun Liu, Qi Chu, Le Lu, Jieping Ye, Nenghai Yu: Exploring the Application of Large-scale Pre-trained Models on Adverse Weather Removal. IEEE Transactions on Image Processing, Volume 33, Issue 2, pages: 1683-1698, (link), CoRR abs/2306.09008, Feb. 2024

     304, Zihan Li, Yunxiang Li, Qingde Li, You Zhang, Puyang Wang, Dazhou Guo, Le Lu, Dakai Jin, Qingqi Hong, LViT: Language Meets Vision Transformer in Medical Image Segmentation, IEEE Trans. on Medical Imaging, Volume: 43, Issue: 1, pages 96-107. 2024 (Arxiv 2206.14718) youtube

     303, Yujian Hu, Yilang Xiang, Yan-Jie Zhou, Yangyan He, Shifeng Yang, Xiaolong Du, Chunlan Den, Youyao Xu, Gaofeng Wang, Zhengyao Ding, Jingyong Huang, Wenjun Zhao, Xuejun Wu, Donglin Li, Qianqian Zhu, Zhenjiang Li, Chenyang Qiu, Ziheng Wu, Yunjun He, Chen Tian, Yihui Qiu, Zuodong Lin, Xiaolong Zhang, Yuan He, Zhenpeng Yuan, Xiaoxiang Zhou, Rong Fan, Ruihan Chen, Wenchao Guo, Jianpeng Zhang, Tony CW Mok, Zi Li, Le Lu, Dehai Lang, Xiaoqiang Li, Guofu Wang, Wei Lu, Zhengxing Huang, Minfeng Xu, Hongkun Zhang: Rapid and Accurate Diagnosis of Acute Aortic Syndrome using Non-contrast CT: A Large-scale, Retrospective, Multi-center and AI-based Study.  CoRR abs/2406.15222 (2024)

     302, Xuan Gong, Jiaqi Li, Yirui Wang, Jiawen Yao, Lianzhen Zhong, Dazhou Guo, Ke Yan, David Doermann, Le Lu, Tsung-Ying Ho, Ling Zhang, Xianghua Ye, Dakai Jin and Qifeng Wang: Preoperative Prediction of Esophageal Cancer Survival in CT via Tumor and Lymph Node Context and Geometry Modeling. (in review, 2024)

     301, Lin Tian, Zi Li, Fengze Liu, Xiaoyu Bai, Jia Ge, Le Lu, Marc Niethammer, Xianghua Ye, Ke Yan, and Dakai Jin: SAME++: A Self-supervised Anatomical eMbeddings Enhanced medical image registration framework using stable sampling and regularized transformation. (in review, 2024)

     300, Zhuotun Zhu; Ke Yan; Dazhou Guo; Le Lu; Xianghua Ye; Alan Yuille; Tsung-Min Hung; Ping-Ching Pai; Chen-Kan Tseng; Tzu-Chen Yen; Dakai Jin: DeepLN: Lymph Node Gross Tumor Volume Detection using CT/PET in Esophageal Radiotherapy via Distance-Stratified Learning. (in review, 2024)

     299, Fenqiang Zhao, et al., A Curvature-Guided Coarse-to-Fine Framework for Enhanced Whole Brain Segmentation(early accept, Top 11%), pdf, 27th INTER. CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024; 6-10 October 2024, MARRAKESH / MOROCCO

     298, Yanjie Zhou, et al., Cross-Phase Mutual Learning Framework for Pulmonary Embolism Identification on Non-Contrast CT Scans(early accept, Top 11%), pdf, 27th INTER. CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024; 6-10 October 2024, MARRAKESH / MOROCCO

     297, Chunli Li, Xiaoming Zhang, et al., Improved Esophageal Varices Assessment on Non-Contrast CT Scans, (early accept, Top 11%), pdf, 27th INTER. CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024; 6-10 October 2024, MARRAKESH / MOROCCO

     296, Charley Zhang, Hanqing Cao, Zhongwei Qiu. et al., IHCSurv: Effective Immunohistochemistry Priors for Multi-stain Cancer Survival Analysis in Gigapixel Whole Slide Imagespdf, 27th INTER. CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024; 6-10 October 2024, MARRAKESH / MOROCCO

     295, Wei Huang, Wei Liu, et al., LIDIA: Precise Liver Tumor Diagnosis on Multi-Phase Contrast-Enhanced CT via Iterative Fusion and Asymmetric Contrastive Learning, pdf, 27th INTER. CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024; 6-10 October 2024, MARRAKESH / MOROCCO

     294, Vince Zhu, Zhanghexuan Ji, et al., Improved Low-Rank Continual Pyramid Vision Transformer: Incrementally Segment Whole-Body Organs in 3D CT Scans with Light-Weighted Adaptation, pdf, 27th INTER. CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024; 6-10 October 2024, MARRAKESH / MOROCCO

     293, Haoshen Li, Yirui Wang, et al., Knowledge Distillation for Lymph Node Metastasis Classification in Esophageal Cancer with Pathology-guided Label Sharpening and Two-streamed Multi-scale Feature Fusion, pdf, 27th INTER. CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024; 6-10 October 2024, MARRAKESH / MOROCCO

     292, Qinji Yu, Yirui Wang, et al., Slice-Consistent Lymph Nodes Detection Transformer in CT Scans via Cross-slice Query Contrastive Learning, pdf, 27th INTER. CONF. ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION MICCAI 2024; 6-10 October 2024, MARRAKESH / MOROCCO

     291, Qinji Yu, Yirui Wang, Ke Yan, Haoshen Li, Dazhou Guo, Li Zhang, Le Lu, Na Shen, Qifeng Wang, Xiaowei Ding, Xianghua Ye, Dakai Jin, Effective Lymph Nodes Detection in CT Scans Using Location Debiased Query Selection and Contrastive Query Representation in Transformer, European Conference on Computer Vision ECCV 2024, CoRR abs/2404.03819 (2024)

     290, Wei Fang, Yuxing Tang, Heng Guo, Mingze Yuan, Tony C. W. MOK, Ke Yan, Jiawen Yao, Xin Chen, Zaiyi Liu, Le Lu, Ling Zhang, Minfeng Xu, CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data, CoRR abs/2404.04878, IEEE/CVF Conf. on Computer Vision and Pattern Recognition CVPR 2024; June 2024, Seattle WA, USA

     289, Weiwei Cao, Jianpeng Zhang, Yingda Xia, Tony C. W. MOK, Zi Li, Xianghua Ye, Le Lu, Jian Zheng, Yuxing Tang, Ling Zhang, Bootstrapping Chest CT Image Understanding by Distilling Knowledge from X-ray Expert ModelsCoRR abs/2404.04936, IEEE/CVF Conf. on Computer Vision and Pattern Recognition CVPR 2024June 2024, Seattle WA, USA

     288, Tony C. W. Mok, Zi Li, Yunhao Bai, Jianpeng Zhang, Wei Liu, Yan-Jie Zhou, Ke Yan, Dakai Jin, Yu Shi, Xiaoli Yin, Le Lu, Ling Zhang, Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registratin, (Highlight, Top ~3%) CoRR abs/2402.18933, IEEE/CVF Conf. on Computer Vision and Pattern Recognition CVPR 2024June 2024, Seattle WA, USA

     287, Wei Chen, Zhen Huang, Liang Xie, Binbin Lin, Houqiang Li, Le Lu, Xinmei Tian, Deng Cai, Yonggang Zhang, Wenxiao Wang, Xu Shen, Jieping Ye, From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning, The 44th International Conference on Machine Learning ICML 2024; Vienna, Austria, July 21th to 27th, 2024

     286, Zhentao Tan, Xiaodan Li, Yue Wu, Qi Chu, Le Lu, Nenghai Yu, Jieping Ye, Boosting Vanilla Lightweight Vision Transformers via Re-parameterization, The Twelfth International Conference on Learning Representations ICLR 2024; Vienna, Austria, May 7th to May 11th, 2024

     285, Wei Li, Zhen Huang, Xinmei Tian, Le Lu, Houqiang Li, Xu Shen, Jieping Ye, Interpretable Composition Attribution Enhancement for Visio-linguistic Compositional Understanding, EMNLP 2024; Miami, Florida, USA, Nov 12th to Nov 16th, 2024

     284, Guangyu Guo, Jiawen Yao, Yingda Xia, Tony CW Mok, Zhilin Zheng, Junwei Han, Le Lu, Dingwen Zhang, Jian Zhou, Ling Zhang, Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports, CoRR abs/2405.14230 (2024)
     283, Heng Guo, Jianfeng Zhang, Jiaxing Huang, Tony C. W. Mok, Dazhou Guo, Ke Yan, Le Lu, Dakai Jin, Minfeng Xu, Towards a Comprehensive, Efficient and Promptable Anatomic Structure Segmentation Model using 3D Whole-body CT Scans CoRR abs/2403.15063 (2024) Code/Model to be released!
     282, Jingyang Lin, Yingda Xia, Jianpeng Zhang, Ke Yan, Le Lu, Jiebo Luo, Ling Zhang, CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios, CoRR abs/2404.15272 (2024)
     281, Tianxiang Chen, Zhentao Tan, Tao Gong, Qi Chu, Yue Wu, Bin Liu, Le Lu, Jieping Ye, Nenghai Yu, Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues, CoRR abs/2402.02327 (2024)

    R83, Haoshen Li, Yirui Wang, et al., "Knowledge distillation for Lumph Nodel Metastasis Classification in Esophageal Cancer with Pathology-Guided Label Sharpening and Two-Streamed Multi-Scale Feature Fusion", Scientific Oral, RSNA 2024

    R82, Vince Zhu, Hexuanzhang Ji, Dazhou Guo, et al., "Continual Segmentation of Whole-Body Organs in 3D CT Scans using Pyramid Vision Transformer and Light-Weighted Low-Rank Adaptation", Scientific Oral, RSNA 2024

    R81, Chunli Li, Xiaoming Zhang, Yuan Gao, et al., "A Novel Multi-Organ Cohesion Network for the Assessment of Esophageal Varices using Non-contrast CT Scans", Scientific Presentation, RSNA 2024

    R80, Xiaoming Zhang, Wei Lu, et al., "Improving Liver Tumor Identification in Non-contrast CT Scans using Label Distillation.", Scientific Poster, RSNA 2024

    R79, Xiaoming Zhang, Wei Liu, et al., "Automatic Liver Tumor Diagnosis in Contrast-Enhanced CT Scans with Variable Input Phases", Scientific Poster, RSNA 2024

