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Abstract. Visible lymph node (i.e., LN, short axis ≥ 5mm) assessment
and delineation in thoracic computed tomography (CT) images is an
indispensable step in radiology and oncology workflows. The high de-
manding of clinical expertise and prohibitive laboring cost motivate the
automated approaches. Previous works focus on extracting effective LN
imaging features and/or exploiting the anatomical priors to help LN
segmentation. However, the performance in general is struggled with low
recall/precision due to LN’s low contrast in CT and tumor-induced shape
and size variations. Given that LNs reside inside the lymph node station
(LN-station), it is intuitive to directly utilize the LN-station maps to
guide LN segmentation. We propose a stratified LN-station and LN size
encoded segmentation framework by casting thoracic LN-stations into
three super lymph node stations and subsequently learning the station-
specific LN size variations. Four-fold cross-validation experiments on the
public NIH 89-patient dataset are conducted. Compared to previous
leading works, our framework produces significant performance improve-
ments, with an average 74.2% (9.9% increases) in Dice score and 72.0%
(15.6% increases) in detection recall at 4.0 (1.9 reduces) false positives
per patient. When directly tested on an external dataset of 57 esophageal
cancer patients, the proposed framework demonstrates good generaliz-
ability and achieves 70.4% in Dice score and 70.2% in detection Recall
at 4.4 false positives per patient.

1 Introduction

Lymph node (LN) involvement assessment is an essential predictive or prognostic
bio-marker in radiology and oncology. Precision quantitative LN analysis is an
indispensable step in staging, treatment planning, and disease progression moni-
toring of cancers in thoracic region [10, 23]. Visual identification, measurement or
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Fig. 1: An illustration of LN, LN-Station, and Super-Station. The top and bottom row
show the LN contexts in LN-Station 2 (clear boundaries) and 8 (hard to discern).

delineation of thoracic LNs from CT scans are performed in the current clinical
practice, which is tedious, time-consuming, expensive and expertise-demanding.
Due to LN’s low contrast to the surrounding anatomies and tumor-induced shape
and size variations, it can be easily visually confused with vessels or muscles. Al-
though enlarged LNs with short axis larger than 10mm are often considered as
pathologically targeted lesions to be assessed [20], studies show that enlarged
size alone is not the most reliable predictive factor for LN malignancy with only
60%-80% recall in lung cancer patients [6, 22]. Smaller LNs potentially involving
metastasis should also be included for improved diagnostic accuracy [5, 21]. Thus
an automated segmentation framework for both enlarged and smaller (short axis
≥5mm) throacic LNs is of high clinical importance.

Thoracic LN detection and segmentation has been exploited for more than a
decade mainly focusing on extracting effective LN features, incorporating organ
priors or utilizing advanced learning models [1–4, 7–9, 13–17, 25]. Early work
often adopted the model-based or statistical learning-based methods. Feuerstein
et al. built a statistical atlas for lymph node detection in chest CT [7]. Liu et al.
detected and segmented LNs by first locating the approximate region of interest
(mediastinum) and then integrating the spatial priors, intensity and shape fea-
tures into a random forest classification model [15]. Recent deep learning based
approaches have also been explored. Nogues et al. combined the holistically-
nested neural networks and structured optimization to segment the LNs [16].
Bouget et al. segmented LNs in each cropped slabs and further ensembled with
a full 3D UNet model that incorporated the organ priors [3]. Although being
extensively studied, the general performance has been struggling with low re-
call/precision and is unable to deploy to clinical practice: e.g., for enlarged LNs
(short axis ≥10mm), 70.4% recall at 4 false positives (FPs) per patient in [15];
for both enlarged and smaller LNs, 52.4% recall at 6 FPs per patient [3].

