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Pancreatic ductal adenocarcinoma (PDAC) is predicted 
to become the second leading cause of cancer-related 

death by 2030, with positive peripancreatic lymph nodes 
(LNs) found in up to 80% of patients with PDAC (1).

Preoperative assessment of LN status is essential. For 
prognosis, LN metastasis is an independent predictor of 
PDAC survival (2), with a 5-year survival rate of 40% in 
patients with no pathologically confirmed lymph node 
metastasis (pN0) compared with 10% for those with 
pathologically confirmed increasing metastatic involve-
ment (pN1 and pN2) (2,3). For early detection, espe-
cially for tumors less than or equal to 2 cm in size, it is 
critical to identify LN disease status and further stratify 
the patients with stage 1 PDAC (T1N0M0). Compared 
with standard surgical resection, extended resection, 
including dissection of LNs, might result in reduced 

quality of life with no survival benefit (4,5). To date, 
the National Comprehensive Cancer Network (NCCN) 
guidelines on the optimal extent of LN dissection have 
not been achieved. For neoadjuvant therapy, the opti-
mal sequence of chemotherapy and surgery is still de-
batable in patients with resectable PDAC (6). NCCN 
guidelines suggest considering neoadjuvant therapy for 
large regional LNs (7).

However, preoperative prediction of LN metastasis is 
challenging. CT is recommended as the first-line imaging 
modality for evaluating LN metastasis in PDAC. However,  
a meta-analysis showed that using CT to assess extrare-
gional LN metastasis in pancreatic and periampullary 
cancer yielded a pooled sensitivity of 25% and a posi-
tive predictive value of 28% (8). Recently, radiomics 
has shown some promise in predicting LN metastasis 
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segmentation with CT imaging for prediction of LN metastasis in patients with pancreatic ductal adenocarcinoma (PDAC).
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[AUC], 0.91) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs 
of 0.58, 0.76, and 0.71, respectively. In the validation set, the AI model showed the highest performance (AUC, 0.92) in the 
prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.65, 0.77, and 0.68, 
respectively (P , .001). AI model–predicted positive LN metastasis was associated with worse survival (hazard ratio, 1.46; 95% 
CI: 1.13, 1.89; P = .004).

Conclusion:  An artificial intelligence model outperformed radiologists and clinical and radiomics models for prediction of lymph 
node metastasis at CT in patients with pancreatic ductal adenocarcinoma.
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CT Protocol
Multiphasic CT was performed according to a pancreas-specific 
protocol with a 320-section, multidetector-row CT scanner  
(Aquilion ONE; Canon Medical Systems). The CT scan  
parameters were as follows: 120 kV; effective mAs, 150; beam 
collimation, 160 3 0.5 mm; matrix, 350 3 350; gantry rotation 
time, 0.5 second; volume CT dose index, 15.4 mGy; dose-length 
product, 308 mGy ∙ cm. An initial cross-sectional nonenhanced 
CT scan was obtained, followed by a dynamic contrast- 
enhanced CT scan. The scan delay time was determined based 
on the test bolus. The contrast agent (90–95 mL of 355 mgI/mL 
iopromide [Ultravist 370; Bayer Schering Pharma]) was injected 
at a rate of 5.5 mL/sec with a power injector (Medrad Mark 
V Plus; Bayer) via the forearm vein, followed by an injection 
of 98 mL normal saline to flush the tube. After contrast agent 
injection, contrast-enhanced CT was performed in the arterial 
(20–25 seconds), portal venous (60–70 seconds), and delayed 
(110–130 seconds) phases. The section thickness was 0.8 mm 
and the intervals of the scan were 1.0 mm. The scanning range 
extended from the level of the diaphragm to the pelvis.

Pathologic Image Analysis
Pathologic data were obtained from medical records. T and 
N categories were reevaluated by a specialized pathologist. All 
pathologic results were recorded for the following factors: (a) 
tumor size and invasion (T) and LN involvement (N) evalu-
ated according to the American Joint Committee on Cancer 
TNM staging manual, eighth edition (18), (b) differentiation 
grade, (c) lymphovascular space invasion (LVSI), and (d) peri-
neural invasion.

Radiologic Image Analysis
We used the original cross-sectional images of the arterial and 
portal phases for radiologic analysis. All images were analyzed by 
two abdominal radiologists (Y.B. and X.F., with 30 and 10 years 
of experience, respectively) who were blinded to the clinical and 
pathologic details. In case of disagreement, the senior radiologist 
(C.S.) decided the results.

All tumors were evaluated for the following characteristics: 
(a) CT-determined tumor size (ie, maximum cross-sectional  
diameter of the tumor) (19), (b) tumor location (pancre-
atic head, neck, body, and tail), and (c) CT-determined LN  
metastasis, which was considered if one of six criteria was met, 
including LN short-axis diameter greater than 10 mm, non-
uniform density, nonuniform enhancement, internal necrosis, 
LN fusion, ill-defined borders, or involvement of surrounding 
organs or blood vessels (18).

