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Abstract. Deep-learning deformable image registration methods often
struggle if test-image characteristic shifts from the training domain, such
as the large variations in anatomy and contrast changes with different
imaging protocols. Gradient descent-based instance optimization is of-
ten introduced to refine the solution of deep-learning methods, but the
performance gain is minimal due to the high degree of freedom in the
solution and the absence of robust initial deformation. In this paper,
we propose a new instance optimization method, Neural Instance Op-
timization (NIO), to correct the bias in the deformation field caused
by the distribution shifts for deep-learning methods. Our method nat-
urally leverages the inductive bias of the convolutional neural network,
the prior knowledge learned from the training domain and the multi-
resolution optimization strategy to fully adapt a learning-based method
to individual image pairs, avoiding registration failure during the infer-
ence phase. We evaluate our method with gold standard, human cor-
tical and subcortical segmentation, and manually identified anatomical
landmarks to contrast NIO’s performance with conventional and deep-
learning approaches. Our method compares favourably with both ap-
proaches and significantly improves the performance of deep-learning
methods under distribution shifts with 1.5% to 3.0% and 2.3% to 6.2%
gains in registration accuracy and robustness, respectively.

1 Introduction

Deformable medical image registration aims to establish non-linear correspon-
dence of anatomy between image scans, which is essential in a comprehensive
medical image processing and analysis pipeline. Deep learning-based image reg-
istration (DLIR) methods can achieve remarkable results on training and test-
ing images from the same distribution, as evidenced by tremendous medical
image registration benchmarks [10,6]. However, DLIR method remains notori-
ously vulnerable to distribution shifts. Distribution shift refers to the existence
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of significant divergence between the distributions of the training and the test
data [29]. Registration accuracy and robustness of DLIR method could be de-
graded substantially when the test-image characteristic shifts from the training
domain. Different from the learning-based methods, conventional image registra-
tion methods [22,1] often register images with an iterative optimization strategy,
which circumvents the need for learning. Although conventional image registra-
tion methods excel in robustness and diffeomorphic properties under distribution
shifts, the resulting solutions are often suboptimal and can be time-consuming
with high-resolution 3D image volumes, as indicated by recent studies[3,19].

Combining an initial deformation field predicted by DLIR with instance opti-
mization [27,9,10,3] or further learning fine-tuning steps [28] has drawn growing
attention in the community. Instance optimization refers to the process of it-
eratively optimizing the deformation field along with the optimizer, which is
similar to classic optical flow estimation [21]. Instance optimization often serves
as a post-processing step to refine the solution from DLIR method during the
inference phase. Nevertheless, there is only minimal performance gain using in-
stance optimization under distribution shifts. First, the effectiveness of instance
optimization relies on the assumption that the model in DLIR is capable of es-
timating a robust initial deformation prediction for instance optimization. This
assumption cannot be held when test-image characteristic shifts from the train-
ing domain, such as large variations in brain anatomy and contrast changes from
diverse imaging protocols. Second, taking into account that non-linear image reg-
istration is an ill-posed problem [23], the searching space of instance optimization
with a high degree of freedom is intractable, resulting in a minimal performance
gain. Third, while the multilevel optimization technique has been proven very
efficient in conventional variational registration approaches to avoid local min-
ima [2], this technique is not applicable to instance-specific optimization when
initialized with the dense and fine-resolution solution from the DLIR method as
the fine details of the deformation field from the DLIR method will be distorted
during downsampling in the coarse-to-fine optimization pipeline.

While there are vast research studies [20,13,17,7,26,14] on deformable image
registration, the robustness and generalizability of DLIR method against distri-
bution shifts are less explored in the context of image registration. Zhu et al.[31]
use a cascaded U-Net structure to minimize the distribution shifts between train-
ing and target domain by performing test-time training. To against the diverse
contrast change in brain MR registration, Hoffmann et al. [11] propose to train
networks with synthetic images generated with synthetic anatomical label maps,
which requires access to the anatomical delineation of the training set. Different
from the above studies, we focus on maximizing the registration accuracy and
robustness of instance (individual) image pair under distribution shifts without
access to the delineation of the anatomical structures in the training or test set.

To this end, we present neural instance optimization (NIO), a new instance
optimization method that is capable of significantly improving the registration
performance of deep-learning methods during the inference phase, leading to
robust generalizability under domain shift.
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Fig. 1. Overview of the (a) deep-learning method followed by instance optimization
approach and (b) the proposed neural instance optimization method. Instead of directly
manipulating the deformation field with instance-specific optimization, our proposed
method implicitly updates the deformation field by adapting the CNN to each target
image pair with the multiresolution optimization strategy.

