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Abstract. Esophageal cancer is the second most deadly cancer. Early
detection of resectable/curable esophageal cancers has a great poten-
tial to reduce mortality, but no guideline-recommended screening test is
available. Although some screening methods have been developed, they
are expensive, might be difficult to apply to the general population, and
often fail to achieve satisfactory sensitivity for identifying early-stage
cancers. In this work, we investigate the feasibility of esophageal tumor
detection and classification (cancer or benign) on the noncontrast CT
scan, which could potentially be used for opportunistic cancer screening.
To capture the global context, a novel position-sensitive self-attention
is proposed to augment nnUNet with non-local interactions. Our model
achieves a sensitivity of 93.0% and specificity of 97.5% for the detection of
esophageal tumors on a holdout testing set with 180 patients. In compar-
ison, the mean sensitivity and specificity of four doctors are 75.0% and
83.8%, respectively. For the classification task, our model outperforms
the mean doctors by absolute margins of 17%, 31%, and 14% for can-
cer, benign tumor, and normal, respectively. Compared with established
state-of-the-art esophageal cancer screening methods, e.g., blood testing
and endoscopy AI system, our method has comparable performance and
is even more sensitive for early-stage cancer and benign tumor. Our pro-
posed method is a novel, non-invasive, low-cost, and highly accurate tool
for opportunistic screening of esophageal cancer.
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1 Introduction

Esophageal cancer (EC) is the second most deadly cancer, with a 5-year survival
rate of only 20% [18], and even less than 5% in many developing countries [2].
This poor survival is mainly due to patients are usually diagnosed at advanced
stages with unresectable tumors [2,5,21], because their signs and symptoms tend
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to be latent and non-specific [13]. Early-stage disease, however, is associated with
a substantially higher 5-year survival rate of 80%–90% [16, 21]. Therefore, the
early detection of resectable/curable esophageal cancers (ideally, before symp-
toms) has a great potential to reduce mortality [21]. Unfortunately, EC has
no guideline-recommended screening tests available [1]. Several tools have been
developed, and some are implemented in high-risk areas, such as endoscopic
techniques [13], Cytosponge procedure [6], and blood-based biomarkers [11, 15].
However, they are difficult to apply to the general population due to moderate
sensitivity and high-cost [2, 15]. Novel screening methods that are noninvasive
with low-cost, ready to distribute, and highly accurate are eagerly needed.

Routine CT imaging performed for other clinical indications offers an op-
portunity for opportunistic screening of diseases at no additional cost or radia-
tion exposure to patients. Previous studies show that abdominal and chest CT
with or without contrast enhancement provide values for incidental osteoporo-
sis screening [9] and cardiovascular event prediction [14]. For cancer detection,
researchers have found that pancreatic cancer could be detected with high ac-
curacy by deep learning from noncontrast CT [22], which has long been thought
to be impossible (only detectable from contrast-enhanced CT). However, detec-
tion of esophageal cancer on noncontrast CT can be extremely challenging. The
early-stage esophageal carcinoma tumors can be very small, invading only lam-
ina propria (stage I) and muscle layer (stage II) [17]. Given the extremely poor
contrast between the tumor and normal esophageal tissues in the noncontrast
CT (e.g., chest CT), the early-stage tumor detection task is highly challenging.
Actually, even on the contrast-enhanced CT, human experts often require sub-
stantial effort and expertise to detect early-stage esophageal tumors by referring
to several other clinical information, such as endoscopy, endoscopic ultrasound,
and FDG-PET; even so, some tiny tumors are still hard to be detected on CT.