LN Metastasis Prediction AI Model
The LN and tumor annotation and automatic segmentation 
protocols are detailed in Appendixes E2 and E3 (online) and 
Figures E1–E3 (online). The interobserver and intraobserver 
median Dice similarity coefficients (DSCs) of manually delin-
eated LNs were reported. The median DSCs between automatic 
segmentation and manually delineated tumor and LNs were also 
reported. After segmenting LN instances from the whole CT 

in patients with PDAC (9–13), but this technique is manual 
and limited by small sample sizes (n , 250), lack of repro-
ducibility, and challenges to implementation in a real-world 
setting. Furthermore, all radiomics features have only been 
extracted from tumors. LNs, the true objects of the LN me-
tastasis prediction task, have not yet been considered.

Recently, there has been growing interest in applying deep 
learning for LN metastasis prediction from cancer imaging 
data (14,15). Similar to the aforementioned radiomics stud-
ies, the reliance on manual tumor delineation and failure to 
account for LN features limit the clinical translation of these 
methods. One study developed an artificial intelligence (AI) 
model to automatically detect and predict LN metastasis 
(16), but the ground-truth label of LN metastasis was diag-
nosed from radiologic images, not pathologic results.

Thus, the aim of this study was to develop and validate a 
fully automated preoperative deep learning–based AI tool for  
tumor and LN segmentation with CT imaging and to predict 
LN metastasis in patients with PDAC.

Materials and Methods

Patients
This retrospective single-center study was reviewed and approved 
by the Biomedical Research Ethics Committee of our institution 
(no. CHEC2021164) and was performed in accordance with 
the ethical standards of the 1964 Declaration of Helsinki. The 
requirement for patient informed consent was waived by the in-
stitutional review board due to the retrospective nature of the 
study and because all procedures performed were part of routine 
care. This article fundamentally follows the Transparent Report-
ing of a Multivariable Prediction Model for Individual Prognosis 
or Diagnosis, or TRIPOD, guidelines (17).

Data were obtained from consecutive patients treated for 
PDAC at a university teaching hospital from January 2015 
to April 2020. A total of 1119 patients with pathologically 
confirmed PDAC were included. The inclusion and exclusion 
criteria are presented in Figure 1 and Appendix E1 (online).

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, DSC = Dice similarity coefficient, LN = lymph 
node, LVSI = lymphovascular space invasion, PDAC = pancreatic ductal 
adenocarcinoma

Summary
An artificial intelligence model outperformed radiologists and clinical 
and radiomics models for prediction of lymph node metastasis at CT 
in patients with pancreatic ductal adenocarcinoma.

Key Results
	N In a validation set of 189 patients with surgically resected, patho-

logically confirmed pancreatic ductal adenocarcinoma, an artifi-
cial intelligence (AI) model had better performance (P , .001) 
for identifying metastatic lymph nodes than a clinical model and 
a radiomics model (areas under the receiver operating character-
istic curve [AUCs] of 0.92, 0.77, and 0.68, respectively).

	N The AI model also outperformed radiologists (validation set AUC, 
0.92 vs 0.65; P , .001) in the prediction of lymph node metastasis.
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image, we identified them as having positive metastasis (LG-pos-
itive) or negative metastasis (LG-negative) (bottom branch in the 
upper panel of Fig 2). The network was trained using cropped 
subvolumes centered at the annotated LN instances and used to 
identify automatically segmented LNs as positive or negative at 

the inference time. To aggregate the results of LN instance-level 
segmentation and identification into patient-level LN metastasis 
status prediction, we conducted receiver operating characteristic 
analysis. The volume of the largest predicted positive LN in a 
patient was found to have the best results on the tuning set.

Figure 1:  Patient flowchart for this study. IPMN = intraductal papillary mucinous neoplasm, LN = lymph node, pNET = pancreatic  
neuroendocrine tumor.

Figure 2:  Artificial intelligence (AI) workflow and study flowchart. AUC = area under the receiver operating characteristic curve, LN = lymph node, PDAC = pancreatic 
ductal adenocarcinoma, 2D = two-dimensional, 3D = three-dimensional.
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To further boost performance, we incorporated the imaging 
characteristics of the primary tumor into the model (top branch 
in the upper panel of Fig 2). A tumor and LN–combined, 
patient-level, LN metastasis status prediction model was built 
based on the automated segmentation results of the LNs and 
the annotated tumors. Note that the inference process was fully 
automated, in which the LN metastasis prediction was derived 
using automated segmentation of both the tumor and LNs. De-
tails of the AI model are presented in Appendix E4 (online).

Comparison with Other Prediction Models
We developed two different integrated prediction models for 
comparison: a clinical model, combining pathologic and radio-
logic factors (T category, LVSI, perineural invasion, and CT-
determined LN status), and a radiomics model, combining the 
arterial radiomics score and CT-determined LN status.

Radiomics Workflow
Our radiomics workflow included (a) automatic tumor segmenta-
tion, (b) feature extraction, and (c) feature reduction and selection. 
The radiomics approach is detailed in Appendix E5 (online).