To tackle this tremendously challenging task, important anatomic knowledge
and clinical reasoning insights from physicians should be leveraged. 1) almost
all LNs reside in the lymph node station (LN-station) defined according to key
anatomic organs or landmarks, i.e., thoracic LN-station recommended by Inter-
national Association for the Study of Lung Cancer (IASLC) [19] and head &
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neck LN-station outlined by American Academy of Otolaryngology–Head and
Neck Surger (AAO-HN) [18]. Confining LN identification within the LN-station
is beneficial, since the constrained searching and learning space can reduce FPs
occurring at vessels, muscles, and soft-tissues in other body regions with similar
local appearance. 2) LNs in different LN-stations often have distinct contexts and
exhibit different levels of identification uncertainties. For example, thoracic LNs
in stations 2 and 4 usually have clearer boundaries, while those in stations 7 and
8 can be more easily confused with adjacent vessels or esophagus (Fig. 1). More-
over, enlarged LNs often yield different texture patterns (e.g., calcified/necrosis)
and shapes (e.g, tree/star-shape) to the smaller LNs. Further stratifying the LN
segmentation task via different LN-stations and LN sizes could be beneficial.

Given the above key observations, we utilize the LN-station priors and pro-
pose a novel LN-station- and size-aware LN segmentation framework by explic-
itly incorporating the LN-station prior and learning the LN size variance. To
achieve this, we first segment thoracic LN-stations 1 to 14 using a robust Deep-
Stationing model in [11]. According to the LN-station context and physician’s
clinical experiences, we stratify and group the 14 LN-stations into 3 super lymph
node stations (Super-Stations), i.e., LN-stations 1-4 (upper level), LN-stations
5-9 (lower level) and LN-stations 10-14 (lung regions). Then, a new deep seg-
mentation network with multi-encoding paths are designed with each to focus on
learning the LN features in a specific Super-Station (Fig. 2). Next, for explicitly
learning LN’s size variance, two decoding branches are adopted concentrating
on the small and large LNs, respectively (Fig. 2). Results from the two decoding
branches are then merged using a post-fusion module. For experimental evalua-
tions, 1) we conduct 4-fold cross validations on a public LN dataset with 89 lung
cancer patients and more than 2000 recently annotated LNs (≥5mm) [3]. Our
framework achieves an average 74.2% in Dice score and 72.0% in the detection
recall at 4.0 false positives per patient (FP-PW), which significantly improves
the segmentation and detection accuracy with at least 10% absolute Dice score
improvement and 13% recall increase at 4.0 FP-PW, compared to previous lead-
ing LN segmentation/detection methods [3, 12, 16, 24]. 2) We further apply our
pre-trained model to an external testing dataset of 57 esophageal caner patients
with 360 thoracic LNs (≥5mm labeled). We demonstrate good generalizability
by obtaining 70.4% Dice score (Dice) (13.8% increases) and 70.2% Recall (17.0%
increases) at 4.4 FP-PW as compared to the strong nnUNet baseline [12].

2 Method

Fig. 2 depicts the overview of our proposed LN-station-specific and size-aware
LN segmentation framework. It contains three independent encoding paths based
on the stratified Super-Stations and two decoding branches to learn size-specific
LN’s features. Together with the original CT image, post-fusion blocks leverage
the predicted big and small LNs to generate the final prediction.
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Fig. 2: Overall workflow of our proposed framework, which consists of Super-Station-
based stratified encoders, size-aware decoder branches, and a post-fusion module.

2.1 LN-station Segmentation and Stratification

To utilize the LN-station priors, we first segment a set of 14 thoracic LN-stations.
Motivated by [11], we adopt the key referencing organ guided LN-station segmen-
tation model. As mentioned in [11], 6 key referencing organs are used: esophagus,
aortic arch, ascending aorta, heart, spine, and sternum. Assuming N data in-
stances, the training data is denoted asD = {Xn, Yn

K , Yn
S , Yn

L}Nn=1, whereXn,
Y K
n , Y S

n , Y L
n denote the input CT image and ground-truth masks for the key

referencing organs, LN-stations, and LNs, respectively. Let CK and CS denote
the number of key organs and LN-stations, respectively. Dropping n for clarity,
the key organ and LN-station segmentation models predict every voxel location
j with a class c:

Ŷ K
ck
(j) = fK

(
Y K(j) = ck |X;WK

)
, ŶK =

[
Ŷ K
1 . . . Ŷ K

CK

]
, (1)

Ŷ S
cs(j) = fS

(
Y S(j) = cs |X, ŶK;WS

)
, ŶS =

[
Ŷ S
1 . . . Ŷ S

CS

]
, (2)

where f (∗)(.) denotes the network functions, W(∗) represents the corresponding

network parameters, and Ŷ
(∗)
c∗ for the predicted segmentation maps.