2 Methods

Deformable image registration aims to establish a dense non-linear correspon-
dence between a fixed image F and a moving image M , subject to a smoothness
regularization to penalize implausible solutions. Existing DLIR methods often
formulate deformable image registration as a learning problem Φ = fθ(F,M),
where fθ is parameterized with a convolutional neural network (CNN) and θ de-
notes the set of learning parameters in CNN. Inherit from the learning nature,
DLIR methods are prone to distribution shifts and the registration performance
could be degraded. Our goal is to refine the deformation field in the inference
phase to avoid failure in registration due to distribution shifts and maintain the
sub-pixel accuracy of the registration simultaneously.

2.1 Neural Instance Optimization

Formulation of Instance Optimization Recall that the instance optimiza-
tion method can be adopted as a post-processing step to refine the predicted
deformation field predicted from the DLIR method in the inference phase. For-
mally, the formulation of instance optimization is defined as follows:

Φ∗ = argmin
Φθ

Lsim(F,M(Φθ)) + λLreg(uθ), (1)

where Lsim denotes the dissimilarity measure, Lreg is the smoothness regulariza-
tion and λ is a hyperparameter. The deformation field is defined as Φθ = uθ+Id,
where Id denotes the identity transform in mutual space Ω. Specifically, Φθ in in-
stance optimization is first initialized with the displacement from a feed-forward
prediction of DLIR network, followed by an update on uθ with gradient descent
to maximize the similarity between F and M(Φθ) in an iterative manner, as
shown in Fig. 1(a). While instance optimization could be used to refine DLIR’s
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solution, the performance gain to registration is minimal under moderate or se-
vere distribution shifts due to the high degree of freedom in Φθ and a robust
initial deformation prediction cannot be guaranteed by DLIR under distribution
shifts, violating the underlying assumption of instance optimization approach.

Neural Instance Optimization (NIO) To circumvent the pitfalls in the
instance optimization approach, we implicitly refine the resulting deformation
field by updating the parameters in the CNN instead of directly manipulating
the deformation field as in the instance optimization approach. To exemplify the
idea, we first parametrize an example of the function fθ with the deep Laplacian
pyramid image registration network (LapIRN) [18], i.e., Φ = fθ(F,M). The
overview of our proposed method is illustrated in Fig. 1(b). Mathematically, our
method reformulates the problem from Eq. 1 as follows:

θ∗ = argmin
θ

Lsim(Ft,Mt ◦ fθ(Ft,Mt)) + λLreg(u), (2)

where Ft and Mt belong to the fixed and moving image pair in the target dataset
Dtest, and ◦ denotes the composition operator, i.e., Mt ◦ fθ(Ft,Mt) = Mt(Φ).
During the inference phase of each image pair, the parameters in the network θ
are first initialized with the pre-trained θ0 on the training dataset. Then, we use
gradient descent for η iterations searching for the optimal set of θ∗ that adapt
the model fθ for individual (Ft, Mt) pair in Dtest. Compared with the instance
optimization approach, our proposed method is two-fold: first, the intrinsic in-
ductive bias, i.e., weight sharing and locality, embedded in the CNN implicitly
reduces the degree of freedom of the solution, reducing the searching space in
the optimization problem; second, the prior knowledge of registering the images
in the training set can be transferred to the individual test image pair during the
optimization, avoiding the sub-optimal solution in the instance optimization.

2.2 Multi-resolution Optimization Strategy with NIO

Optimizing the CNN fθ during the inference phase could be computationally
intensive, especially for DLIR methods with multilevel network architecture.
This restricts the maximum number of iterations of NIO in the inference phase.
To alleviate this issue, we propose a multi-resolution optimization strategy for
NIO. Specifically, given a L-level LapIRN framework fθ with θ ∈ {θ1, . . . , θL}
such that θi represents the parameters of the network in level i. We first create
the image pyramid for input images by downsampling the input images with
trilinear interpolation to obtain Fi ∈ {F1, . . . , FL} (and Mi ∈ {M1, . . . ,ML}),
where Fi denotes the downsampled F with a scale factor 0.5(L−i) and FL = F .
The network fθ is then optimized in a coarse-to-fine manner, starting with the
coarsest input pair (F1 and M1) and network fθ1 . Then, we progressively add
the network in the next level fθi+1

into optimization until the optimization of
the final level fθ is completed, as shown in Fig. 1 (b). The output displacement
field u of fθ is formed by aggregating the upsampled displacement fields ûi from
each level via element-wise addition. We set L = 3 throughout this paper. By
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Fixed Moving SyN ULAE LapIRN IO (𝜂𝜂 = 50) NIOm(ours)
DSC: 0.53 DSC: 0.70 DSC: 0.71 DSC: 0.71 DSC: 0.71 DSC: 0.72