Statistical Analysis
The prediction models, including the clinical and radiomics 
models, were built from the training set using the following 
steps. First, we examined the differences in all variables between 
the LN-positive and LN-negative groups. Second, univariable 
regression analysis and multivariable logistic regression analy-
sis were conducted to develop a clinical and radiomics model 
for the prediction of LN metastasis, and a nomogram was con-
structed. We constructed a multivariable model using a stepwise 
regression method based on the Akaike information criterion 
to determine the best-fitting model (20). The differentiation 
performance of established models was quantified by plotting 
a receiver operating characteristic curve, and the area under the 
receiver operating characteristic curve (AUC) was calculated. Re-
ceiver operating characteristic curves of these models were com-
pared using the DeLong test (21). Third, each model’s clinical 
usefulness was tested using decision curve analysis by quantify-
ing the net benefit at different threshold probabilities. Finally, 
overall survival times were calculated from the date of surgery to 
death from any cause or the last follow-up, where death was set 
as an event and those patients lost to follow-up were censored. 
Kaplan-Meier estimates were applied to graph survival curves, 
and the log-rank test was performed to analyze the differences 
between the curves. Univariable and multivariable Cox regres-
sion analyses were conducted to analyze the relationship between 
AI-predicted LN metastasis status and overall survival. A two-
tailed P value less than .05 was considered indicative of a statisti-
cally significant difference. All analyses were performed using R 
version 3.3.3 (The R Foundation).

The major components of our code are available in open-
source repositories or libraries, including PyTorch (https://py-
torch.org/), nnUNet (https://github.com/MIC-DKFZ/nnUNet), 
and SimpleITK (https://simpleitk.org/) for the Euclidean dis-
tance transform. The prediction AI model, inference code, 
and illustrative examples of CT images, tumors, and LN 

masks are publicly available on GitHub (https://github.com/
DeepMedImg/DeepCT-LNM-Example).

Results

Patient Characteristics
Of a total of 1119 patients with pathologically confirmed 
PDAC, 734 consecutive patients (mean age, 62 years 6 9  
[SD]; 453 men) with PDAC were included after applying the 
inclusion and exclusion criteria. The training set comprised 545 
consecutive patients from January 2015 to April 2019, and the 
independent validation set comprised 189 consecutive patients 
from May 2019 to April 2020. Of the 734 study patients, there 
were 394 (54%) in the LN-negative group and 340 (46%) in the 
LN-positive group. A total of 466 positive LNs were included. 
There was a difference in T categories, LVSI, perineural inva-
sion, and CT-determined LN status between the LN-positive 
and LN-negative groups in both the training and validation sets 
(P , .05). CT-determined tumor size differed between groups 
only in the training set (P , .05). Age differed between groups 
only in the validation set (P , .05). Patient characteristics are 
shown in Table 1. Interobserver agreement analysis is detailed in 
Appendix E6 (online).

Univariable Analysis
The results of univariable analysis are presented in Table E1 (on-
line). T category, LVSI, perineural invasion, and CT-determined 
LN status were associated with a higher risk of LN metastasis in 
both the training and validation sets (P , .05). CT-determined 
size (P = .02) in the training set and age (P = .03) in the valida-
tion set were associated with a higher risk of LN metastasis.

Manual Delineation Reproducibility and Automated 
Segmentation Accuracy
The median interobserver and intraobserver DSCs of the LNs 
were 0.24 (IQR, 0.13–0.41) and 0.49 (IQR, 0.36–0.60),  
respectively. The median DSCs of tumor and LN segmentation 
in the validation set were 0.68 (IQR, 0.59–0.76) and 0.59 (IQR, 
0.36–0.70), respectively. The automated model detected the  
tumor in 189 of 189 (100%) patients in the validation set. For 
LN metastasis detection, when considering a DSC greater than 
or equal to 0.5 as a true-positive indicator of LN detection, the 
tru-positive rate and positive predictive value were 80.1% and 
40.5%, respectively, with four false-positive results per volume. 
DSC values for segmentation of organs and vessels are detailed 
in Appendix E3 (online).

LN Metastasis Prediction Accuracy
The AI model showed the highest discrimination between the 
LN-negative and LN-positive groups, with an AUC of 0.91 
(95% CI: 0.89, 0.94) in the training set and 0.92 (95% CI: 
0.88, 0.96) in the validation set (Table 2). The sensitivity, 
specificity, accuracy, positive predictive value, and negative pre-
dictive value for the training set were 82.7%, 86.9%, 85.0%, 
84.7%, and 85.2%, respectively, whereas those for the valida-
tion set were 80.2%, 89.3%, 85.2%, 86.3%, and 84.4%, re-
spectively. Two illustrative cases diagnosed using the AI model 
are shown in Figures 3 and 4.
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Table 1: Baseline Characteristics of Patients with Pancreatic Ductal Adenocarcinoma

Characteristic

Training Set Validation Set

LN-Negative  
Group (n = 291)

LN-Positive  
Group (n = 254) P Value

LN-Negative  
Group (n = 103)