According to LN-station context and physician’s clinical experience, we com-
bine the predicted LN-stations into three Super-Stations, i.e., LN-stations 1-4,
5-9 and 10-14. To avoid potential LN-station under-segmentation, we dilate each
Super-Station with a diameter of 15 mm. We then use the dilated Super-Station
binary maps to ‘mask’ Super-Station covered CT images (abbreviated as mCT ),
while setting other voxel values to a constant of −1024. We thereafter obtain
three Super-Station-masked mCT images. Please note that the inputs of three
encoders are independent. For instance, for Super-Station-1 encoder, its input is
the mCT masked using dilated Super-Station-1 and the LN-stations 1-4 maps.
Let Ŷ S+

1 = [Ŷ S
c ]4c=1, Ŷ

S+
2 = [Ŷ S

c ]9c=5, and Ŷ S+
3 = [Ŷ S

c ]14c=10 denote the grouped
LN-stations maps. Each encoder targets Super-Station-specific LN features.

ĤS+
i = fS+

i

(
Xm

i , Ŷ S+
i ;WS+

i

)
, i ∈ {1, 2, 3}, (3)
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where Xm
i denotes the mCT and ĤS+

(∗) denotes the output feature maps of the

stratified encoder.

2.2 LN Size Stratification and Post-fusion

Considering that enlarged LNs often yield different texture patterns (e.g., calci-
fied/necrosis) or shapes (e.g., tree/star-shape) as compared to smaller ones, we
further introduce two decoding branches to learn size-specific LN features. For
the annotated LNs, we manually separate the enlarged LNs (L+) whose short-
axes are greater than 10mm, and vice versa (L−). Each decoder is supervised
using the respect enlarged/small LN labels. The input of each decoder branch
is the channel-wise concatenation of the feature maps from three Super-Stations

encoding paths: ĤS+ =
[
ĤS+

1 , ĤS+
2 , ĤS+

3

]
.

Ŷ L+ = fL+
(
ĤS+;WL+

)
, Ŷ L− = fL−

(
ĤS+;WL−

)
, (4)

where Ŷ L+ and Ŷ L− denote the output prediction maps of the large- and small-
LN decoders, respectively. The output feature maps of each decoder are addi-
tionally combined with the original CT image and input to a simple post fusion
module. The post fusion module is created using the first two nnUNet convolu-
tional blocks without the pooling function:

Ŷ L = fP
(
X, Ŷ L+, Ŷ L−;WL−

)
. (5)

The proposed segmentation framework explicitly encodes both the LN-station-
and size-specific information in the model training. The final prediction is Ŷ L.

3 Experimental Results

Dataset. For the LN model development and validation, we used 89 patients
with contrast-enhanced venous-phase CT scans from the pubic NIH dataset1,
where more than 2000 thoracic LN instance labels were recently annotated by [3].
The average CT image size is 512 × 512 × 616 voxels with the average voxel
resolution of 0.8× 0.8× 1.2mm3. The average LN size is 7.7× 6.6× 9.4mm3. For
the external testing, we collected additional 57 contrast-enhanced venous-phase
CT scans of esophageal cancer patients underwent surgery and/or radiotherapy
treatment. The average CT image size is 512× 512× 80 voxels with the average
voxel resolution of 0.7 × 0.7 × 5.0mm3. A board-certified radiation oncologist
with more than 15 years of experience labeled each patient with visible LNs
(≥ 5 mm). The average LN size of external testing set is 9.5 × 9.0 × 9.1mm.
Moreover, to develop the LN-station segmentation model, 3D masks of thoracic
LN-stations 1-14, and 6 key referencing organs were annotated in this esophageal
dataset according to the IASLC guideline [19].

1 https://wiki.cancerimagingarchive.net/display/Public/CT+Lymph+Nodes

https://wiki.cancerimagingarchive.net/display/Public/CT+Lymph+Nodes
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Table 1: LN segmentation performance on the NIH dataset using 4-fold cross-validation.
We abbreviate Super-Station-based stratified encoder as S.S.E. and size-aware decoder
branches as S.A.D. We evaluate the segmentation performance for all annotated LNs
(upper) and only enlarged LNs (lower). The best performance scores are highlighted
in bold. Our full version is: ‘mCT + S.S.E. + S.A.D. + post fusion module’. The 1st

row ‘CT Only’ is the default nnUNet [12] performance.
Dice Recall Recall-PW FP-PW