DSC: 0.39 DSC: 0.68 DSC: 0.52 DSC: 0.67 DSC: 0.68 DSC: 0.77

Fig. 2. Example axial MR slices from the moving, atlas and resulting warped images
from SyN, ULAE, LapIRN, LapIRN followed by IO and NIOm for the cross-dataset
brain MR registration. Major artifacts are highlighted with yellow arrows.

adjusting the number of iterations ηi in each level of the optimization, most of the
computation is deployed with images at a lower resolution and the optimization
naturally inherits the advantage of the conventional multi-resolution strategy,
enabling a better trade-off between registration accuracy and runtime.

2.3 Loss Function

To further accelerate the runtime in the inference phase, we discard the simi-
larity pyramid in the vanilla LapIRN [19] and adopt the local normalized cross-
correlation (LNCC) with window size 73 as similarity function Lsim. We adopt
a diffusion regularizer as Lreg to encourage smooth solutions and penalise im-
plausible solutions. We follow [13] to further normalize the cost function with
λ, i.e., λ ∈ [0, 1]. The loss function for level i in the proposed multi-resolution
optimization scheme is defined as:

Li = (1− λ)LNCC(F,M(Φ̂i)) + λ||∇ûi|| i ∈ {1, 2, . . . , L}, (3)

where (̂·) is the upsampling operator with trilinear interpolation, which upsample
ui and Φi to match the size of F and M , maintaining the consistency of the
objective function among all the levels.

3 Experiments

Data and Pre-processing We evaluate our method on cross-dataset brain at-
las registration and intra-patient inspiration-expiration Chest CT registration.
For brain atlas registration, we use 414 T1-weighted brain MR scans from the
OASIS dataset [15,16] and 40 brain MR scans from the LPBA dataset [24,25].
Three experiments are conducted to assess the registration accuracy, robust-
ness and plausibility of our method with dataset shifts and insufficient training
data on brain atlas registration: 1) training on OASIS dataset and testing on
LPBA dataset; 2) training on LPBA and testing on OASIS; and 3) train on
LPBA and testing on LPBA datasets. We follow the pre-processing pipeline in
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Table 1. Quantitative results of brain MR atlas registration. Xn
train ⇒ Ytest represents

the experiment of training on n scans from the X dataset and registering images in the
test set of Y dataset to pre-defined atlases. The subscript of DSC indicates the number
of anatomical structures involved. Initial: Affine spatial normalization. ↑: higher is
better, and ↓: lower is better. †: p < 0.001, in comparison to NIOm. ∗: p < 0.05, in
comparison to NIOm.

Method
OASISn=250

train ⇒ LPBAtest LPBAn=20
train ⇒ OASIStest LPBAn=20

train ⇒ LPBAtest Ttest (sec) ↓
DSC54 ↑ DSC3054 ↑ std(|JΦ|) ↓ DSC35 ↑ DSC3035 ↑ std(|JΦ|) ↓ DSC54 ↑ DSC3054 ↑ std(|JΦ|) ↓

Initial 0.535 ± 0.05† 0.476 ± 0.02† - 0.598 ± 0.08† 0.498 ± 0.05† - 0.535 ± 0.05† 0.476 ± 0.02† - -

(Iterative) NiftyReg [22] 0.690 ± 0.02† 0.664 ± 0.02∗ 0.345 ± 0.04 0.763 ± 0.04† 0.714 ± 0.03† 0.655 ± 0.11 0.690 ± 0.02† 0.664 ± 0.02† 0.345 ± 0.04 126.7 ± 23.0

(Iterative) SyN [1] 0.692 ± 0.02† 0.666 ± 0.01∗ 0.255 ± 0.02 0.772 ± 0.03† 0.729 ± 0.03† 0.342 ± 0.04 0.692 ± 0.02† 0.666 ± 0.01† 0.255 ± 0.02 892.4 ± 56.0