    R78, Qinji Yu, Yirui Wang, et al., "Effective Whole-Body Lymph Nodes Detection in CT Scans using Transformer-based Detector via Location Debiased Query Selection and Contrastive Query Representation", Scientific Poster, RSNA 2024

    R77, Yanjie Zhou, et al., "High-Accuracy Detection and Identification of Pulmonary Embolism on Non-contrast CT Scans", Scientific Poster, RSNA 2024

    R76, Zi Li, et al., "Deep Learning based Multi-Modality Model for Accurate Gross Tumor Volume Segmentation in Nasopharyngeal Carcinoma Radiotherapy", Scientific Poster, RSNA 2024

2023


     280, K. Cao*, Y. Xia*, J. Yao*, X. Han*, L. Lambert*, T. Zhang*, W. Tang*, G. Jin, H. Jiang, X. Fang, I. Nogues, X. Li, W. Guo, Y. Wang, W. Fang, M. Qiu, Y. Hou, T. Kovernik, M. Vocka, Y. Liu, Y. Chen, X. Chen, Z. Liu, J. Zhou, C. Xie, R. Zhang, H. Lu, G.D. Hager, A.L. Yuille, L. Lu, C. Shao+, Y. Shi+, Q. Zhang+, T. Liang+, L. Zhang+, J. Lu+, Highly Accurate Large-Scale Pancreatic Cancer Detection via Noncontrast CT and AI. Nature Medicine, (NMED-A124587B, accepted on September 13th, 2023), NM link, pdf, supp_pdf, editorial, response-letter, published online on Nov. 20th, 2023 

    279, Fakai Wang, Kang Zheng, Le Lu, Jing Xiao, Min Wu, Chang-Fu Kuo*, Shun Miao: Lumbar Bone Mineral Density Estimation from Chest X-ray Images: Anatomy-aware Attentive Multi-ROI Modeling. IEEE Trans. on Medical Imaging, Arxiv 2201.01838Volume: 42, Issue: 1, pages 257-267 (2023) 

     278, Adam P. Harrison, Bowen Li, Tse-Hwa Hsu, Cheng-Jen Chen, Wan-Ting Yu, Jennifer Tai, Le Lu and Dar-In Tai, Highly Steatosis Quantification on Ultrasound Images by a Deep Learning Algorithm on Patients Undergoing Weight ChangesDiagnostics (an open access journal), Accepted, October 17th, 2023

     277, Jennifer Tai, Adam P Harrison, Hui-Ming Chen, Chiu-Yi Hsu, Tse-Hwa Hsu, Cheng-Jen Chen, Wen-Juei Jeng, Ming-Ling Chang, Le Lu, Dar-In Tai: Acoustic radiation force impulse predicts long-term outcomes in a large-scale cohort: High liver cancer, low comorbidity in hepatitis B virus. World Journal of Gastroenterology, 29 (14), 2188-2201 (2023)
     276, Jieneng Chen, Jieru Mei, Xianhang Li, Yongyi Lu, Qihang Yu, Qingyue Wei, Xiangde Luo, Yutong Xie, Ehsan Adeli, Yan Wang, Matthew Lungren, Lei Xing, Le Lu, Alan Yuille, Yuyin Zhou, 3D TransUNet: Advancing Medical Image Segmentation through Vision TransformersCoRR abs/2310.07781 (2023)

     275, Xiaoyu Bai, Fan Bai, Xiaofei Huo, Jia Ge, Tony CW Mok, Zi Li, Minfeng Xu, Jingren Zhou, Le Lu, Dakai Jin, Xianghua Ye, Jingjing Lu, Ke Yan. Matching in the Wild: Learning Anatomical Embeddings for Multi-Modality Images, CoRR abs/2307.03535 (2023)

     274, Zhanghexuan Ji, Dazhou Guo, Puyang Wang, Ke Yan, Le Lu, Minfeng Xu, Jingren Zhou, Qifeng Wang, Jia Ge, Mingchen Gao, Xianghua Ye, Dakai Jin. Continual Segment: Towards a Single, Unified and Accessible Continual Segmentation Model of 143 Whole-body Organs in CT Scans. (pdf), IEEE Conference on Computer Vision, CoRR abs/2302.00162 (2023)

     273, Jieneng Chen, Yingda Xia, Jiawen Yao, Ke Yan, Jianpeng Zhang, Le Lu, Fakai Wang, Bo Zhou, Mingyan Qiu, Qihang Yu, Mingze Yuan, Wei Fang, Yuxing Tang, Minfeng Xu, Jian Zhou, Yuqian Zhao, Qifeng Wang, Xianghua Ye, Xiaoli Yin, Yu Shi, Xin Chen, Jingren Zhou, Alan Yuille, Zaiyi Liu, Ling Zhang. CancerUniT: Towards a Single Unified Model for Effective Detection, Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection of CT Scans. (pdf), IEEE Conference on Computer Vision, CoRR abs/2301.12291 (2023)

     272, Yankai Jiang, Mingze Sun, Heng Guo, Ke Yan, Le Lu, Minfeng Xu. Anatomical Invariance Modeling and Semantic Alignment for Self-supervised Learning in 3D Medical Image Segmentation. IEEE Conference on Computer Vision (pdf, Oral), CoRR abs/2302.05615 (2023)

     271, Mingze Yuan, Yingda Xia∗, Hexin Dong, Zifan Chen, Jiawen Yao, Mingyan Qiu, Ke Yan, Xiaoli Yin, Yu Shi, Xin Chen, Zaiyi Liu, Bin Dong, Jingren Zhou, Le Lu, Ling Zhang, Li Zhang: Devil is in the Queries: Advancing Mask Transformers for Real-world Medical Image Segmentation and Out-of-Distribution Localization. (pdf), IEEE CVPR (2023) selected as one of the 235 highlight papers at CVPR 2023 (10% of accepted papers, 2.5% of all submissions)

     270, Jianpeng Zhang, Xianghua Ye, Jianfeng Zhang, Yuxing Tang, Minfeng Xu, Jianfei Guo, Xin Chen, Zaiyi Liu, Jingren Zhou, Le Lu, Ling Zhang, Parse and Recall: Towards Accurate Lung Nodule Malignancy Prediction like Radiologists. MICCAI 2023 (early accept); 8-12, October 2023, Vancouver, Canada,  CoRR abs/2307.10824

     269, Hexin Dong, Jiawen Yao, Yuxing Tang, Mingze Yuan, Yingda Xia, Jian Zhou, Hong Lu, Jingren Zhou, Bin Dong, Le Lu, Li Zhang, Zaiyi Liu, Yu Shi, Ling Zhang, Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT by Integrating Neural Distance and Texture-Aware Transformer. MICCAI 2023 (early accept); 8-12, October 2023, Vancouver, Canada, CoRR abs/2308.00507

     268, Yan-Jie Zhou, Wei Liu, Yuan Gao, Jing Xu, Le Lu, Yuping Duan, Hao Cheng, Na Jin, Xiaoyong Man, Shuang Zhao, Yu Wang, A Novel Multi-Task Model Imitating Dermatologists for Accurate Differential Diagnosis of Skin Diseases in Clinical Images. MICCAI 2023 (early accept); 8-12, October 2023, Vancouver, Canada, CoRR abs/2307.08308

     267, Zi Li, Lin Tian, Tony CW Mok, Xiaoyu Bai, Puyang Wang, Jia Ge, Jingren Zhou, Le Lu, Xianghua Ye, Ke Yan, Dakai Jin, SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid. MICCAI 2023; 8-12, October 2023, Vancouver, Canada, CoRR abs/2307.09727

     266, Fan Bai, Ke Yan, Xiaoyu Bai, Xinyu Mao, Xiaoli Yin, Jingren Zhou, Yu Shi, Le Lu, Max Q-H Meng, SLPT: Selective Labeling Meets Prompt Tuning on Data-Limited Lesion Segmentation. MICCAI 2023; 8-12, October 2023, Vancouver, Canada, CoRR abs/2308.04911

     265, Mingze Yuan, Yingda Xia, Xin Chen, Jiawen Yao, Junli Wang, Mingyan Qiu, Hexin Dong, Jingren Zhou, Bin Dong, Le Lu, Li Zhang, Zaiyi Liu, Ling Zhang, Cluster-Induced Mask Transformers for Effective Opportunistic Gastric Cancer Screening on Non-contrast CT Scans. MICCAI 2023; 8-12, October 2023, Vancouver, Canada, CoRR abs/2307.04525

     264, Ke Yan, Xiaoli Yin, Yingda Xia, Fakai Wang, Shu Wang, Yuan Gao, Jiawen Yao, Chunli Li, Xiaoyu Bai, Jingren Zhou, Ling Zhang, Le Lu, Yu Shi, Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient Network. MICCAI 2023; 8-12, October 2023, Vancouver, Canada, CoRR abs/2307.08268

     263, Puyang Wang , Panwen Hu , Jiali Liu, Hang Yu, Xianghua Ye, Jinliang Zhang, Hui Li, Li Yang, Le Lu, Dakai Jin, and Feng-Ming (Spring) Kong, Automated Coarse-to-fine Segmentation of Thoracic Duct using Anatomy Priors and Topology-guided Curved Planar Reformation. MLMI 2023 (pdf, Accepted). MICCAI 2023; 8-12, October 2023, Vancouver, Canada

     262, Tony C W Mok, Zi Li, Yingda Xia, Jiawen Yao, Ling Zhang, Jingren Zhou, Le Lu, Deformable Medical Image Registration Under Distribution Shifts with Neural Instance Optimization. MLMI 2023 (pdf, Accepted). MICCAI 2023; 8-12, October 2023, Vancouver, Canada

     261, Ke Yan, Dakai Jin, Dazhou Guo, Minfeng Xu, Na Shen, Xian-Sheng Hua, Xianghua Ye, Le Lu, Anatomy-Aware Lymph Node Detection in Chest CT using Implicit Station Stratification. MMMI 2023 (Accepted). MICCAI 2023; 8-12, October 2023, Vancouver, Canada, CoRR abs/2307.15271

     260, Quan Liu, Jiawen Yao, Lisha Yao, Xin Chen, Jingren Zhou, Le Lu, Ling Zhang, Zaiyi Liu, Yuankai Huo. M^2Fusion: Bayesian-based Multimodal Multi-level Fusion on Colorectal Cancer Microsatellite Instability Prediction", MMMI 2023 (Accepted, pdf). MICCAI 2023; 8-12, October 2023, Vancouver, Canada

     259, Zhilin Zheng, Xu Fang, Jiawen Yao, Mengmeng Zhu, Le Lu, Lingyun Huang, Jing Xiao, Yu Shi, Hong Lu, Jianping Lu, Ling Zhang, Chengwei Shao, Yun Bian: A deep local attention network for pre-operative lymph node metastasis prediction in pancreatic cancer via multiphase CT imaging.  CoRR abs/2301.01448 (2023)