LN-Positive  
Group (n = 86) P Value

Age (y)*    62 6 9    62 6 9 .98    63 6 10    59 6 10 .03
Body mass index (kg/m2)*    23 6 3    24 6 7 .07    23 6 3    23 6 2 .39
Sex .12 .83
  M 170 (58) 165 (65) 65 (63) 53 (62)
  F 121 (42) 89 (35) 38 (37) 33 (38)
T category ,.001 .02
  T1 55 (19) 29 (11) 16 (15) 6 (7)
  T2 100 (34) 128 (50) 46 (45) 55 (64)
  T3 135 (46) 91 (36) 40 (39) 22 (26)
  T4 1 (1) 6 (3) 1 (1) 3 (3)
Differentiation grade .74 .63
  1 4 (1) 3 (1) 2 (2) 1 (1)
  2 212 (73) 178 (70) 77 (75) 60 (70)
  3–4 75 (26) 73 (29) 24 (23) 25 (29)
Lymphovascular space invasion ,.001 ,.001
  Negative 242 (83) 133 (52) 87 (84) 47 (55)
  Positive 49 (17) 121 (48) 16 (16) 39 (45)
Perineural invasion ,.001 .01
  Negative 60 (21) 12 (5) 22 (21) 7 (8)
  Positive 231 (79) 242 (95) 81 (79) 79 (92)
Surgery .67 .93
  Pancreatoduodenectomy 169 (58) 157 (62) 59 (57) 51 (59)
  Distal pancreatectomy 109 (37) 86 (34) 41 (40) 32 (37)
  Total pancreatectomy 13 (5) 11 (4) 3 (3) 3 (3)
CT-determined LN status ,.001 ,.001
  Negative 175 (60) 111 (44) 65 (63) 29 (34)
  Positive 116 (40) 143 (56) 38 (37) 57 (66)
  CT-determined tumor size (cm)* 2.74 6 1.33 3.02 6 1.31 .002 2.76 6 1.23 2.84 6 1.06 .54
Pancreas location .38 .78
  Head 169 (58) 157 (62) 59 (57) 51 (59)
  Neck, body, and tail 122 (42) 97 (38) 44 (43) 35 (41)

Note.—Except where indicated, data are numbers of patients, with percentages in parentheses. For the differentiation grade, 1 indicates 
well-differentiated, 2 indicates moderately differentiated, 3 indicates poorly differentiated, and 4 indicates undifferentiated tumor.  
LN = lymph node.
* Data are means 6 SDs.

Table 2: Performance of the Integrated Prediction Models

Performance

Clinical Model Radiomics Model AI Model

Training Set Validation Set Training Set Validation Set Training set Validation Set
AUC* 0.76 (0.72, 0.80) 0.77 (0.70, 0.84) 0.71 (0.67, 0.75) 0.68 (0.60, 0.75) 0.91 (0.89, 0.94) 0.92 (0.88, 0.96)
Sensitivity 62.6 (159/254) 79.1 (68/86) 72.4 (184/254) 79.1 (68/86) 82.7 (210/254) 80.2 (69/86)
Specificity 79.0 (230/291) 68.0 (70/103) 62.2 (181/291) 49.5 (51/103) 86.9 (253/291) 89.3 (92/103)
Accuracy 71.4 (389/545) 73.0 (138/189) 67.0 (365/545) 63.0 (119/189) 85.0 (463/545) 85.2 (161/189)
PPV 72.3 (159/220) 67.3 (68/101) 62.6 (184/294) 56.7 (68/120) 84.7 (210/248) 86.3 (69/80)
NPV 70.8 (230/325) 79.6 (70/88) 72.1 (181/251) 73.9 (51/69) 85.2 (253/297) 84.4 (92/109)

Note.—Except where indicated, data are percentages, with numbers of patients in parentheses. Performance is presented as AUC, 
sensitivity, and specificity values according to the optimal selected cutoff. AI = artificial intelligence, AUC = area under the receiver 
operating characteristic curve, NPV = negative predictive value, PPV = positive predictive value.
* Data are AUCs, with 95% CIs in parentheses.
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For CT-determined LN status, the AUC, sensitivity, speci-
ficity, accuracy, positive predictive value, and negative predic-
tive value for the training set were 0.60 (95% CI: 0.53, 0.63), 

56.3%, 60.1%, 58.4%, 55.2%, and 61.2%, respectively, while 
those for the validation set were 0.65 (95% CI: 0.57, 0.73), 
66.3%, 63.1%, 64.6%, 60.0%, and 69.2%, respectively.

Figure 3:  Images in a 71-year-old man with pancreatic ductal adenocarcinoma in the lymph node (LN)–negative group. (A) Hematoxylin-eosin stain shows that the 
peritumoral LNs (arrows) are negative (hematoxylin-eosin staining; magnification, 31). The dashed line indicates the tumor periphery. (B) Graphic shows LNs (green  
arrows), tumor (blue arrow), and pancreas (yellow) segmented and diagnosed by artificial intelligence (AI). (C) Axial portal phase CT scan segmented by the AI model 
shows a negative LN (arrow) located at the pancreatic head. (D) Axial portal phase CT scan segmented by the AI model shows a negative LN (arrow) located at the  
pancreatic head. (E) Axial portal phase CT scan segmented by the AI model shows an infiltrative low-attenuation mass (arrow) at the pancreatic head.