MPR [14] 0.639 ± 0.03† 0.598 ± 0.02† 0.224 ± 0.02 0.662 ± 0.08† 0.561 ± 0.05† 0.325 ± 0.01 0.656 ± 0.03† 0.620 ± 0.02† 0.206 ± 0.07 0.08 ± 0.01

ULAE [26] 0.665 ± 0.03† 0.632 ± 0.02† 0.471 ± 0.04 0.607 ± 0.05† 0.543 ± 0.03† 0.675 ± 0.04 0.700 ± 0.02† 0.676 ± 0.01† 0.382 ± 0.04 0.20 ± 0.00

LapIRN [18] 0.694 ± 0.02† 0.665 ± 0.02∗ 0.435 ± 0.05 0.793 ± 0.04† 0.743 ± 0.04† 0.654 ± 0.06 0.710 ± 0.02† 0.688 ± 0.01∗ 0.410 ± 0.04 0.14 ± 0.01

LapIRN + IO (η = 50) 0.696 ± 0.02† 0.667 ± 0.02∗ 0.440 ± 0.05 0.801 ± 0.04† 0.752 ± 0.04† 0.684 ± 0.05 0.712 ± 0.02∗ 0.690 ± 0.01∗ 0.426 ± 0.04 33.37 ± 0.01

LapIRN + IO (η = 200) 0.697 ± 0.02† 0.668 ± 0.02∗ 0.450 ± 0.04 0.805 ± 0.04† 0.759 ± 0.04† 0.714 ± 0.06 0.713 ± 0.02∗ 0.692 ± 0.01∗ 0.441 ± 0.04 60.80 ± 0.11

NIO (η = 50) 0.708 ± 0.03 0.678 ± 0.02 0.443 ± 0.04 0.815 ± 0.02 0.785 ± 0.02 0.605 ± 0.04 0.719 ± 0.01 0.701 ± 0.01 0.432 ± 0.03 47.22 ± 0.91
NIOm (η = [100, 60, 30]) 0.711 ± 0.02 0.685 ± 0.02 0.434 ± 0.03 0.817 ± 0.02 0.789 ± 0.02 0.600 ± 0.04 0.721 ± 0.01 0.704 ± 0.01 0.425 ± 0.03 52.71 ± 0.57

[13] to preprocess the OASIS dataset. We divide the OASIS dataset into 250,
5, and 159 scans, and divide the LPBA dataset into 20, 3, and 17 scans for
training, validation, and test sets, respectively. 35 and 54 anatomical structures
are included in the evaluation for OASIS and LPBA datasets, respectively. We
resample all MR scans to isotropic voxel sizes of 1 mm and center-cropped all
scans to 144×160×192. We select Case 285 and (S24, S25) from the test set of
OASIS and LPBA as atlases, respectively.

For Chest CT registration, we use publicly available 4D chest CT from the
DIR-Lab dataset [4] for the inter-patient chest CT registration task. The dataset
consists of ten 4D chest CT scans, which encompass a full breathing cycle in ten
timepoints. The axial isotropic resolutions of each scan range from 256 × 256
to 512 × 512 (0.97mm to 1.16mm per voxel, with a slice thickness and incre-
ment of 2.5mm. We follow [30] to perform leave-one-out cross-validation during
evaluation. We use U-net [12] to delineate the lung lobe of each scan and use
the segmentation to define the region of interest in this task. The learning-based
method was trained with intra-patient registration by taking random timepoints
per patient as fixed and moving images. We leverage the 300 manually identi-
fied anatomical landmarks annotated at maximum inspiration and maximum
expiration for each case to quantify the registration accuracy.

Implementation Our proposed method and the other baseline methods are
implemented with PyTorch 1.9 and deployed on the same machine equipped
with an Nvidia RTX4090 GPU and an Intel Core (i7-13700) CPU. We build our
method on top of conditional LapIRN [18] framework. For the multi-resolution
optimization strategy, we set the iteration of each level η to [100, 60, 30] and
[100, 60, 60] for brain atlas and chest 4DCT registration, respectively. λ is set to
0.4 for both the training and inference phases. We adopt Adam optimizer with
a fixed learning rate of 1e−4 in both training and inference phases. We train
all the deep-learning methods from scratch for 150,000 iterations and select the
model with the highest DSC (lowest TRE) in the validation set.
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Measurement In brain atlas registration, we register each scan in the test set to
an atlas, propagate the anatomical segmentation map of the moving scan using
the resulting deformation field, and measure the overlap of the segmentation
maps using the Dice similarity coefficient (DSC). We also quantify the robustness
of each method by measuring the 30% lowest DSC (DSC30) of all cases. In chest
4DCT registration, we register scans of the maximum expiration phase to that of
the maximum inspiration phase and measure the target registration error (TRE)
using the manually identified anatomical landmarks. The standard deviation of
Jacobian determinant on the deformation field (std(|JΦ|)) is measured, which
quantifies the smoothness and local orientation consistency of the deformation
field. Furthermore, we measure the average registration time per case (Ttest).