     258, Lin Zhao, Hexin Dong, Ping Wu, Jiaying Lu, Le Lu, Jingren Zhou, Tianming Liu, Li Zhang, Ling Zhang, Yuxing Tang, Chuantao Zuo, MetaViT: Metabolism-Aware Vision Transformer for Differential Diagnosis of Parkinsonism with 18F-FDG PET. (pdf) IPMI 2023, 19-23 June 2023, San Carlos De Bariloche, Argentina

     257, Bo Zhou, Yingda Xia, Jiawen Yao, Le Lu, Jingren Zhou, Chi Liu, James S. Duncan, and Ling Zhang: Meta-information-aware Dual-path Transformer for Differential Diagnosis of Multi-type Pancreatic Lesions in Multi-phase CT. (pdf) IPMI 2023, 19-23 June 2023, San Carlos De Bariloche, Argentina

     256, Zhishan Jiang, Ke Yan, Le Lu, Minfeng Xu, DIV-ATTENTION: A PLUG-AND-PLAY MODULE FOR 3D MEDICAL IMAGE SEGMENTATION. (pdf, accept) IEEE ISBI 2023, April 18-21 2023, Cartagena de Indias, Colombia  US Patent 11,900,592

     255, Tianyi Zhao, Kai Cao, Ling Zhang, Jiawen Yao, Le Lu, Method, device, and storage medium for pancreatic mass segmentation, diagnosis, and quantitative patient management, US Patent 11,900,592

     254, Yirui Wang, Kang Zheng, Xiaoyun Zhou, Le Lu, Shun Miao, Knowledge distillation with adaptive asymmetric label sharpening for semi-supervised fracture detection in chest x-rays, US Patent 11,823,381

     253, Jiawen Yao, Ling Zhang, Le Lu, Preoperative survival prediction method based on enhanced medical images and computing device using thereof, US Patent 11,790,528

     252, Ke Yan, Zhuotun Zhu, Dakai Jin, Jinzheng Cai, Adam P Harrison, Dazhou Guo, Le Lu, Device and method for detecting clinically important objects in medical images with distance-based decision stratification, US Patent 11,701,066

     251, Shun Miao, Fakai Wang, Kang Zheng, Le Lu, Method and device for vertebra localization and identification, US Patent 11,704,798

     250, Shun Miao, Weijian Li, Yuhang Lu, Kang Zheng, Le Lu, Structured landmark detection via topology-adapting deep graph learning, US Patent 17/116,310

     249, Ke Yan, Jinzheng Cai, Youbao Tang, D Jin, S Miao, Le Lu, Method, device, and computer program product for self-supervised learning of pixel-wise anatomical embeddings in medical images, US Patent 11,620,359

     248, Yuhang Lu, Weijian Li, Y Wang, AP Harrison, Le Lu, Shun Miao, Method and system for image segmentation using a contour transformer network model, K Zheng, US Patent 11,620,747

     247, Jinzheng Cai, AP Harrison, Ke Yan, Y Huo, Le Lu, Method and system for harvesting lesion annotations, US Patent 11,620,745

     246, Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Ronald M Summers, Method and system of building hospital-scale chest X-ray database for entity extraction and weakly-supervised classification and localization of common thorax diseases, US Patent 11,583,239

     245, AP Harrison, R Ashwin, Y Huo, Jinzheng Cai, Le Lu, Co-heterogeneous and adaptive 3D pathological abdominal organ segmentation using multi-source and multi-phase clinical image datasets, US Patent 11,568,174

     244, Bo Zhou, AP Harrison, Jiawen Yao, Le Lu, Medical image classification method and related device, US Patent 10,997,720

     243, Dakai Jin, Dazhou Guo, Le Lu, AP Harrison, Clinical target volume delineation method and electronic device, US Patent 11,040,219

     242, AP Harrison, Z Xu, Le Lu, RM Summers, DJ Mollura, Progressive and multi-path holistically nested networks for segmentation, US Patent 11,195,280

     241, Jinzheng Cai, Youbao Tang, Ke Yan, AP Harrison, Le Lu, Method, device, and computer program product for deep lesion tracker for monitoring lesions in four-dimensional longitudinal imaging, US Patent 11,410,309

     240, AP Harrison, Y Huo, Jinzheng Cai, R Ashwin, Ke Yan, Le Lu, Systems and methods for tumor characterization, US Patent 11,282,193

     239, Dazhou Guo, D Jin, Zhuotun Zhu, AP Harrison, Le Lu, Method and device for stratified image segmentation, US Patent 11,315,254

     238, Yirui Wang, Haomin Chen, Kang Zheng, AP Harrison, Le Lu, Shun Miao, Device and method for computer-aided diagnosis based on image, US Patent 11,344,272

     237, Ke Yan, Jinzheng Cai, AP Harrison, D Jin, Le Lu, Device and method for universal lesion detection in medical images, US Patent 11,403,493

     236, Jiawen Yao, D Jin, L Lu, Enhanced medical images processing method and computing device, US Patent 10,984,530

     235, Yirui Wang, Le Lu, D Jin, AP Harrison, Shun Miao, Fracture detection method, electronic device and storage medium, US Patent 10,937,143

     234, Dakai Jin, Dazhou Guo, Le Lu, AP Harrison, Gross tumor volume segmentation method and computer device, US Patent 10,929,981

     233, Fengze Liu, Jinzheng Cai, Y Huo, Le Lu, AP Harrison, Device and method for alignment of multi-modal clinical images using joint synthesis, segmentation, and registration, US Patent 11,348,259

    R77, Zheng Z, Yan K, Shi Y, Yin X, Chen X, Ye X, Liu Z, Lu L, Zhang L., "Robust and General Phase Recognition on Multi-Phase Contrast-Enhanced CT Scans", Scientific Oral, RSNA 2023

    R76, Zhang Y, Wang PY, et al., "Multi-modality Nasopharyngeal Carcinoma Segmentation in CT and MRI Using Context-aware Modality Selection", Scientific Oral, RSNA 2023

    R75, Chen X, Yuan M, Xia Y, et al., "Effective Opportunistic Gastric Cancer Screening on Noncontrast CT Scans", Scientific Oral, RSNA 2023

    R74, Yin X, Yan K, Xia Y, et al., "Automatic Liver Tumor Screening and Differential Diagnosis in CT Using Pixel-Lesion-Patient Network with Reader Study and External Validation", Scientific Oral, RSNA 2023

    R73, Guo H, Yang J, Zhang J, et al. "Opportunistic Osteoporosis Screening with Bone Mineral Density Estimation on Computed Tomography using Multi-View Semi-Supervised Learning", Scientific Poster, RSNA 2023

    R72, Chen X, Zheng D, Fang W, Cao W, Yao J, Xu M, Lu L, Tang Y, Zhang L, Ye X, Liu Z., "Opportunistic Breast Cancer Screening using Non-contrast CT Imaging.", Scientific Poster, RSNA 2023

    R71, Chen X, Qiu MY, Xia Y, et al., "Effective Opportunistic Screening for Colorectal Cancer using Abdominal or Chest Noncontrast CTs", Scientific Poster, RSNA 2023

    R70, Wang Y, Guo D, Jin D, Lu L, et al., "Identifying Metastatic Lymph Node Stations using a Local-Global Deep Hybrid Network with Prior-guided Supervision in Esophageal Cancer Patients", Scientific Poster, RSNA 2023

    R69, H. Dong, J. Yao, Y. Tang, M. Yuan, Y. Xia, J. Zhou, H. Lu, B. Dong, L. Lu, L. Zhang, Z. Liu, S. Yu, L. Zhang. "Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT by Integrating Neural Distance and Texture-Aware Transformer", Scientific Poster, RSNA 2023

    R68, Mok T, Li Z, Xia Y, Yao J, Zhang L, Lu L., "Efficient Deformable Registration with Local Self-similarity for Multi-Phase Abdominal CT Images", Scientific Poster, RSNA 2023

    R67, Li Z, Mok T, Jin D, Yan K, Lu L, et al., "SAMConvex: Fast Discrete Optimization for Deformable CT Registration using Multi-scale Self-supervised Anatomical Embedding and Correlation Volume", Scientific Poster, RSNA 2023

    R66, Yirui Wang, Jie Zhu, Dazhou Guo, Ke Yan, Le Lu, Shuai Wang, Dakai Jin, Xianghua Ye, Qifeng Wang, "Deep Learning for Automatic Prediction of Lymph Node Station Metastasis in Esophageal Cancer Patients from Contrast-enhanced CT", Scientific Oral, ASTRO 2023

    R65, "Deep Learning based Multi-modality Segmentation of Primary Gross Tumor Volume in CT and MRI for Nasopharyngeal Carcinoma", Scientific Poster, ASTRO 2023

    R64, "Anatomy-guided Deep Learning Model for Accurate and Robust Gross Tumor Volume Segmentation in Lung Cancer Radiation Therapy", Scientific Poster, ASTRO 2023

    R63, Na Shen, Yirui Wang, Xuewei Wang, Ke Yan, Cheng Yan, Jian Wang, Dakai Jin, Le Lu, "Prediction of neck lymph node metastasis in head and neck tumors with a deep learning model based on CT images", Scientific Oral,  AHNS 2023


2022


     232, Yun-Ju Huang, Chiung-Hung Lin, Shun Miao, Kang Zheng, Le Lu, Yuhang Lu, Chihung Lin, Chang-Fu Kuo#, Radiographic Bone Texture Analysis using Deep Learning Models for Early Rheumatoid Arthritis Diagnosis. Journal of Clinical Medicine (in Revision), 2022

     231, Dakai Jin, et al., Towards Automated Target Volumes and Organs at Risk Contouring: Defining Precision Radiation Therapy in the Modern Era. Journal of the National Cancer Center (accepted, invited submission), 2022

     230, Yun Bian, Zhilin Zheng, Xu Fang, Hui Jiang, Mengmeng Zhu, Jieyu Yu, Haiyan Zhao, Ling Zhang, Jiawen Yao, Le Lu, Jianping Lu, Chengwei Shao#: Artificial Intelligence to Predict Lymph Node Metastasis on CT in Pancreatic Ductal Adenocarcinoma (link, editorial link). Radiology, 2022 (pdf, pdf2)