So far, studies on deep learning-based esophageal cancer image analysis all
focus on the tumor segmentation task by improving the local image feature ex-
traction/modeling [26, 28] or fusion of multi-modal imaging [10, 25] to improve
the segmentation accuracy. In this study, we propose the first deep learning-
based tool for opportunistic esophageal cancer screening using noncontrast CT
– specifically, detecting the esophageal tumor if there exists and then classi-
fying the detection as cancer or benign. As discussed above, the local image
texture could be insufficient to detect esophageal tumors in noncontrast CT. In
clinical practice, global context features of the esophagus, such as “asymmet-
ric esophageal wall thickening” and “squeezed esophageal wall”, are key signs
to diagnose esophageal cancer, especially early-stage ones. On the other hand,
for deep learning, each convolutional kernel could only attend a local-subset of
voxels or local patterns rather than the global context. Therefore, we incorpo-
rate global attention layers with positional embedding to enhance the ability to
model global context as well as long-range dependencies in 3D medical image
segmentation. This design could improve the ability of tumor distinction espe-
cially for early stage tumors. We collect a multi-center dataset including two
main esophageal tumor types (ESCC and leiomyoma) and normal esophagus
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from 741 patients. On the holdout test set, our model achieves an AUC of 0.990,
sensitivity of 93.0%, and specificity of 97.5% for tumor detection, surpassing the
average sensitivity of 75.0% and specificity of 83.8% of four doctors. The main
contributions of this paper can be summarized as follows:

– We present a deep learning method to detect and classify esophageal tumors
from noncontrast CT, a novel, non-invasive, low-cost, ready-to-distribute,
and highly accurate tool, for screening esophageal cancer.

– The position-sensitive full-attention layer shows its better use of positional
information and long-range dependencies in 3D noncontrast CT, therefore,
could improve the performance over a strong baseline nnUNet model [8].

– Compared with doctors’ reading of noncontrast CT, our automated method
shows substantially higher accuracy in both detection and classification.
Compared with established state-of-the-art esophageal cancer screening meth-
ods, e.g., blood testing [11] and endoscopy AI system [13], our screening tool
has comparable performance and is even more sensitive for early-stage cancer
and benign tumor.

2 Methods

We aim at a three-class classification problem in noncontrast CT scans. We
denote the whole dataset as S = {(Xi,Yi,Pi)|i = 1, 2, ..N}, where Xi ∈
RHi×Wi×Di is a 3D CT volume of the i-th patient. Yi ∈ LHi×Wi×Di is a
voxel-wise annotated label with the same (Hi,Wi, Di) three dimensional size
as Xi and represents our segmentation targets, i.e., background, esophagus,
esophageal cancer, and benign tumor. To obtain tumor annotations in Y (up-
per panel in Fig. 1), for those patients who have radiotherapy CT, we directly
use their gross tumor volume (GTV) masks. For others, manual tumor annota-
tion is first performed on the contrast-enhanced CT phase, referring to clinical
and panendoscopy reports when necessary. Then, a robust image registration
method, DEEDS [7], is used to register the annotated mask from the contrast-
enhanced CT to the noncontrast CT, followed by a manual correction during
quality check. Pi ∈ L is the patient-level label (esophageal cancer, benign, and
normal), confirmed by either pathology or radiology reports with follow-up.

Segmentation for Classification with Self-Attention Segmentation for
classification is the most straightforward method and has been successfully adopted
for the task of tumor detection [3, 22, 24, 29]. In those methods, a localization
UNet [4] is first trained to locate the ROI. However, vanilla UNet-based seg-
mentation networks have limited receptive field and heavily rely on local textual
patterns rather than the global context. It will definitely affect the later classifi-
cation task if the first segmentation model fails to segment the target. Therefore,
it is important to build a more robust segmentation model that is sensitive to
tumors especially early stage tumors. In this paper, we propose an architec-
tural improvement by integrating the global self-attention layer to enhance the
model’s ability on modeling global context. As shown in Fig. 1, we add self-
attention layers after each convolutional layers in the encoder. Let us consider



iv J.Yao et al.