Baseline Methods We compare our method with two conventional methods
(denoted as NiftyReg [22] and SyN [1]), and three state-of-the-art learning-based
methods (denoted as MPR [14], ULAE [26] and LapIRN [18,19]) for brain atlas
registration. NiftyReg and SyN use the multilevel iterative optimization strategy
and do not suffer from the distribution shifts issue. For MPR and ULAE, we
adopt the official implementation maintained by the authors and use the best
hyper-parameters reported in the paper [14,26]. Besides, we compare the baseline
LapIRN with the Adam-based instance optimization approach [27](denoted as
IO). Empirically, the performance gains of IO saturated within 80-150 iterations.
We set the number of iterations for IO to [50, 200] and 200 for brain atlas regis-
tration and chest 4DCT registration tasks, respectively. NIO with the proposed
multiresolution strategy is denoted as NIOm. We follow [27] to induce additional
smoothness of the displacement field by adding a B-spline deformation model
and affine augmentation to LapIRN, IO and NIOm during the inference phase
for chest 4DCT registration.

Results and Discussions Table 1 presents comprehensive results of the brain
atlas registration. Fig. 2 illustrates the qualitative results of the cross-dataset
brain atlas registration. Two out of three learning-based methods (MPR and
ULAE) fail spectacularly in the cross-dataset brain atlas registration tasks and
achieve consistently inferior registration accuracy and robustness to the conven-
tional methods (NiftyReg and SyN) among three tasks in brain atlas registra-

Table 2. Mean ± standard deviation of the target registration error in millimetre
(mm) determined on DIR-Lab 4D-CT dataset. ∗: method trained on external data.

Scan Initial DLIR [30] B-splines [5] LungRegNet∗[8] LapIRN [19] IO (η = 200) NIOm (ours)

Case 1 3.89 ± 2.78 1.27 ± 1.16 1.2 ± 0.6 0.98 ± 0.54 1.05 ± 0.47 1.00 ± 0.46 0.99 ± 0.46
Case 2 4.34 ± 3.90 1.20 ± 1.12 1.1 ± 0.6 0.98 ± 0.52 1.04 ± 0.52 0.97 ± 0.47 0.97 ± 0.47
Case 3 6.94 ± 4.05 1.48 ± 1.26 1.6 ± 0.9 1.14 ± 0.64 1.18 ± 0.62 1.11 ± 0.61 1.10 ± 0.61
Case 4 9.83 ± 4.85 2.09 ± 1.93 1.6 ± 1.1 1.39 ± 0.99 1.40 ± 0.99 1.35 ± 0.98 1.33 ± 0.95
Case 5 7.48 ± 5.50 1.95 ± 2.10 2.0 ± 1.6 1.43 ± 1.31 1.41 ± 1.21 1.34 ± 1.20 1.34 ± 1.21
Case 6 10.89 ± 6.96 5.16 ± 7.09 1.7 ± 1.0 2.26 ± 2.93 1.36 ± 0.77 1.20 ± 0.67 1.16 ± 0.66
Case 7 11.03 ± 7.42 3.05 ± 3.01 1.9 ± 1.2 1.42 ± 1.16 1.31 ± 0.68 1.20 ± 0.64 1.16 ± 0.62
Case 8 14.99 ± 9.00 6.48 ± 5.37 2.2 ± 2.3 3.13 ± 3.77 1.73 ± 2.31 1.59 ± 2.20 1.19 ± 0.96
Case 9 7.92 ± 3.97 2.10 ± 1.66 1.6 ± 0.9 1.27 ± 0.94 1.34 ± 0.73 1.20 ± 0.69 1.16 ± 0.65
Case 10 7.30 ± 6.34 2.09 ± 2.24 1.7 ± 1.2 1.93 ± 3.06 1.25 ± 0.77 1.14 ± 0.74 1.08 ± 0.58

Mean 8.46 ± 6.58 2.64 ± 4.32 1.66 ± 1.14 1.59 ± 1.58 1.31 ± 0.19 1.21 ± 0.87 1.15 ± 0.71
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Fig. 3. Example axial slices from the inspiration-expiration registration results. From
left to right: the fixed image, moving image, and the results from LapIRN and NIOm.
The difference map overlays the fixed (in red) and moving/warped images (in green).