Figure 4:  Images in a 78-year-old man with pancreatic ductal adenocarcinoma in the lymph node (LN)–positive group. (A) Hematoxylin-eosin stain shows a positive 
LN (red arrow) and three negative LNs (black arrows) located in the peritumoral area (hematoxylin-eosin staining; magnification, 31). The dashed line indicates the tumor 
periphery. (B) Graphic shows three negative LNs (green arrows) and a positive LN (red arrow) located in the peritumoral area and tumor (blue arrow) located in the pan-
creatic body segmented and diagnosed by artificial intelligence (AI). (C) Axial portal phase CT scan segmented by the AI model shows a positive LN (arrow) located at 
the pancreatic neck. (D) Axial portal phase CT scan segmented by AI shows a negative LN (arrow) located at the pancreatic body. (E) Axial portal phase CT scan shows 
an infiltrative low-attenuation mass (arrow) at the pancreatic body.
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The integrated clinical model identified T categories, 
LVSI, perineural invasion, CT-determined LN status, and 
CT-determined size as independent predictors (Table E2 
[online]).

The radiomics features results are detailed in Appendix 
E5 (online) and Figure E4 (online). The integrated radiomics 
model identified the arterial radiomics score and CT-deter-
mined LN status as independent predictors (Table E3 [on-
line]). Nomograms for the clinical and radiomics models are 
shown in Figure E5 (online).

There was a significant difference in AUCs between the AI 
model and the other integrated models in the validation set 
according to the DeLong test (P , .001). Receiver operating 
characteristic curves for CT-determined LN status according 
to radiologists and the clinical, radiomics, and AI models are 

shown in Figure 5A and 5B, and the performance of the three 
prediction models is outlined in Table 2.

Clinical Utility of the Prediction Models
Compared with scenarios in which no prediction model was 
used (ie, treat-all or treat-none scheme), the AI model provided 
a better net benefit for predicting LN metastasis than the clini-
cal and radiomics models for threshold probabilities greater 
than 0.4% (Fig 5C).

Association between AI-predicted LN Metastasis Status and 
Overall Survival
In the training set, 253 of 291 patients (87% ) were accurately 
identified in the LN-negative group and 210 of 254 patients 
(83%) were accurately identified in the LN-positive group using 

Figure 5:  Performance, decision curve analysis, and patient survival stratified 
by risk classification. (A) Receiver operating characteristic curves show CT-de-
termined lymph node (LN) status and the clinical, radiomics, and artificial intelli-
gence (AI) models in the training set. (B) Receiver operating characteristic curves 
show CT-determined LN status and the clinical, radiomics, and AI models in the 
validation set. (C) Decision curves for all models in the validation set show that, if 
the threshold probability was greater than 0.4%, using the AI model in the current 
study to predict lymph node (LN) metastasis has more benefits than treating all or 
none of the patients and more benefits than the clinical and radiomics prediction 
models. The y-axis represents the net benefit. The gray line represents the hypoth-
esis that all patients had a positive LN. The black line represents the hypothesis 
that all patients had a negative LN. The x-axis represents the threshold probability 
where the expected benefit of treatment is equal to the expected benefit of no 
treatment. AUC = area under the receiver operating characteristic curve.
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the AI model (Fig 6A). In contrast, in the validation set, 92 of 
103 patients (89%) were accurately predicted in the LN-negative 
group and 69 of 86 patients (80%) were accurately identified in 
the LN-positive group using the AI model. (Fig 6B).

The median follow-up duration was 23 months (IQR, 
15–30 months) in the LN-negative group and 19 months 
(IQR, 13–26 months) in the LN-positive group, and 105 pa-
tients in the LN-negative group and 125 patients in the LN-
positive group died. The log-rank test revealed a longer survival 
duration in the predicted LN-negative group than in the pre-
dicted LN-positive group (training set, P = .005; validation set, 
P = .007) (Fig 6C, 6D).

In the univariable analysis, positive AI-predicted LN me-
tastasis was associated with worse survival (hazard ratio, 1.59; 
95% CI: 1.25, 2.02; P , .001). In addition, multivariable Cox 

regression analysis revealed that AI-predicted LN metastasis was 
an independent preoperative predictor for worse overall survival 
(hazard ratio, 1.46; 95% CI: 1.13, 1.89; P = .004) (Table 3).

Discussion
Studies on the automatic segmentation and identification of 
both pancreatic lymph nodes (LNs) and tumor that also com-
bine artificial intelligence (AI) for the automated imaging char-
acteristics of both remain lacking in the literature. In this study, 
we developed and validated an AI model to predict LN metas-
tasis in patients with pancreatic ductal adenocarcinoma. The AI 
model demonstrated favorable discrimination in both the pri-
mary set (area under the receiver operating characteristic curve 
[AUC], 0.91) and the validation set (AUC, 0.92) and outper-
formed radiologists, a clinical model, and a radiomics model. 

Figure 6:  Classification and survival prediction of the artificial intelligence (AI) model. (A) Mosaic plot of the training set. (B) Mosaic plot of the validation set. (C) 
Kaplan-Meier survival curves for the prediction AI model show significantly longer survival for patients in the lymph node (LN)–negative group than those in the LN-positive 
group in the training set. (D) Kaplan-Meier survival curves for the prediction AI model show significantly longer survival for patients in the LN-negative group than those in 
the LN-positive group in the validation set.
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In addition, the patients with LN metastasis identified by AI 
had approximately 50% worse survival (hazard ratio, 1.46;  
P = .004) after radical tumor resection, thereby providing im-
portant information for medical decision support.