     229, Jiawen Yao*, Kai Cao*, Yang Hou*, Jian Zhou*, Yingda Xia, Isabella Nogues, Qike Song, Hui Jiang, Xianghua Ye, Jianping Lu, Gang Jin, Hong Lu, Chuanmiao Xie, Rong Zhang, Jing Xiao, Zaiyi Liu, Feng Gao, Yafei Qi, Xuezhou Li, Yang Zheng, Le Lu, Yu Shi#, Ling Zhang, Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer: A Retrospective Multicenter Study. Annals of Surgery (link, pubmed), July 4, 2022 (doi: 10.1097/SLA.0000000000005465)

     228, Xianghua Ye*, Dazhou Guo*, Jia Ge*, Senxiang Yan, Yi Xin, Yuchen Song, Bing-shen Huang, Tsung-Min Hung, Zhuotun Zhu, Ling Peng, Yanping Ren, Rui Liu, Gong Zhang, Mengyuan Mao, Xiaohua Chen, Zhongjie Lu, Wenxiang Li, Yuzhen Chen, Lingyun Huang, Jing Xiao, Adam P. Harrison, Le Lu, Chien-Yu Lin#, Dakai Jin#, Tsung-Ying Ho#: Comprehensive and Clinically Accurate Head and Neck Cancer Organs-at-risk Delineation on a Multi-institutional Study. Nature Communications pdf, (accepted on Sept. 7th 2022, pdf), Arxiv. 2111.01544, 2022

     227, Xiao-Shuang Li, Xiang Liu, Le Lu, Xian-Sheng Hua, Ying Chi and Kelin Xia: Multiphysical Graph Neural Network (MP-GNN) for COVID-19 Drug Design, Briefings in Bioinformatics, DOI link, Volume 23, Issue 4, July 2022, pdf GitHub link, pubmed, 2022

     226, Ke Yan*, Jinzheng Cai, Dakai Jin, Shun Miao, Dazhou Guo, Adam P. Harrison, Youbao Tang, Jing Xiao, Jingjing Lu*, Le Lu: SAM: Self-supervised Learning of Pixel-wise Anatomical Embeddings in Radiological Images. IEEE Trans. on Medical Imaging (pdf) 41(10): 2658-2669 (2022)

     225, Ethan Nguyen, Haichun Yang, Ruining Deng, Yuzhe Lu, Zheyu Zhu, Ye Chen, Joseph T. Roland, Le Lu, Bennett A. Landman, Agnes B. Fogo, Yuankai Huo: Circle Representation for Medical Object Detection. IEEE Trans. Medical Imaging 41(3): 746-754 (2022)

     224, Xianghua Ye*, Dazhou Guo*, Chen-kan Tseng, Jia Ge, Tsung-Min Hung, Ping-Ching Pai, Yanping Ren, Lu Zheng, Xinli Zhu, Ling Peng, Ying Chen, Xiaohua Chen, Chen-Yu Chou, Danni Chen, Jiaze Yu, Yuzhen Chen, Feiran Jiao, Yi Xin, Lingyun Huang, Guotong Xie, Jing Xiao, Le Lu, Senxiang Yan, Dakai Jin#, Tsung-Ying Ho#: Multi-institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and FDG-PETCT. Frontiers in Oncology (link, pdf), Arxiv. 2110.05280, 2022

     223, Bowen Li*; Dar-In Tai*#; Ke Yan; Yi-Cheng Chen; Shiu-Feng Huang; Tse-Hwa Hsu; Wan-Ting Yu; Jing Xiao; Le Lu; Adam P. Harrison#: Accurate and Generalizable Quantitative Scoring of Liver Steatosis from Ultrasound Images via Scalable Deep Learning. World Journal of Gastroenterology pdf, AFSUMB 2021 invited submission, Arxiv. 2110.05664, 2022; 28(22): 2494-2508 [DOI: 10.3748/wjg.v28.i22.2494]

     222, Chi-Tung Cheng*, Jinzheng Cai*, Wei Teng, Youjing Zheng, YuTing Huang, Yu-Chao Wang, Chien-Wei Peng, Youbao Tang, Wei-Chen Lee, Ta-Sen Yeh, Jing Xiao, Le Lu, Chien-Hung Liao#, Adam P. Harrison#: A Flexible Three-Dimensional Hetero-phase Computed Tomography Hepatocellular Carcinoma (HCC) Detection Algorithm for Generalizable and Practical HCC Screening. Hepatology Coomunications  (pdf), open access link, Arxiv. 2108.07492, [doi.org/10.1002/hep4.2029], Vol 6, Issue10, October 2022, Pages 2901-2913

    221, Zihan Li, Yunxiang Li, Qingde Li, You Zhang, Puyang Wang, Dazhou Guo, Le Lu, Dakai Jin, Qingqi Hong, LViT: Language meets Vision Transformer in Medical Image Segmentation, ArXiv 2206.14718, (in revision, 2022)

    220, Heng Guo, Jianfeng Zhang, Ke Yan, et al., Rib-Query: Steerable 9-DoF Rib Instance Segmentation and Labeling with Query, IEEE Trans. on Medical Imaging (in revision, 2023)

    219, Jiawen Yao, et al., Effective Opportunistic Esophageal Cancer Screening using Noncontrast CT Imaging, MICCAI 2022, (pdf, early accept, 2022)

    218, Yingda Xia, et al., Thoracic DeepCRC: Automatic Colon Rectum and Colorectal Cancer Segmentation in CT scans with Global Attention and Deep Coordinate Transform, MICCAI 2022, (pdf, early accept, 2022)

    217, Jing Xu, Wei Liu, Yuan Gao, et al., RemixFormer: A Transformer Model for Precision Skin Tumor Differential Diagnosis via Multi-modal Imaging and Non-imaging Data, MICCAI 2022, (pdf, 2022)

    216, Dazhou Guo, Ke Yan, et al., Thoracic Lymph Node Segmentation in CT imaging via Lymph Node Station Stratification and Size Encoding, MICCAI 2022, (pdf, 2022)

     215, Wei Zhu, Le Lu, Jing Xiao, Mei Han, Jiebo Luo, Adam P. Harrison: Localized Adversarial Domain Generalization. IEEE CVPR 2022 

     214, Ashwin Raju, Shun Miao, Dakai Jin, Le Lu, Junzhou Huang, Adam P. Harrison: Deep Implicit Statistical Shape Models for 3D Medical Image Delineation. AAAI 2022 (pdf, GitHub Link, ORAL)

    R62, "Detection of Colorectal Cancer in Regular Abdominal CT Scans without Bowel Preparation using Deep Learning", Scientific Oral,  RSNA 2022

    R61, "Accurate Airway Tree Segmentation in CT Scans using Anatomy-aware Multi-class Segmentation and Deep Breakage Connection (#13098)", Scientific Oral,  RSNA 2022

    R60, "Accurate Liver Tumor Detection on Noncontrast CT Scans via Annotation-Efficient Semi-Supervised Learning (#14687)", Scientific Poster,  RSNA 2022

    R59, "Automatic Detection of Enlarged Chest Lymph Nodes in Contrast & Non-Contrast Chest CT: An External Evaluation (#9348)", Scientific Poster,  RSNA 2022

    R58, "Automatic Lymph Node Station Labeling in chest CT via Accurate Deep Station Parsing (#14280)", Scientific Oral,  RSNA 2022

    R57, "Effective Opportunistic Esophageal Cancer Screening Using Non-contrast CT Imaging (#9333)", Scientific Oral,  RSNA 2022

    R56, "Interpretable Contrast Phase Classification in CT with Self-Supervised Deep Anatomical Embedding and Prior Knowledge (#5547)", Scientific Oral,  RSNA 2022

    R55, "Modeling Tumor-Anatomy Macroscopic Environment in Multiphase CT for Fully Automated Prognostication in Patients Undergoing Resection for Pancreatic Cancer: A Multicenter Study (#6078)", Scientific Oral,  RSNA 2022

    R54, "Thoracic Lymph Node Segmentation in Chest CT Using Lymph Node Station Stratification and Size Encoding (#10794)", Scientific Oral,  RSNA 2022

    R53, "Evaluation of Intra-observer Variation for Deep Learning Generated Head and Neck Organs at Risk Segmentation", Head and Neck Cancer Track, POSTER VIEWING Q&A Session, ASTRO 2022

    R52, "AnatomyDosimetry Validation Study for Automated Head and Neck Cancer Organs at Risk Segmentation using Stratified Learning and Neural Architecture Search", Head and Neck Cancer Track, POSTER VIEWING Q&A Session, ASTRO 2022

    R51, "AI Model of Using Stratified Deep Learning to Delineate Organs at Risk for Thoracic Radiation Therapy", Thoracic Cancer Track, POSTER VIEWING Q&A Session, ASTRO 2022


2021


     213, Peng Wang*; Yuhsuan Wu*; Bolin Lai; Xiao-Yun Zhou; Le Lu; Wendi Liu; Huabang Zhou; Lingyun Huang; Jing Xiao; Adam P. Harrison; Ningyang Jia#; Heping Hu#: A Deep Learning Pipeline for Localization, Differentiation, and Uncertainty Estimation of Liver Lesions using Multi-phasic and Multi-sequence MRI. (in review), Arxiv 2110.08817, 2021

     212, Lianyan Xu, Ke Yan, Le Lu, Weihong Zhang, Xu Chen, Xiaofei Huo, Jingjing Lu#: A External and Internal Validation of a Computer Assisted Diagnostic Model for Detecting Multi-Organ Mass Lesions in CT images. Chinese Medical Sciences Journal, Vol. 36, Issue (3): 210-217,doi: 10.24920/003968,(pdf) 2021,CT图像中多器官占位性病变的计算机辅助检测模型的外部和内部验证 (所属专题: 人工智能与精准肿瘤学)

     211, C. Hsieh*, Kang Zheng*, C. Lin, Le Lu, Li W, Chen F, Wang Y, Chou X, Wang F, Xie G, Xiao J, Shun Miao#, Chang-fu Kuo#: Automated and Precise Bone Mineral Density Prediction and Fracture Risk Assessment using Hip/Lumbar Spine Plain Radiographs via Deep Learning. Nature Communications (pdf, nature link), September. 2021, DOI: 10.21203/rs.3.rs-371880/v12020, Research Square (pdf), 31 March 2021

    210, Nai-Ming Cheng*, Jiawen Yao*, Jinzheng Cai, Xianghua Ye, Shilin Zhao, Kui Zhao, Wenlan Zhou, Isabella Nogues, Yuankai Huo, Chun-Ta Liao, Hung-Ming Wang, Chien-Yu Lin, Li-Yu Lee, Jing Xiao, Le Lu, Ling Zhang* and Tzu-Chen Yen*: Deep learning for fully automated prediction of overall survival in patients with oropharyngeal cancer using FDGPET imaging: an international retrospective study, Clinical Cancer Research (pdf, pdf2) by American Association for Cancer Research, pubmed, April 2021