Fig. 1. The main architecture diagram of the proposed model. GTV masks and trans-
ferred masks from registration are used as labels to train the model. To capture long-
rang dependencies and global context, the position-sensitive self-attention is added to
augment convolutional layers with non-local interactions in the encoder block.

an input feature map x ∈ RCin×H×W×D. The output at position o = (i, j, k),
yo ∈ RCout×H×W×D of a self-attention layer is computed by pooling over the
projected input as the following:

yo =
∑
p∈N

softmaxp(q
T
o kp)vp (1)

where N is the whole location lattice, and queries qo = WQxo, keys k = WKxo

and values vo = WV xo are all projections of the input xo. WQ,WK ,WV are
all learnable matrices. The softmaxp denotes a softmax function applied to
all possible positions. When applying self-attention to vision problems, one of
the main obstacles is that the computational complexity of attention mecha-
nism scales and this is even more of a problem when dealing with 3D data in
medical segmentation. Another issue is that self-attention layer does not utilize
any positional information when computing the non-local context. Motivated by
recent advances applying attention to multi-dimensional data [19, 20], we add
local constraints to serve as a memory bank for computing the output yo which
could significantly reduces the original computation of Eq.1. For each location
o, a local region M = Nmh×mw×md

(o) is extracted in each self-attention layer.
Additionally, a learned relative positional encoding term is introduced and the
additional position embedding in query, key and values is shown to capture long-
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range interaction with precise positional information. The updated self-attention
with positional encoding given input feature map x can be written as

yo =
∑
p∈M

softmaxp(q
T
o kp + qTo r

q
p−o + kTp r

k
p−o)(vp + rvp−o) (2)

where the learnable rkp−o and rvp−o are the positional encoding for keys and values,
respectively. We apply multi-head attention to capture a mixture of affinities by
computing N single-head attentions in parallel on xo. The final output is achieved
by concatenating the results from each head. Finally, we reshape the tokens and
upsample to the original size of the feature map.

Based on the segmentation mask, we classify each 3D volume as one of three
target labels, i.e., cancer, benign tumor, or normal. To achieve a explainable
classification, we use a simple, non-parametrized approach to give final patient-
level decision. At first, we construct a graph on all voxels predicted as normal
esophagus and esophageal abnormalities (cancer+benign tumor). We compute
all connected components in such graph and only keep the largest connected
comment to filter out the outliers. Then, a 3D volume is considered as normal
if less than K mm3 of voxels are predicted as abnormal. K is tuned to achieve
a specificity of 99% for the model on the validation set. To further classify the
abnormal case as cancer or benign, the label with more segmented voxels is
predicted.

3 Experiments

Datasets and Annotation:We build a dataset of CT scans of 741 patients and
among them, 481 have esophageal tumors, either cancer or benign (leiomyomas),
and the other 260 are normal cases. The dataset is randomly split into a training
and a testing set but according to the distribution of cancer stages and tumor
types. The resulting training set includes 324 cancer, 57 benign, and 180 nor-
mal. The testing set has 80 cancer, 20 benign, and 80 normal. Both cancer and
benign cases are confirmed by pathology reports. Normal cases are confirmed
by radiology reports and 2 years of follow-up. An experienced radiation oncol-
ogist (10 yrs esophageal specialist) manually annotates tumors in the training
set (on either radiotherapy CT or contrast-enhanced CT). Esophagus masks are
automatically generated by a segmentation model which is trained on a public
dataset [12] with a self-learning process [27] on our training set.
Implementation Details: Each CT volume is resampled into 0.8 × 0.8 × 3.0
mm spacing and then normalized into zero mean and unit variance. In self-
attention layer, (mh,mw,md) is set as (12, 12, 6) and N=4 heads is used. During
training, extensive data augmentation [8] was applied on the fly to improve
the generalization, including random rotation and scaling, elastic deformation,
additive brightness, and gamma scaling. The objective for optimization is the
sum of binary cross entropy and the dice loss. The networks were optimized with
RAdam with the initial learning rate as 0.001 and we set the maximum epoch
as 1000 following the nnUNet.
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Two-class Three-class(%)

Method AUC Sens. (%) Spec. (%) Cancer Benign Normal

Ours
0.990 93.1 97.5

91.3 60.0 97.5
(0.986-0.993) (91.8-94.4) (96.6-98.4)

nnUNet-S4C [8,29]
0.961∗ 85.1 100.0

90.0 45.0 100.0
(0.954-0.967) (83.3-86.8) (100.0-100.0)