Many studies have investigated risk stratification methods 
for LN metastasis, including T categories, LVSI, and perineu-
ral invasion (22–24). Yet preoperative identification of LN 
metastasis still mainly depends on the radiologist’s report. 
However, the lower AUC values of 0.58–0.65 reported in the 
current study show that LN metastasis prediction by radiolo-
gists remains extremely difficult.

At present, few studies have assessed LN metastasis pre-
diction using radiomics in patients with PDAC. Liu et  al 
(10) developed a radiomics model with AUC values of 0.84 
and 0.68 in the training and validation sets, respectively. The 
study by Li et al (11) reported a radiomics model with AUC 
values of 0.94 and 0.91 in the primary and validation sets, 

respectively. An et al (12) built a deep learn-
ing radiomics model with dual-energy CT 
and reported the best performance in pre-
dicting LN metastasis (AUC, 0.92). A simi-
lar radiomics model investigated by Gao 
et al (25) and Liang et al (26) also showed 
good performance. However, the primary 
limitation of these studies was the small 
number of patients with an over-optimized 
AUC. Another limitation of these studies 
was that the radiomics features in the pre-
diction model were quite different from one 
another, which indicated challenges for re-
producibility. The limitation persists in our 
studies. The performance of the radiomics 
model in the primary (AUC, 0.71) and vali-
dation (AUC, 0.68) sets was less desirable in 
the current study compared with our previ-
ous study (13). Thus, extracting more direct 
LN characteristics to develop the prediction 
model was more accurate in predicting LN 
metastasis in the current study.

Computer-aided LN segmentation has 
been reported in some solid tumors (27,28). 
In our study, the LN segmentation model im-
proved a popular image segmentation model 
(ie, nnUNet) by introducing an attention 
mechanism guided by contextual organs and 
vessels, which explicitly used the spatial prior 
of pancreatic LN locations. Consequently, the 
network was encouraged to focus on regions 
surrounding certain organs and vessels and 
discard negative samples far from LN areas. 
In addition, automatic LN segmentation has 
the potential to decrease interobserver and in-
traobserver inconsistencies in delineating LNs 
and reduce the time and labor involved; in the 
current study, the median interobserver and 
intraobserver DSCs of LNs were only 0.24 
and 0.49, respectively. These DSCs were lower 

than that (DSC, 0.59) between AI and manual segmentation, 
indicating that our automated segmentation model has similar 
reproducibility to a radiologist. This is probably the best an au-
tomated model can do in practice.

Our study had some limitations. First, although we included a 
relatively large number of patients with PDAC for LN metastasis 
prediction, this was a retrospective and single-center study with 
potential for bias. Second, we did not include carbohydrate anti-
gen 19–9 because there are several issues with its clinical use, such 
as false-negative results in individuals with Lewisa-b- phenotype or 
false-positive, occasional, and transient elevation in patients with 
benign diseases, making it a poor cancer-specific marker (29). 
Third, the median DSCs of PDAC tumor and LN segmenta-
tion were 0.68 and 0.59, indicating a modest agreement between 
the AI model and manual segmentation. Further work will test 
generalizability of the automated segmentation model to provide 
the agreement between AI and manual segmentation. Fourth, the 

Table 3: Clinical and Pathologic Characteristics and AI Model–predicted LN 
Metastasis Associated with Worse Overall Survival

Variable

Univariable Analysis Multivariable Analysis

Hazard Ratio P Value Hazard Ratio P Value
Sex
  M 1 1
  F 0.83 (0.65, 1.07) .14 0.84 (0.65, 1.09) .19
Age (per year) 1.01 (1.00, 1.02) .22 1.01 (1.00, 1.02) .08
Body mass index  

(per kg/m2)
1.02 (1.01, 1.04) .01 1.02 (1.01, 1.04) .01

Pancreas location
  Head 1 1
  Neck, body, and tail 0.91 (0.71, 1.16) .45 0.92 (0.71, 1.20) .54
CT-determined  

tumor size (per cm)
0.99 (0.90, 1.08) .75 1.06 (0.96,1.18) .25

T category
  T1 1 1
  T2 1.61 (1.03, 2.51) .04 1.48 (0.94, 2.32) .09
  T3–4 1.63 (1.04, 2.55) .03 1.66 (1.04, 2.66) .04
Differentiation grade
  1 1 1
  2 2.17 (0.54, 8.74) .28 1.40 (0.34, 5.78) .64
  3–4 3.10 (0.76, 12.59) .11 2.00 (0.48, 8.30) .34
Lymphovascular  

space invasion
  Negative 1 1
  Positive 1.32 (1.03, 1.70) .03 1.11 (0.85, 1.45) .43
Perineural invasion
  Negative 1 1
  Positive 2.00 (1.27, 3.15) .003 1.66 (1.04, 2.65) .03
AI model–predicted  

LN metastasis
  Low risk 1 1
  High risk 1.59 (1.25, 2.02) ,.001 1.46 (1.13, 1.89) .004