    209, Chi-Tung Cheng*, Yirui Wang*, Huan-Wu Chen, Po-Meng Hsiao, Chun-Nan Yeh, Chi-Hsun Hsieh, Shun Miao, Jing Xiao, Chien-Hung Liao, Le Lu: A Scalable Physician-Level Deep Learning Algorithm Detects Universal Trauma on Pelvic Radiographs, Nature Communications (pdf, nature link), Feb. 2021

    208, Jiawen Yao, Kai Cao, Yang Hou, Le Lu, Jianping Lu, Qike Song, Gang Jin, Jing Xiao, Yu Shi, Ling Zhang: DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and Surgical Margin via Comprehensive Understanding of Dynamic Contrast-Enhanced CT Imaging and Tumor-Vascular ContactParsing . Elsevier Journal of Medical Image Analysis, (MICCAI-MedIA 2020 Selected Papers Special Issue, pdf), October, 2021

    207, Mengyang Zhao, Aadarsh Jha, Quan Liu, Bryan A. Millis, Anita Mahadevan-Jansen, Le Lu, Bennett A. Landman, Matthew J. Tyskac, and Yuankai Huo: Faster Mean-shift: GPU-accelerated Embedding-clustering for Cell Segmentation and Tracking. Elsevier Journal of Medical Image Analysis, (accept), 2021

    206, Kang Zheng, Yirui Wang, Chen-I Hsieh, Le Lu, Jing Xiao, Chang-Fu Kuo, Shun Miao: Coherence Learning using Keypoint-based Pooling Network for Accurately Assessing Radiographic Knee Osteoarthritis. arXiv:2112.09177 (2021)

    205, Kang Zheng, Yirui Wang, et al.: Deep Learning-based Opportunistic Osteoporosis Screening using Plain Film Radiography. Medical Imaging meets NeurIPS, link2 (2021)

    204, Bowen Li, Xinping Ren, Ke Yan, Le Lu, Guotong Xie, Jing Xiao, Dar-In Tai, Adam P. Harrison: Learning from Subjective Ratings Using Auto-Decoded Deep Latent Embeddings. (early accept, MICCAI Student Travel Award, ORAL) MICCAI 2021, CoRR abs/2104.05570 (2021)

    203, Kang Zheng, Yirui Wang, Xiaoyun Zhou, Fakai Wang, Le Lu, Chihung Lin, Lingyun Huang, Guotong Xie, Jing Xiao, Chang-Fu Kuo, Shun Miao: Semi-Supervised Learning for Bone Mineral Density Estimation in Hip X-ray Images. (early accept) MICCAI 2021, CoRR abs/2103.13482 (2021)

    202, Youbao Tang, Jinzheng Cai, Ke Yan, Lingyun Huang, Guotong Xie, Jing Xiao, Jingjing Lu, Gigin Lin, Le Lu: Weakly-Supervised Universal Lesion Segmentation with Regional Level Set Loss. (early accept) MICCAI 2021, CoRR abs/2105.01218 (2021)

    201, Youbao Tang, Ke Yan, Jinzheng Cai, Lingyun Huang, Guotong Xie, Jing Xiao, Jingjing Lu, Gigin Lin, Le Lu, Lesion Segmentation and RECIST Diameter Prediction via Click-driven Attention and Dual-path Connection, MICCAI 2021, CoRR abs/2105.01828 (2021)

    200, Jieneng Chen, Ke Yan, Yu-Dong Zhang, Youbao Tang, Xun Xu, Shuwen Sun, Qiuping Liu, Lingyun Huang, Jing Xiao, Alan L. Yuille, Ya Zhang, Le Lu: Sequential Learning on Liver Tumor Boundary Semantics and Prognostic Biomarker Mining. (MICCAI Student Travel Award) MICCAI 2021, CoRR abs/2103.05170 (2021)

    199, Dazhou Guo*, Xianghua. Ye*, Jia Ge, Xing Di, Le Lu, Lingyun Huang, Guotong Xie, Jing Xiao, Senxiang Yan, Dakai Jin, DeepStationing: Thoracic Lymph Node Station Parsing in CT Scans using Anatomical Context Encoding and Key Organ Auto-Search, (*equal contribution) MICCAI 2021, (2021)

    198, Fengze Liu*, Ke Yan*, Adam Harrison, Dazhou Guo, Le Lu, Alan Yuille, Lingyun Huang, Guotong Xie, Jing Xiao, Xianghua Ye, Dakai Jin, SAME: Deformable Image Registration based on Self-supervised Anatomical Embeddings, (*equal contribution) MICCAI 2021, (2021)

    197, Yingda Xia, Le Lu, Lingyun Huang, Guotong Xie, Jing Xiao, Alan Yuille, Kai Cao, Ling Zhang, Effective Large-scale Screening of Multi-type Pancreatic Cancers on Non-contrast CT Scans via Anatomy-Aware Transformers,  MICCAI 2021, (2021)

    196,  Ke Yan, Youbao Tang, Adam P. Harrison, Jinzheng Cai, Le Lu, Jingjing Lu: Interpretable and Label-Efficient Medical Image Classification with Self-Supervised Anatomical Embeddings and Clinical Knowledge, MIDL (short paper), 2021

    195, Fakai Wang, Kang Zheng, Le Lu, Jing Xiao, Min Wu, Shun Miao: Automatic Vertebra Localization and Identification in CT by Spine Rectification and Anatomically-constrained Optimization. IEEE CVPR, 2021, Nashville, USA, Arxiv. 2012.07947, 2020

    194, Jinzheng Cai, Youbao Tang, Ke Yan, Adam P. Harrison, Jing Xiao, Gigin Lin, Le Lu: Deep Lesion Tracker: Monitoring Lesions in 4D Longitudinal Imaging Studies. IEEE CVPR, 2021, Nashville, USA, Arxiv. 2012.04872, 2020

    193, Tianyi Zhao*, Kai Cao*, Jiawen Yao, Isabella Nogues, Le Lu, Lingyun Huang, Jing Xiao, Zhaozheng Yin, Ling Zhang: 3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass Segmentation, Diagnosis, and Quantitative Patient Management. IEEE CVPR, 2021, Nashville, USA, Arxiv. 2012.04701, 2020

    192,  K Yan, Y Tang, AP Harrison, J Cai, L Lu, J Lu: Interpretable and Label-Efficient Medical Image Classification with Self-Supervised Anatomical Embeddings and Clinical Knowledge, MIDL 2021

    191, Yun-Ju Huang, Shun Maio, Kang Zheng, Le Lu, Yuhang Lu, Chihung Lin, Chang-Fu Kuo: A Radiographic Bone Texture Analysis Using Deep Learning Models for Early Rheumatoid Arthritis Diagnosis. DOI: https://doi.org/10.21203/rs.3.rs-76193/v1, (pdf) 2021

    190,  Yirui Wang, Kang Zheng, Chi-Tung Chang, Xiao-Yun Zhou, Zhilin Zheng, Lingyun Huang, Jing Xiao, Le Lu, Chien-Hung Liao, Shun Miao: Knowledge Distillation with Adaptive Asymmetric Label Sharpening for Semi-supervised Fracture Detection in Chest X-rays. IPMI (accepted), 2021 J

    189, Xinyu Zhang*, Yirui Wang*, Chi-Tung Cheng, Le Lu, Jing Xiao, Chien-Hung Liao, Shun Miao: A New Window Loss Function for Bone Fracture Detection and Localization in X-ray Images with Point-based Annotation. AAAI (accepted, *XZ, *YW contributed equally), arxiv. 2012.04066, 2021

    188, Ashwin Raju, Shun Miao, Chi-Tung Cheng, Le Lu, Mei Han, Jing Xiao, Chien-Hung Liao, Junzhou Huang, Adam P. Harrison: Deep Implicit Statistical Shape Models for 3D Medical Image Delineation. CoRR abs/2104.02847 (2021)

    187, Fakai Wang, Kang Zheng, Yirui Wang, Xiaoyun Zhou, Le Lu, Jing Xiao, Min Wu, Chang-Fu Kuo, Shun Miao: Opportunistic Screening of Osteoporosis Using Plain Film Chest X-ray. (ORAL) CoRR abs/2104.01734, PRIME: 4th International Workshop on PRedictive Intelligence in MEdicine, (2021)

    186, Bolin Lai*, Xiaoyu Bai*, Yuhsuan Wu*, Xiao-Yun Zhou, Jinzheng Cai, Yuankai Huo, Lingyun Huang, Peng Wang, Yong Xia, Jing Xiao, Le Lu, Heping Hu, Adam Harrison: Fully-Automated Liver Tumor Localization and Characterization from Multi-Phase MR Volumes Using Key-Slice ROI Parsing: A Physician-Inspired Approach, (ORAL) PRIME: 4th International Workshop on PRedictive Intelligence in MEdicine, (2021)

    185, Xiao-Yun Zhou, Bolin Lai, Weijian Li, Yirui Wang, Kang Zheng, Fakai Wang, Chihung Lin, Le Lu, Lingyun Huang, Mei Han, Guotong Xie, Jing Xiao, Chang-Fu Kuo, Adam P. Harrison, Shun Miao: Scalable Semi-supervised Landmark Localization for X-ray Images using Few-shot Deep Adaptive Graph. (Full ORAL), CoRR abs/2104.14629, DALI: The MICCAI Workshop on Data Augmentation, Labeling, and Imperfections, (2021)

    184, Bolin Lai, Yuhsuan Wu, Xiao-Yun Zhou, Peng Wang, Le Lu, Lingyun Huang, Mei Han, Jing Xiao, Heping Hu, Adam P. Harrison: Hetero-Modal Learning and Expansive Consistency Constraints for Semi-Supervised Detection from Multi-Sequence Data. CoRR abs/2103.12972,The 12th International Workshop on Machine Learning in Medical Imaging,  (2021)

    183, Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L. Yuille, Yuyin Zhou: TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. CoRR abs/2102.04306, Interpretable Machine Learning in Healthcare workshop, ICML 2021 (2021)

    R50, "Accurate and Generalizable Quantitative Scoring of Liver Steatosis from Ultrasound Images via Scalable Deep Learning", YIA Sliver Medal, AFSUMB 2021

    R49, "Accurate and Reliable Liver Steatosis Assessment From Conventional Ultrasound Images Trained With Subjective Ratings", Scientific Oral, RSNA 2021

    R48, "Accurate Weakly-supervised Volumetric Universal Lesion Segmentation Using Large-scale Clinical RECIST Diameter Annotations And Regional Level Set Loss", Scientific Oral, RSNA 2021