LENS (detection) [23]
0.954∗∗ 88.1 96.3

91.3 15.0 96.3
(0.947-0.961) (86.5-89.6) (95.3-97.3)

Mean doctors WOTC - 75.0 83.8 74.4 28.8 83.8

Table 1. Results on two-class classification: abnormal (esophageal cancer + benign)
vs. normal, and three-class classification: esophageal cancer vs. benign vs. normal.
WOTC: without time constraint. Sens.: Sensitivity. Spec.: Specificity. ∗for p < 0.05,
∗∗for p < 0.01.

Evaluation Metrics and Reader Study. Evaluation metrics include AUC,
sensitivity, and specificity in the 2-class classification task (abnormal vs. nor-
mal), and class accuracy in the 3-class classification task. To measure the per-
formance of tumor localization, we compare the segmentation mask with the
ground truth and define the localization is successful if the intersection (Dice
score) over the human annotation is larger than 0.1. Four readers, including two
radiation oncologists (5 and 14 yr [12 yr esophageal specialist], respectively) and
one radiologist (8 yr) from the 1st affiliated hospital of Zhejiang University and
one radiologist (13 yr [6 yr esophageal specialist]) from Sun Yat-sen University
Cancer Center (SYSUCC), are invited for the reader study. They read the 180
noncontrast CTs in the testing set without time constraints and give a forced
three-class decision for each CT: esophageal cancer, leiomyomas, or normal. Pa-
tient information and records are not provided. Readers are informed that the
dataset might contain more tumor cases than the standard prevalence observed
in screening, but the proportion of case types is not informed. The first three
readers view and interpret these CTs in the radiation planning viewer used in
their daily work environment. The reader from SYSUCC uses ITK-SNAP, with
three years of user experience for research purposes.

Comparison with Other Algorithms and Readers. We compared our
method with two approaches representing strong segmentation-based and detection-
based methods. The segmentation-based one uses the ”Segmentation for classi-
fication (S4C)” [29] paradigm but its standard U-Net is updated with the more
powerful nnUNet [8]. The detection-based one has proven its performances as a
competitive universal lesion detector [23]. Standard deviation of the AUCs, Sens.
and Spec. values are obtained from 1000 bootstrap replicas of the test dataset.
DeLong test is performed for statistical analysis between two AUCs (Ours vs.
comparison method). Results can be seen in Table 1 and two illustrative ex-
amples are shown in Fig. 2. Most medical segmentation and detection models
focus on local texture and structure and thus lack the ability to model the global
context. From the table and figure, we could see improved results of our method
in finding abnormal patients and detecting benign tumors. The performance of
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nnUnet

nnUnet

Cancer

T2, Stage II

Benign

(Leiomyomas)

Ground Truth Ours nnUNet

Zoomed-in Cancer Esophagus

Benign

Noncontrast CT Ground Truth

Axial view

Zoomed-in

Cancer

Esophagus

Benign

Esophagus

Axial view

Fig. 2. Two cases (a cancer and a benign) miss-detected by all readers in the test set.
Our methods can successfully locate the tumors while nnUNet fails in these cases.

all four doctors is below our model’s predictions (ROC curve, Fig. 3 (A)). Our
sensitivity in finding tumor (93%) outperforms the best sensitive doctor (79%)
by a large margin and also performs better in predicting normal patients than
the best specific doctor (Specificity 98% vs. 96%). For the 3-class task, our model
perform much better than the mean doctors by absolute margins of 17%, 31%,
and 14% for cancer, benign, and normal, respectively (Table 1; confusion matrix,
Fig. 3 (B)).