Note.—Data in parentheses are 95% CIs. There were 734 patients and 230 deaths.
For the differentiation grade, 1 indicates well-differentiated, 2 indicates moderately 
differentiated, 3 indicates poorly differentiated, and 4 indicates undifferentiated 
tumor. AI = artificial intelligence, LN = lymph node.
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clinical model of this study, which included pathologic features, 
aided little in the preoperative prediction of LN metastasis. How-
ever, a routine pathology workflow for diagnosing LN metastasis 
is time-consuming and might result in misdiagnosis by a patholo-
gist alone due to habituation. The clinical model was developed 
to solve these the problems. Fifth, there may have been difficulty 
in correlating LNs obtained at surgery with the specific nodes 
seen at preoperative scanning, representing a potential limitation. 
Finally, we did not evaluate the benefit of neoadjuvant therapy for 
patients with early PDAC and resectable PDAC.

In conclusion, our artificial intelligence (AI) model, a fully  
automated noninvasive tool combining both lymph node (LN) 
and tumor image characteristics, showed favorable accuracy for 
prediction of LN metastasis at CT in patients with pancreatic 
ductal adenocarcinoma (PDAC). The AI model outperformed 
radiologists, a clinical model, and a radiomics model. It could 
further provide clinically beneficial information for individual-
ized diagnosis and treatment for patients with PDAC. To ad-
vance our study, we recommend prospective multicenter vali-
dation with a larger sample size to acquire high-level evidence 
for clinical applications. In addition, we aim to further inves-
tigate the accuracy of tumor and LN segmentation in the AI 
model. Finally, the benefit of resection for metastasis-positive 
LNs in PDAC needs evaluation.

Acknowledgments: We would like to acknowledge Jing Li, MD, PhD, Tiegong 
Wang, MD, PhD, and Fang Liu, MM, for technical support.

Author contributions: Guarantors of integrity of entire study, Y.B., X.F., H.J., 
M.Z., J. Yu, H.Z., L.Z., L.L., J.L., C.S.; study concepts/study design or data acqui-
sition or data analysis/interpretation, all authors; manuscript drafting or manuscript 
revision for important intellectual content, all authors; approval of final version of 
submitted manuscript, all authors; agrees to ensure any questions related to the 
work are appropriately resolved, all authors; literature research, Y.B., X.F., H.J., 
M.Z., L.L., J.L., C.S.; clinical studies, Y.B., H.J., L.L., C.S.; experimental studies, 
Y.B., Z.Z., H.J., J. Yu, H.Z., L.Z., J. Yao, L.L., J.L., C.S.; statistical analysis, Y.B., 
X.F., H.J., M.Z., J. Yu, H.Z., J. Yao, L.L., C.S.; and manuscript editing, Y.B., Z.Z., 
H.J., J. Yao, L.L., C.S.

Data sharing: Data generated or analyzed during the study are available from the 
corresponding author by request.

Disclosures of conflicts of interest: Y.B. No relevant relationships. Z.Z. No relevant 
relationships. X.F. No relevant relationships. H.J. No relevant relationships. M.Z. No 
relevant relationships. J. Yu No relevant relationships. H.Z. No relevant relationships. 
L.Z. No relevant relationships. J. Yao No relevant relationships. L.L. No relevant  
relationships. J.L. No relevant relationships. C.S. No relevant relationships.

References
	 1.	 Katz MH, Hwang R, Fleming JB, Evans DB. Tumor-node-metastasis staging of  

pancreatic adenocarcinoma. CA Cancer J Clin 2008;58(2):111–125.
	 2.	 Lahat G, Lubezky N, Gerstenhaber F, et al. Number of evaluated lymph nodes  

and positive lymph nodes, lymph node ratio, and log odds evaluation in 
early-stage pancreatic ductal adenocarcinoma: numerology or valid indica-
tors of patient outcome? World J Surg Oncol 2016;14(1):254.

	 3.	 Yamada M, Sugiura T, Okamura Y, et al. Clinical Implication of Node-negative  
Resectable Pancreatic Cancer. Ann Surg Oncol 2021;28(4):2257–2264.

	 4.	 Pedrazzoli S, DiCarlo V, Dionigi R, et al. Standard versus extended lymph-
adenectomy associated with pancreatoduodenectomy in the surgical treat-
ment of adenocarcinoma of the head of the pancreas: a multicenter, pro-
spective, randomized study. Lymphadenectomy Study Group. Ann Surg 
1998;228(4):508–517.

	 5.	 Yeo CJ, Cameron JL, Lillemoe KD, et  al. Pancreaticoduodenectomy 
with or without distal gastrectomy and extended retroperitoneal lymph-
adenectomy for periampullary adenocarcinoma, part 2: randomized 

controlled trial evaluating survival, morbidity, and mortality. Ann Surg 
2002;236(3):355–366; discussion 366–368.

	 6.	 de Geus SW, Evans DB, Bliss LA, et al. Neoadjuvant therapy versus upfront 
surgical strategies in resectable pancreatic cancer: A Markov decision analy-
sis. Eur J Surg Oncol 2016;42(10):1552–1560.