    R47, "One Automatic RECIST Measurement In Longitudinal CT Imaging Studies"Scientific Oral, RSNA 2021

    R46, "Automatically, Precisely, and Comprehensively Measuring Tumor Sizes With Minimal Human Effort", Scientific Poster, RSNA 2021

    R45, "Multi-organ Universal Lesion Detection In CT Scans: An Independent External Validation", Scientific Oral,  RSNA 2021

    R44, "SAME: Fast And Accurate Algorithm For Deformable Image Registration On CT", Scientific Oral,  RSNA 2021

    R43, "Key-slice Parsing and Diagnostic Confidence Estimation For Localization And Differentiation Of Liver Lesions Using Multi-phasic MRI", Scientific Poster,  RSNA 2021

    R42, "Automatic Liver Lesion Localization Using Large-scale Unlabeled And Sequence-incomplete MR Imaging Data", Scientific Oral,,  RSNA 2021

    R41, "Comprehensive Head and Neck Organs at Risk Segmentation using Stratified Learning and Neural Architecture Search", Head and Neck Cancer Track, POSTER VIEWING Q&A Session, ASTRO 2021

    R40, "Anatomy Guided Thoracic Lymph Node Station Delineation in CT using Deep Learning Model", Digital Health Innovation Track, POSTER VIEWING Q&A Session, ASTRO 2021

    R39, "Deep Learning Based Lymph Node Gross Tumor Volume Detection via Distance-guided Gating using CT and 18F-FDG PET in Esophageal Cancer Radiotherapy", Gastrointestinal Cancer Track, POSTER VIEWING Q&A Session, ASTRO 2021


2020


    182, Dakai Jin, Adam P. Harrison, Ling Zhang, Ke Yan, Yirui Wang, Jinzheng Cai, Shun Miao, Le Lu: Artificial Intelligence in Radiology. Artificial Intelligence in Medicine: Technical Basis and Clinical Applications (Book, pdf), Elsevier, 2020

    181, Dakai Jin*, Dazhou Guo*, Tsung-Ying Ho, Adam P. Harrison, Jing Xiao, Chen-kan Tseng, Le Lu: DeepTarget: Gross Tumor and Clinical Target Volume Segmentation in Esophageal Cancer Radiotherapy. Journal of Medical Image Analysis, MICCAI-MedIA 2019 Selected Papers Special Issue by Elsevier (link, pdf), 2020

    180, Ke Yan, Jinzheng Cai, Youjing Zheng, Adam P. Harrison, Dakai Jin, You-bao Tang, Yu-Xing Tang, Lingyun Huang, Jing Xiao, Le Lu: Learning from Multiple Datasets with Heterogeneous and Partial Labels for Universal Lesion Detection in CT. IEEE Trans. on Medical Imaging (accepted, pdf), 2020

    179, Yuhang Lu, Kang Zheng, Weijian Li, Yirui Wang, Adam P. Harrison, Chihung Lin, Song Wang, Jing Xiao, Le Lu, Chang-Fu Kuo, Shun Miao: Contour Transformer Network for One-shot Segmentation of Anatomical Structures. IEEE Trans. on Medical Imaging (accepted), arxiv. 2012.01480, 2020

    178, Jinzheng Cai, Adam P. Harrison, Youjing Zheng, Ke Yan, Yuankai Huo, Jing Xiao, Lin Yang, Le Lu: Lesion-Harvester: Iteratively Mining Unlabeled Lesions and Hard-Negative Examples at Scale. IEEE Trans. on Medical Imaging, IEEE link, (pdf), 2020

    177, Xiang Li, Zhen Chen, Ling Ye, Ling Zhang, Nannan Li, Dakai Jin, Liangxin Gao, Xinhui Liu, Bolin Lai, Jiawen Yao, Dazhou Guo, Hua Zhang, Le Lu, Jing Xiao, Lingyun Huang, Fen Ai, Xiang Wang: Radiologic Risk Factors for Mortality of Patients with COVID-19 Pneumonia in Wuhan, China: A Retrospective Study. Frontiers in Radiology | Artificial Intelligence in Radiology (pdf), 2020

    176, Yirui Wang, Kang Zheng, Chi-Tung Chang, Xiao-Yun Zhou, Zhilin Zheng, Lingyun Huang, Jing Xiao, Le Lu, Chien-Hung Liao, Shun Miao: Knowledge Distillation with Adaptive Asymmetric Label Sharpening for Semi-supervised Fracture Detection in Chest X-rays. arxiv. 2012.15359, 2020

    175, Bolin Lai*, Xiaoyu Bai*, Yuhsuan Wu*, Xiao-Yun Zhou, Jinzheng Cai, Yuankai Huo, Lingyun Huang, Peng Wang, Yong Xia, Jing Xiao, Le Lu, Heping Hu, Adam Harrison: Fully-Automated Liver Tumor Localization and Characterization from Multi-Phase MR Volumes Using Key-Slice ROI Parsing: A Physician-Inspired Approach arxiv. 2012.06964, 2020

    174, Chun-Hung Chao, Hsien-Tzu Cheng, Tsung-Ying Ho, Le Lu, Min Sun: Interactive Radiotherapy Target Delineation with 3D-Fused Context Propagation. arxiv. 2012.06873, 2020

    173, Ke Yan, Jinzheng Cai, Dakai Jin, Shun Miao, Adam P. Harrison, Dazhou Guo, Youbao Tang, Jing Xiao, Jingjing Lu, Le Lu: Self-supervised Learning of Pixel-wise Anatomical Embeddings in Radiological Images. arxiv. 2012.02383, 2020

    172, Mengyang Zhao, Aadarsh Jha, et al.: Faster Mean-shift: GPU-accelerated Clustering for Cosine Embedding-based Cell Segmentation and Tracking. Arxiv 2007.14283, 2020

    171, Yuankai Huo, Jinzheng Cai, Chi-Tung Cheng, Ashwin Raju, Ke Yan, Bennett A. Landman, Jing Xiao, Le Lu, Chien-Hung Liao, Adam P. Harrison: Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale Multi-phase CT Data via Deep Dynamic Texture Learning. (pdf), CoRR abs/2006.15691 (2020)

    170, Haomin Chen, Yirui Wang, Kang Zheng, Weijian Li, Chi-Tung Cheng, Adam P Harrison, Jing Xiao, Gregory D. Hager, Le Lu, ChienHung Liao, Shun Miao: Anatomy-Aware Siamese Network: Exploiting Semantic Asymmetry for Accurate Pelvic Fracture Detection. ECCV (pdf), Glasgow, UK, 2020

    169, Ashwin Raju, Chi-Tung Cheng, Yunakai Huo, Jinzheng Cai, Junzhou Huang, Jing Xiao, Le Lu, ChienHuang Liao, Adam P. Harrison: Co-Heterogeneous and Adaptive Segmentation from Multi-Source and Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion Segmentation. ECCV (pdf), Glasgow, UK, 2020

    168, Fengze Liu, Jingzheng Cai, Yuankai Huo, Chi-Tung Cheng, Ashwin Raju, Dakai Jin, Jing Xiao, Alan Yuille, Le Lu, ChienHung Liao, Adam P. Harrison: JSSR: A Joint Synthesis, Segmentation, and Registration System for 3D Multi-Modal Image Alignment of Large-scale Pathological CT Scans. ECCV (pdf), Glasgow, UK, 2020

    167, Weijian Li, Yuhang Lu, Kang Zheng, Haofu Liao, Chihung Lin, Jiebo Luo, Chi-Tung Cheng, Jing Xiao, Le Lu, Chang-Fu Kuo, Shun Miao: Structured Landmark Detection via Topology-Adapting Deep Graph Learning. ECCV (pdf), Glasgow, UK,  2020

    166, Jinzheng Cai, Ke Yan, Chi-Tung Cheng, Jing Xiao, Chien-Hung Liao, Le Lu, Adam P. Harrison: Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D Convolution and Surface Point Regression. MICCAI (pdf), Lima, Peru, 2020

    165, Bowen Li, Ke Yan, Dar-In Tai, Yuankai Huo, Le Lu, Jing Xiao, Adam P. Harrison: Deep Reliable Liver Fibrosis Assessment from Ultrasound using Global Hetero-Image Fusion and View-Specific Parameterization. MICCAI (pdf), Lima, Peru, 2020

    164, Haichun Yang, Ruining Deng, Yuzhe Lu, Zheyu Zhu, Ye Chen, Joseph T. Roland, Le Lu, Bennett A. Landman, Agnes B. Fogo, Yuankai Huo: CircleNet: Anchor-free Detection with Circle Representation. MICCAI (pdf), Lima, Peru, 2020

    163, Yuhang Lu, et al.: Learning to Segment Anatomical Structures Accurately from One Exemplar. MICCAI (Early Accept, pdf), Lima, Peru, 2020

    162, Ashwin Raju, Zhanghexuan Ji, Chi-Tung Cheng, Jinzheng Cai, Junzhou Huang, Jing Xiao, Le Lu, Chien-Hung Liao, Adam P. Harrison: User-Guided Domain Adaptation for Rapid Annotation from User Interactions: A Study on Pathological Liver Segmentation. MICCAI (Early Accept, pdf), Lima, Peru, 2020

    161, Zhuotun Zhu, Dakai Jin, Ke Yan, Tsung-Ying Ho, Xianghua Ye, Dazhou Guo, Chun Hung Chao, Jing Xiao, Alan Yuille, Le Lu. Lymph Node Gross Tumor Volume Detection and Segmentation via Distance-based Gating using 3D CT/PET Imaging in Radiotherapy. MICCAI (Early Accept, pdf), Lima, Peru, 2020 (MICCAI-NIH Paper Award 2020)

    160, Chun Hung Chao, Zhuotun Zhu, Dazhou Guo, Dakai Jin, Jinzheng Cai, Ke Yan, Tsung-Ying Ho, Xianghua Ye, Alan Yuille, Le Lu. Lymph Node Gross Tumor Volume Detection in Oncology Imaging via Relationship Learning Using Graph Neural Network. MICCAI (Early Accept, pdf), Lima, Peru, 2020

    159, Jiawen Yao, Yu Shi, Le Lu , Jing Xiao, Ling Zhang: DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and Surgical Margin via Dynamic Contrast-Enhanced CT Imaging. MICCAI (Early Accept, pdf), Lima, Peru, 2020, (invited Submission to MICCAI-MedIA Special Issue of Best Papers 2020).