Subgroup Analysis Stratified by Tumor Stage. More specificity, we eval-
uate performance of our model in benign and malignant tumor, as shown in
Table 2. We first report patient-level detection rate values across benign and
each T stage cancer. Then we compare predictions with ground-truth annota-
tions to see if predicted tumors are detected correctly. Tumor-level localization
evaluates how segmented masks overlap with the ground-truth cancer or leiomy-
oma regions (Dice > 0.1 is used for correct detection). Radiologist 2 (the best
sensitive reader) in finding abnormalities is also compared. A detection is consid-
ered successful if the intersection (between the ground truth and segmentation
mask) over the ground truth is > 0.1; otherwise, it is considered a misdetec-
tion. Our model performs better in detecting benign and T2 stage tumor and
providing more accurate tumor location.

Comparison with Established Screening Tools. Compared with a state-
of-the-art blood test screening [11], at a similar specificity level, our solution
achieves much better results in detecting early-stage esophageal cancer (stage I-
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Fig. 3. (A) ROC curve for our model results versus all participated experts’ referrals
on the test set of n = 180 patients for 2-class classification (abnormal vs. normal). (B)
Confusion matrices with patient numbers of predictions for our model, the two baseline
methods, and Radiologist 2 (the best 3-class accuracy reader).

Benign Esophageal cancer

Method Criteria - T1 T2 T3 T4

Ours Patient-level 60.0(12/20) 44.4(4/9) 94.1(16/17) 97.1(33/34) 100(20/20)
Tumor-level 40.0(8/20) 44.4(4/9) 88.2(15/17) 97.1(33/34) 100(20/20)

nnUNet-S4C Patient-level 45.0(9/20) 55.6(5/9) 82.4(14/17) 97.1(33/34) 100(20/20)
Tumor-level 35.0(7/20) 44.4(4/9) 70.6(12/17) 97.1(33/34) 100(20/20)

Radiologist 2 Patient-level 45.0(9/20) 55.6(5/9) 64.7(11/17) 76.5(26/34) 90.0(18/20)
Table 2. Patient-level detection and tumor-level localization results over the two types
of esophageal abnormalities (benign and cancer).

II) using the similar size of testing patients (Table 3). Moreover, our method can
detect benign tumors (leiomyomas, which needs surgery) while the blood test
cannot. We also compare our model with a state-of-the-art endoscopy AI system
(trained on 15,000 patients data with fully supervision) [13] for upper gastroin-
testinal cancer detection. Note that the definition of sensitivity and specificity in
the endoscopy screening scenario is slightly different from our radiological sce-
nario. To facilitate the comparison, we report the results of cancer vs. (benign
+ normal) by following [13]. We could see a (slightly) lower (91.3% vs. 94.2%)
sensitivity with a slightly higher specificity (92.9% vs 92.3%). In fact, for the 80
cancer cases in our test set, our method detects 76 of them, with three being
misclassified as benign, which are leiomyomas, and surgery will be recommended
in the noncontrast CT screening scenario. As such, our method only misses four
cancer cases, which equals a sensitivity of 95% (76/80) for cancer tumor detec-
tion. In contrast, nnUNet-S4C missed seven cancer cases and classified them as
normal patients which shows a sensitivity of 91% (73/80), as shown in Fig.3 (B).
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Sensitivity Specificity

Benign Esophageal cancer (TNM Stage) Normal

Method - I II III IV -

Ours 60.0(12/20) 37.5(3/8) 93.1(27/29) 100.0(21/21) 100.0(22/22) 97.5

Blood Test [11] N/A 12.5(1/8) 64.7(11/17) 94.1(32/34) 100.0(40/40) 99.5
Table 3. Comparison with a state-of-the-art blood test on esophageal cancer detection.

4 Conclusion

In this paper, we investigate a relatively convenient, simple opportunistic screen-
ing solution of esophageal cancer with noncontrast CT scans. To better capture
global context and detect early-stage tumors, we propose a position-sensitive
self-attention to augment convolutional layers with non-local interactions in the
encoder block. We achieve high sensitivity and specificity on a large-scale dataset
and outperform the mean doctors by large margins. Compare with other tools
like blood test and endoscopy, our work suggests the good feasibility of using
noncontrast CT scans as a promising clinical tool for large-scale esophageal can-
cer opportunistic screening with no extra costs.
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