	 7.	 Tempero MA. NCCN Guidelines Updates: Pancreatic Cancer. J Natl Com-
pr Canc Netw 2019;17(5.5):603–605.

	 8.	 Tseng DS, van Santvoort HC, Fegrachi S, et al. Diagnostic accuracy of CT in  
assessing extra-regional lymphadenopathy in pancreatic and peri-
ampullary cancer: a systematic review and meta-analysis. Surg Oncol 
2014;23(4):229–235.

	 9.	 Bian Y, Guo S, Jiang H, et al. Relationship Between Radiomics and Risk of 
Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma. Pancreas 
2019;48(9):1195–1203.

	10.	 Liu P, Gu Q, Hu X, et al. Applying a radiomics-based strategy to preop-
eratively predict lymph node metastasis in the resectable pancreatic ductal 
adenocarcinoma. J XRay Sci Technol 2020;28(6):1113–1121.

	11.	 Li K, Yao Q, Xiao J, et al. Contrast-enhanced CT radiomics for predicting 
lymph node metastasis in pancreatic ductal adenocarcinoma: a pilot study. 
Cancer Imaging 2020;20(1):12.

	12.	 An C, Li D, Li S, et al. Deep learning radiomics of dual-energy computed 
tomography for predicting lymph node metastases of pancreatic ductal ad-
enocarcinoma. Eur J Nucl Med Mol Imaging 2022;49(4):1187–1199.

	13.	 Bian Y, Guo S, Jiang H, et al. Radiomics nomogram for the preoperative 
prediction of lymph node metastasis in pancreatic ductal adenocarcinoma. 
Cancer Imaging 2022;22(1):4.

	14.	 Dong D, Fang MJ, Tang L, et al. Deep learning radiomic nomogram can pre-
dict the number of lymph node metastasis in locally advanced gastric cancer: 
an international multicenter study. Ann Oncol 2020;31(7):912–920.

	15.	 Jin C, Jiang Y, Yu H, et al. Deep learning analysis of the primary tumour 
and the prediction of lymph node metastases in gastric cancer. Br J Surg 
2021;108(5):542–549.

	16.	 Lu Y, Yu Q, Gao Y, et al. Identification of Metastatic Lymph Nodes in MR 
Imaging with Faster Region-Based Convolutional Neural Networks. Cancer 
Res 2018;78(17):5135–5143.

	17.	 Moons KG, Altman DG, Reitsma JB, et  al. Transparent Reporting 
of a multivariable prediction model for Individual Prognosis or Di-
agnosis (TRIPOD): explanation and elaboration. Ann Intern Med 
2015;162(1):W1–W73.

	18.	 Amin MB, Edge SB, Greene FL, et al, eds. AJCC Cancer Staging manual. 
8th ed. New York, NY: Springer, 2017; 337–406. https://link.springer.
com/book/9783319406176.

	19.	 Watanabe H, Okada M, Kaji Y, et al. New response evaluation criteria in solid  
tumours-revised RECIST guideline (version 1.1) [in Japanese]. Gan To 
Kagaku Ryoho 2009;36(13):2495–2501.

	20.	 Portet S. A primer on model selection using the Akaike Information Crite-
rion. Infect Dis Model 2020;5:111–128.

	21.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a nonpara-
metric approach. Biometrics 1988;44(3):837–845.

	22.	 Yang YH, Liu JB, Gui Y, Lei LL, Zhang SJ. Relationship between autophagy 
and perineural invasion, clinicopathological features, and prognosis in pan-
creatic cancer. World J Gastroenterol 2017;23(40):7232–7241.

	23.	 Chatterjee D, Rashid A, Wang H, et al. Tumor invasion of muscular vessels  
predicts poor prognosis in patients with pancreatic ductal adenocarcinoma 
who have received neoadjuvant therapy and pancreaticoduodenectomy. Am 
J Surg Pathol 2012;36(4):552–559.

	24.	 Okano K, Asano E, Kushida Y, Kamada H, Mori H, Suzuki Y. Factors influ-
encing lymph node metastasis in patients with ampullary adenocarcinoma. 
Dig Surg 2014;31(6):459–467.

	25.	 Gao J, Han F, Jin Y, Wang X, Zhang J. A Radiomics Nomogram for the 
Preoperative Prediction of Lymph Node Metastasis in Pancreatic Ductal 
Adenocarcinoma. Front Oncol 2020;10:1654.

	26.	 Liang X, Cai W, Liu X, Jin M, Ruan L, Yan S. A radiomics model that 
predicts lymph node status in pancreatic cancer to guide clinical decision 
making: A retrospective study. J Cancer 2021;12(20):6050–6057.

	27.	 Alheejawi S, Xu H, Berendt R, Jha N, Mandal M. Novel lymph node seg-
mentation and proliferation index measurement for skin melanoma biopsy 
images. Comput Med Imaging Graph 2019;73:19–29.

	28.	 Li Z, Xia Y. Deep Reinforcement Learning for Weakly-Supervised 
Lymph Node Segmentation in CT Images. IEEE J Biomed Health In-
form 2021;25(3):774–783.

	29.	 Scarà S, Bottoni P, Scatena R. CA 19-9: Biochemical and Clinical Aspects. 
Adv Exp Med Biol 2015;867:247–260.