    158, Ling Zhang, Yu Shi, Jiawen Yao, Yun Bian, Kai Cao, Dakai Jin, Jing Xiao, Le Lu: Robust Pancreatic Ductal Adenocarcinoma Segmentation with Multi-Institutional Multi-Phase Partially-Annotated CT Scans. MICCAI (Early Accept, pdf), Lima, Peru, 2020

    157, Ke Yan, Jinzheng Cai, Adam P. Harrison, Dakai Jin, Jing Xiao, Le Lu: Universal Lesion Detection by Learning from Multiple Heterogeneously Labeled Datasets. (pdf) CoRR abs/2005.13753, 2020

    156, Zhuotun Zhu, Ke Yan, Dakai Jin, Jinzheng Cai, Tsung-Ying Ho, Adam P. Harrison, Dazhou Guo, Chun-Hung Chao, Xianghua Ye, Jing Xiao, Alan Yuille, Le Lu: Detecting Scatteredly-Distributed, Small, and Critically Important Objects in 3D  Oncology Imaging via Decision Stratification. (pdf )CoRR abs/2005.13705, 2020

    155, Ashwin Raju, Chi-Tung Cheng, Yunakai Huo, Jinzheng Cai, Junzhou Huang, Jing Xiao, Le Lu, ChienHuang Liao, Adam P. Harrison: Co-Heterogeneous and Adaptive Segmentation from Multi-Source and Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion Segmentation. CoRR abs/2005.13201, 2020

    154, Fengze Liu, Jingzheng Cai, Yuankai Huo, Chi-Tung Cheng, Ashwin Raju, Dakai Jin, Jing Xiao, Alan Yuille, Le Lu, ChienHung Liao, Adam P. Harrison: JSSR: A Joint Synthesis, Segmentation, and Registration System for 3D Multi-Modal Image Alignment of Large-scale Pathological CT Scans. CoRR abs/2005.12209, 2020

    153, Weijian Li, Haofu Liao, Shun Miao, Le Lu, Jiebo Luo: Unsupervised Learning of Landmarks based on Inter-Intra Subject Consistencies. IEEE ICPR (Accepted, pdf), Milan, Italy, CoRR abs/2004.07936, 2020
    152, Weijian Li, Yuhang Lu, Kang Zheng, Haofu Liao, Chihung Lin, Jiebo Luo, Chi-Tung Cheng, Jing Xiao, Le Lu, Chang-Fu Kuo, Shun Miao: Structured Landmark Detection via Topology-Adapting Deep Graph Learning, CoRR abs/2004.08190, 2020     151, Dazhou Guo, Dakai Jin, Zhuotun Zhu, Tsung-Ying Ho, Adam P. Harrison, Chun-Hung Chao, Jing Xiao, Alan Yuille, Chien-Yu Lin, Le Lu: Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture Search. (pdf) IEEE CVPR, 2020, Seattle, USA, CoRR abs/2004.08426
    150, Jinzheng Cai, Adam P. Harrison, Youjing Zheng, Ke Yan, Yuankai Huo, Jing Xiao, Lin Yang, Le Lu: Lesion Harvester: Iteratively Mining Unlabeled Lesions and Hard-Negative Examples at Scale. (pdf) CoRR abs/2001.07776 (2020)

    R38, "Automatic Joint Space Assessment in Hand Radiographs with Deep Learning Among Patients with Rheumatoid Arthritis", Scientific Oral, ACR Convergence 2020

    R37, "Predicting Bone Mineral Density of Lumbar Vertebrae by Assessing Plain Film with Deep Learning", Scientific Oral, ACR Convergence 2020

    R36, "Automatic Hepatocellular Carcinoma Detection in Non-Contrast and Venous Computed Tomography of Cirrhotic Patient - A Three Dimensional Deep Learning based Approach", Scientific Oral, AASLD 2020

    R35, "One Click Guided Automatic RECIST Lesion Measurement and Segmentation on CT Scans" (a work from our team member; I am not a co-author), Featured Oral (RSNA Rsearch Trainee Award), RSNA 2020

    R34, "Making RECIST Measurements Easy: a Semi-automated Deep Learning System with Expert-Equivalent Accuracy and Better Consistency", (a work from our team member; I am not a co-author), Scientific Oral, RSNA 2020

    R33, "Automatic Liver and Tumor Segmentation on CT Scans Using an Edge-enhanced Network", (a work from our team member; I am not a co-author), Scientific Oral, RSNA 2020

    R32, "Automatic Liver Fibrosis Assessment from Conventional Ultrasound Images using Global Hetero Imagefusion", Scientific Oral, RSNA 2020

    R31, "Organs at Risk Segmentation for Head and Neck Cancer Using Stratified Learning and Neural Architecture Search", Scientific Oral, RSNA 2020

    R30, "Lymph Node Gross Tumor Volume Detection and Segmentation via Distance-based Gating using CT/PET Imaging in Esophageal Cancer Radiotherapy", Scientific Oral, RSNA 2020

    R29, "Automatic Hepatocellular Carcinoma Detection in Patients with Chronic Liver Diseases using Dynamic Contrast-enhanced CT and Light-Weight 3D Convolutional Neural Network", Scientific Oral, RSNA 2020

    R28, "Identifying and Characterizing Indeterministic Liver Lesions via Deep Learning on Large-scale Dynmic Contrast Enhanced CT Imaging Data from Patients Receiving Invisive Procedures", Scientific Poster, RSNA 2020

    R27, "Automated Esophageal Clinical Target Volume Delineation using Encoded 3D Spatial Context of Tumor, Lymph Nodes, and Organs At Risk", Scientific Poster, RSNA 2020

    R26, "PelviXNet: A Generalized Trauma Finding Detection Algorithm of Pelvic Radiography", Scientific Poster, RSNA 2020

    R25, "Consistent and Coherent Computer-Aided Knee Osteoarthrities Assessment from Plain Radiographs", Scientific Poster, RSNA 2020

    R24, Huy Do, Laura Machado, Dakai Jin, Gregg Cohen, Le Lu, Les Folio, "Deep Learning Detection and Classification of Interstitial Lung Disease Patterns", Scientific Poster (Best CT Poster Award), SABI 2020

    R23, Tsung-Ying Ho, et al., "Automated Esophageal Gross Tumor Volume Segmentation in 18F-FDG PET and CT for Radiotherapy using Two-Stream 3D Deep Network Fusiong", Scientific Papers, Oral, SNMMI 2020

    R22, Chang-Fu Kuo, et al., "Prediction of low bone mineral density and FRAX score by assessing hip bone texture with deep learning", Scientific Papers, Oral, EULAR 2020

    R21, Chang-Fu Kuo, et al., "Predictive value of bone texture features extracted by deep learning models for the detection of osteoarthritis: data from the Osteoarthritis Initiative", Scientific Papers, Oral, EULAR 2020

    R20, Chang-Fu Kuo, et al., "Bone texture analysis with deep learning in hand radiographs for assessing the risk of rheumatoid arthritis", Scientific Poster, EULAR 2020


2019


    149, Ling Zhang, Le Lu, Ronald M. Summers, Electron Kebebew, Jianhua Yao: Tumor Growth Prediction Using Convolutional Networks. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics 2019: 239-260

    148, X. Wang, Y. Peng, L. Lu, Z. Lu, R. Summers: Automatic Classification and Reporting of Multiple Common Thorax Diseases Using Chest Radiographs. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics 2019: 393-412

    147, X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.. Summers: ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics 2019: 369-392

    146, Jinzheng Cai, Le Lu, Fuyong Xing, Lin Yang: Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextual Learning. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics 2019: 3-21

    145, K. Yan, X. Wang, L. Lu, Ling Zhang, A.P. Harrison, M. Bagheri, R. Summers: Deep Lesion Graph in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-Scale Lesion Database. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics 2019: 413-435

    144, "Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics", Editors: Lu, Le, Wang, X., Carneiro, G., Yang, L. (Eds.), Advances in Computer Vision and Pattern Recognition, Spinger/Nature Publisher, November, 2019

    143, Ling Zhang, Le Lu, Xiaosong Wang, M. Bagheri, Ronald Summers, Jinahua Yao, "Spatio-Temporal Convolutional LSTMs for Tumor Growth Prediction by Learning 4D Longitudinal Patient Data", (ArXiv) IEEE Trans. on Medical Imaging, pp. 1-13, April 2020

    142, Yifan Peng, Zizhao Zhang, XiaosongWang, Lin Yang, Le Lu, "Text mining and deep learning for disease classification", Handbook of Medical Image Computing and Computer Assisted Intervention (MICCAI), Elsevier Publisher, November, 2019

    141, Bo Zhou, Adam Harrison, Jiawen Yao, Chi-Tung Cheng, Jing Xiao, Chien-Hung Liao, and Le Lu, "CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT", (ArXiv) MICCAI-MIL3ID, Shenzhen, China, 2019

    140, Dakai Jin, Dazhou Guo, Tsung-Ying Ho, Adam P. Harrison, Jing Xiao, Chen-kan Tseng, Le Lu, "Deep Esophageal Clinical Target Volume Delineation using Encoded 3D Spatial Context of Tumor, Lymph Nodes, and Organs At Risk", MICCAI, Shenzhen, China, 2019 (ArXiv, early accept)

    139, Dakai Jin, Dazhou Guo, Tsung-Ying Ho, Adam P. Harrison, Jing Xiao, Chen-kan Tseng, Le Lu, "Accurate Esophageal Gross Tumor Volume Segmentation in PET/CT using Two-Stream Chained 3D Deep Network Fusion", MICCAI, Shenzhen, China, 2019 (ArXiv, Oral, early accept, invited Submission to MICCAI-MedIA Special Issue of Best Papers 2019)

    138, Yirui Wang, Le Lu, Chi-Tung Cheng, Dakai Jin, Adam P. Harrison, Jing Xiao, ChienHung Liao, Miao Shun, "Weakly Supervised ROI Mining Towards Universal Fracture Detection in Pelvic X-ray". MICCAI, Shenzhen, China, 2019 (ArXiv, early accept)

    137, Hongyu Wang, Le Lu, Yong Xia, "Thorax-Net: An Attention Regularized Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography", IEEE Journal of Biomedical and Health Informatics, (Link) 2019

    136, Chenglong Wang, Takayasu Moriya, Yuichiro Hayashi, Holger Roth, Le Lu, Masahiro Oda, Hirotugu Ohkubo, Kensaku Mori: "Weakly-supervised deep learning of interstitial lung disease types on CT images". Medical Imaging: Computer-Aided Diagnosis 2019

    135, Ling Zhang, Le Lu, Robert Zhu, Mohammadhadi Bagheri, Ronald M. Summers, Jianhua Yao: "Spatial-Temporal Convolutional LSTMs for Tumor Growth Prediction by Learning 4D Longitudinal Patient Data". CoRR abs/1902.08716 (2019)