tion, suggesting the distribution shift can significantly degrade the solution’s
quality of learning-based methods. Interestingly, the registration performance of
LapIRN diverged from the other learning-based methods and achieved compa-
rable results to the conventional methods under distribution shifts. Comparing
NIOm to LapIRN, our method significantly improves the registration accuracy
(+1.5% to +3.0% gain) and robustness (+2.3% to +6.2% gain) of LapIRN in
brain atlas registration, reaching state-of-the-art results among three tasks with
severe distribution shifts at the cost of registration time. As shown in Fig. 2, our
method can drastically improve the registration result for extreme cases with
large inter-variation in anatomical structures presented in fixed and moving im-
ages. Comparing NIO to the IO, NIO achieves consistently superior registration
results with less number of iterations, suggesting the effectiveness of NIO and
capable of avoiding sub-optimal solutions in IO. The results of each case on the
DIR-Lab 4DCT dataset are shown in Table 2. The results demonstrate that our
method not only significantly improves the registration accuracy (an average
of 12% drop in TRE compared to the LapIRN), but also corrects the outlier
with large initial registration errors. For instance, the average TRE in case 8 of
the baseline decreased from 1.73mm to 1.19mm using our method. Our method
can also correct subtle misalignment inside the lung lobe, as highlighted in Fig.
3. The fraction of landmark pairs with < 1.2mm error of LapIRN improves
from 55% to 64% with NIO. The results suggested that our method enables
learning-based methods to achieve state-of-the-art registration results even with
insufficient training data (20 and 90 scans in LPBA and DIR-Lab 4DCT dataset,
respectively) and distribution shifts.

4 Conclusion

We have presented a novel neural instance optimization to improve the regis-
tration accuracy and robustness of learning-based deformable image registration
methods under distribution shifts. Our method naturally leverages the inductive
bias of the convolutional neural network, the prior knowledge learned from the
training domain and the multi-resolution optimization strategy to optimize the
solution during the inference phase. Extensive experiments on brain atlas and
chest 4DCT registration have been carried out, demonstrating that our proposed
method achieves state-of-the-art results even with severe distribution shifts or
limited training data.
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2. Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Computer vision, graph-
ics, and image processing 46(1), 1–21 (1989)

3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph:
a learning framework for deformable medical image registration. IEEE transactions
on medical imaging 38(8), 1788–1800 (2019)

4. Castillo, R., et al.: A framework for evaluation of deformable image registration
spatial accuracy using large landmark point sets. Physics in Medicine & Biology
54(7), 1849 (2009)

5. Delmon, V., et al.: Registration of sliding objects using direction dependent b-
splines decomposition. Physics in Medicine & Biology 58(5), 1303 (2013)

6. Eisenmann, M., et al.: Biomedical image analysis competitions: The state of current
participation practice. arXiv preprint arXiv:2212.08568 (2022)

7. Falta, F., Hansen, L., Heinrich, M.P.: Learning iterative optimisation for de-
formable image registration of lung ct with recurrent convolutional networks. In:
Medical Image Computing and Computer Assisted Intervention–MICCAI 2022:
25th International Conference, Singapore, September 18–22, 2022, Proceedings,
Part VI. pp. 301–309. Springer (2022)

8. Fu, Y., Lei, Y., Wang, T., Higgins, K., Bradley, J.D., Curran, W.J., Liu, T., Yang,
X.: Lungregnet: an unsupervised deformable image registration method for 4d-ct
lung. Medical physics 47(4), 1763–1774 (2020)

9. Heinrich, M.P., Hansen, L.: Voxelmorph++ going beyond the cranial vault with
keypoint supervision and multi-channel instance optimisation. In: Biomedical Im-
age Registration: 10th International Workshop, WBIR 2022, Munich, Germany,
July 10–12, 2022, Proceedings. pp. 85–95. Springer (2022)

10. Hering, A., Hansen, L., Mok, T.C., et al.: Learn2reg: comprehensive multi-task
medical image registration challenge, dataset and evaluation in the era of deep
learning. IEEE Transactions on Medical Imaging (2022)

11. Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: Syn-
thmorph: learning contrast-invariant registration without acquired images. IEEE
transactions on medical imaging 41(3), 543–558 (2021)

12. Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch, H., Langs, G.: Auto-
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