    134, Chun-Hung Chao, Yen-Chi Cheng, Hsien-Tzu Cheng, Chi-Wen Huang, Tsung-Ying Ho, Chen-Kan Tseng, Le Lu, Min Sun: "Radiotherapy Target Contouring with Convolutional Gated Graph Neural Network". CoRR abs/1904.03086 (2019)

    133, Gross tumor volume segmentation method and computer device, US Patent (granted) 10929981#; Fracture detection method, electronic device and storage medium, US Patent (granted) 10937143#; Enhanced medical images processing method and computing device, US Patent (granted) 10984530#; Medical image classification method and related device, US Patent (granted) 10997720#;

    R19, Chi-Tung Cheng, et al., "Automatic Weakly Supervised Universal Fracture Detection in Pelvic X-ray", Scientific Papers, Oral, RSNA 2019


2018


    132, 深度学习和医学影像在预防医学中的机会; 吕乐, 吴山东, 放射学实践, 2018年10月,应邀特刊(pdf), Oct. 2018

    131, "Radiotherapy Target Contouring with Convolutional Gated Graph Neural Network", NIPS-ML4H Workshop (Spotlight Podium Presentation, top 6%), Dec. 2018

    130, Le Lu, Adam P. Harrison, "Deep Medical Image Computing in Preventive and Precision Medicine", IEEE Multimedia Magazine, (invited paper, pdf) Nov. 2018

    129, Ke Yan*, Xiaosong Wang*, Le Lu, Ronald M. Summers, "DeepLesion: Automated Mining of Large-scale Lesion Annotations and Universal Lesion Detection with Deep Learning", Journal of Medical Imaging, (pdf; data download link) 2018

    128, Yuxing Tang*, Xiaosong Wang*, Adam Harrison*, Le Lu, Jing Xiao, Ronald M. Summers, "Attention-Guided Curriculum Learning for Weakly Supervised Classification and Localization of Thoracic Diseases on Chest Radiographs", MICCAI-MLMI, (Oral) 2018

    127, Youbao Tang*, Jinzheng Cai*, Le Lu, Adam Harrison*, Ke Yan*, Jing Xiao, Lin Yang, Ronald M. Summers,, "CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement", MICCAI-MLMI, (Oral) 2018

    126, Hayato Itoh*, Holger Roth, Le Lu, Masahiro Oda, Kensaku Mori, Masashi Misawa, Yuichi Mori, Shin-ei Kudo, "Towards Automated Colonoscopy Diagnosis: Binary Polyp Size Staging via Unsupervised Depth Learning", (pdf) MICCAI, 2018

    125, Jinzheng Cai*, Youbao Tang*, Le Lu, Adam Harrison*, Ke Yan*, Jing Xiao, Lin Yang, Ronald M. Summers, "Accurate Weakly-Supervised Deep Lesion Segmentation using Large-Scale Clinical Annotations: Slice- Propagated 3D Mask Generation from 2D RECIST", (pdf) MICCAI, 2018

    124, Jinzheng Cai*, Le Lu, Adam Hassiron*, Xiaoshuang Shi, Pingjun Chen, Lin Yang, "Iterative Attention Mining for Weakly Supervised Thoracic Disease Pattern Localization in Chest X-Rays", (pdf) MICCAI (early acceptance), 2018

    123, Nathan Lay, Yohannes Tsehay, Yohan Sumathipala, Ruida Cheng, Sonia Gaur, Clayton Smith, Adrian Barbu, Le Lu, Baris Turkbey, et al., "A Compositional Model for the Detection of Prostate Cacer in Multi-Parameteric MRl", (pdf) MICCAI (early acceptance), 2018

    122, Jinzheng Cai*, Le Lu, Fuyong Xing, Lin Yang: "Pancreas Segmentation in CT and MRI Images via Domain Specific Network Designing and Recurrent Neural Contextual Learning". CoRR abs/1803.11303 (2018)

    121, Jiamin Liu, Karthik Chellamuthu, Le Lu, Hadi Bagheri, Ronald M. Summers, "A Coarse-to-fine Approach for Pericardial Effusion Localization and Segmentation in Chest CT Scans". Medical Imaging: Computer-Aided Diagnosis 2018: 105753B

    120, Xiaosong Wang*, Yifan Peng, Le Lu, Zhiyong Lu, Ronald M. Summers, "TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays", (Spotlight, pdf) IEEE CVPR, arXiv:1801.04334, 2018

    119, Ke Yan*, Xiaosong Wang*, Le Lu, Ling Zhang*, Adam Harrison*, Mohammadhad Bagheri, Ronald M. Summers, "Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database", (pdf) IEEE CVPR, arXiv:1711.10535, 2018

    118, Jinzheng Cai*, Youbao Tang*, Le Lu, Adam Harrison*, Ke Yan*, Jing Xiao, Lin Yang, Ronald M. Summers, "Accurate Weakly Supervised Deep Lesion Segmentation on CT Scans: Self-Paced 3D Mask Generation from RECIST", arXiv:1801.08614, 2018

    117, Holger Roth*, Le Lu, Nathan Lay, Adam Harrison*, Amal Farag*, Andrew Sohn*, Ronald M. Summers, "Spatial Aggregation of Holistically-Nested Convolutional Neural Networks for Automated Pancreas Localization and Segmentation", Elsevier Journal of Medical Image Analysis, (pdf), Feb 2018

    116, Yifan Peng, Xiaosong Wang, Le Lu, Mohammadhadi Bagheri, Ronald M. Summers, Zhiyong Lu, "NegBio: a High-Performance Tool for Negation and Uncertainty Detection in Radiology", (pdf) American Medical Informatics Association (AMIA) submit (Oral), 2018, arXiv:1712.05898

    115, Ke Yan*, Le Lu, Ronald M. Summers, "Unsupervised Body Part Regression via Spatially Self-ordering Convolutional Neural Networks", IEEE ISBI, 2018, (Oral) arXiv:1707.03891

    114, Jiamin Liu, Jinzheng Cai*, Karthik Chellamuthu, Mohammadhadi Bagheri, Le Lu, Ronald M. Summers, "Cascaded Coarse-to-fine Convolutional Neural Networks for Pericardial Effusion Localization and Segmentation on CT Scans", IEEE ISBI, 2018 

    113, Ling Zhang*, Vissagan Gopalakrishnan, Le Lu, Ronald M. Summers, Joel Moss, Jianhua Yao, "Self-Learning to Detect and Segment Cysts in Lung CT Images without Manual Annotation", IEEE ISBI, 2018, arXiv:1801.08486

    112, Zhihui Guo, Ling Zhang*, Le Lu, Mohammadhadi Bagheri, Ronald M. Summers, Milan Sonka, Jianhua Yao, "Deep LOGISMOS: Deep Learning Graph-based 3D Segmentation of Pancreatic Tumors on CT Scans", Oral, IEEE ISBI, 2018, (Oral) arXiv:1801.08599

    R18, Xiaosong Wang*, Yifan Peng*, Le Lu, Zhiyong Lu, Ronald M. Summers, "Automatic Classification and Reporting of Multiple Common Thorax Diseases Using Chest Radiographs", Scientific Papers, Oral, Science Session with Keynote: Informatics (Artificial Intelligence in Radiology: Cutting Edge Deep-Learning), RSNA 2018

    R17, Youbao Tang*, Jinzheng Cai*, Le Lu, A P Harrison*, Ke Yan*, Jing Xiao, "CT Image Enhancement for Lesion Segmentation Using Stacked Generative Adversarial Networks",  Scientific Posters, RSNA 2018

    R16, Ke Yan*, Xiaosong Wang*, Le Lu, Ling Zhan*, A P Harrison*, M Bagher,"Relationship Learning and Organization of Significant Radiology Image Findings for Lesion Retrieval and Matching", Scientific Papers, Oral, RSNA Best Paper Award in the Category of "Imaging Informatics", Science Session with Keynote: Informatics (Artificial Intelligence in Radiology: Bleeding Edge), RSNA 2018


2017


    111, Le Lu, Yefeng Zheng, Gustavo Carneiro, Lin Yang: Deep Learning and Convolutional Neural Networks for Medical Image Computing - Precision Medicine, High Performance and Large-Scale Datasets. Advances in Computer Vision and Pattern Recognition, Springer 2017, ISBN 978-3-319-42998-4

    110, Ling Zhang*, Le Lu, Ronald Summers, Electron Kebebew, Jianhua Yao, "Convolutional Invasion and Expansion Networks for Tumor Growth Prediction", IEEE Trans. on Medical Imaging (pdf), pp.1-11, 2017

    109, Jiamin Liu, David Wang, Le Lu, Zhuoshi Wei, L. Kim, E. Turkbey, B. Sahiner, N. Petrick, Ronald Summers, "DETECTION AND DIAGNOSIS OF COLITIS ON COMPUTED TOMOGRAPHY USING DEEP CONVOLUTIONAL NEURAL NETWORKS", Journal of Medical Physics, (accepted), 2017

    108, R. Cheng, H. Roth, N. Lay, Le Lu, B. Turkbey,  W. Gander, E. McCreedy, P. Choyke, R. Summers, M. McAuliffe, "Automatic MR prostate segmentation by deep learning with holistically-nested networks", Journal of Medical Imaging, 2017 

    107, Ling Zhang*, Le Lu, Isabella Nogues*, Ronald Summers, Shaoxiong Liu, Jianhua Yao, "DeepPap: Deep Convolutional Networks for Cervical Cell Classification", (pdf, arXiv:1801.08616) IEEE J. of Biomedical and Health Informatics (in press), 2017

    106, Yifan Peng, Xiaosong Wang, Le Lu, Mohammadhadi Bagheri, Ronald Summers, Zhiyong Lu, "DeepText Mining Radiology Reports for Deep Learning Radiology Images", American Medical Informatics Association (AMIA) Annual Symposium (Oral), Nov. 2017

    105, Adam Harrison*, Ziyue Xu, Kevin George*, Le Lu, Ronald Summers, Daniel Mollura, "Progressive and Multi-Path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT Images", (pdf), MICCAI Travel Award & Young Scientist Award Runner-up, 2017

    104, Ling Zhang*, Le Lu, Ronald Summers, Electron Kebebew, Jianhua Yao, "Personalized Pancreatic Tumor Growth Prediction via Group Learning", MICCAI (pdf), 2017

    103, Jinzheng Cai*, Le Lu, Yuanpu Xie, Fuyong Xing, Lin Yang, "Improving Deep Pancreas Segmentation in CT and MRI Images via Recurrent Neural Contextual Learning and Direct Loss Function", MICCAI  (