All LNs – Short Axis ≥ 5mm

CT Only (Isensee et al. [12]) 58.2±17.1 55.3 56.9±21.4 6.2±4.4
CT + LNS (Ours) 66.3±13.5 60.1 61.5±19.7 4.9±3.8
mCT + LNS (Ours) 70.4±12.6 66.2 67.4±20.1 3.8±2.8
mCT + S.S.E. (Ours) 72.1±13.8 69.4 70.8±19.1 4.1±2.6
mCT + S.S.E. + S.A.D. (Ours) 74.1±14.8 71.2 71.9±20.4 4.9±3.6

Nogues et al. 2016 [16] 57.7±19.4 57.2 62.2±20.7 4.9±4.1
Yan et al. 2020 [24] 60.6±15.1 59.3 64.8±18.3 6.1±2.5
Bouget et al. 2021 [3] 64.3±14.5 56.4 55.2±18.0 5.9±3.7

Full version 74.2±14.7 72.0 72.4±19.0 4.0±2.9

Enlarged LNs – Short Axis ≥ 10mm

Nogues et al. 2016 [16] 58.6±14.2 79.2 81.4±18.5 3.1±3.5
Yan et al. 2020 [24] 65.6±12.1 83.3 89.8±15.3 4.0±3.5
Isensee et al. 2021 [12] 61.8±12.4 85.3 89.5±15.4 3.1±3.9
Bouget et al. 2021 [3] - 82.7 88.6±15.6 -

Full version 79.1±9.8 89.8 92.4±12.6 2.4±2.3

Implementation details. We adopt ‘3d-fullres’ version of nnU-Net [12] with
Dice+CE losses as our backbone modules. Each encoder is the same as the de-
fault nnUNet encoder, and each block contains two “Conv+InstanceNorm+IReLU”
layers. With additional two skip-connections, each decoder block receives 2x its
original input channels. The default nnUNet’s deep-supervision is not used in
our experiment. Instead, we apply two side supervisions for the two decoding
branches using the enlarged and small LN labels, respectively. We use the de-
fault nnUNet data augmentation settings for our model training, and set the
patch size to 96 × 128 × 32. We implemented our framework using PyTorch
and trained on an NVIDIA Tesla V100. The total training epochs is 1000. The
average training time is 5.5 GPU days.

Evaluation. For the NIH dataset, extensive four-fold cross-validation (CV),
separated at the patient level, was conducted. The esophageal dataset was held
out as an external testing dataset. We follow the LN evaluation metrics in [3] and
calculate Dice, instance detection Recall, patient-wise detection recall (Recall-
PW) and the patient-wise false positive numbers (FP-PW).

Results of LN-station segmentation. We first evaluate the performance of
the LN-station segmentation model. The average LN-station segmentation per-
formance is: Dice 81.2±5.8%, Hausdorff distance (HD) 9.6±4.2mm, and average
surface distance (ASD) 0.9± 0.6mm. In our experiment, we select a diameter of
15mm to dilate the predicted and grouped Super-Stations to cover the thoracic
LNs, which might be missed in the original LN-station prediction due to the
under-segmentation. Meanwhile, the dilated Super-Stations should not include
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Table 2: LN segmentation performance on the collected in-house 57 esophageal cancer
patients testing set. The best performance scores are highlighted in bold.

Dice Recall Recall-PW FP-PW

All LNs – Short Axis ≥ 5mm

Nogues et al. 2016 [16] 55.9±20.6 53.4 54.5±25.7 6.3±4.5
Yan et al. 2020 [24] 54.2±17.2 60.3 62.9±21.3 9.5±6.4
Isensee et al. 2021 [12] 56.6±18.4 53.2 55.3±22.4 5.8±3.9

Full version 70.4±14.7 70.2 70.8±20.2 4.4±3.3

Enlarged LNs – Short Axis ≥ 10mm

Nogues et al. 2016 [16] 56.5±17.6 77.4 80.5±17.9 4.5±3.6
Yan et al. 2020 [24] 64.2±16.2 80.1 86.9±15.3 7.6±4.4
Isensee et al. 2021 [12] 59.2±15.2 79.6 83.2±16.7 3.7±4.1

Full version 74.9±12.4 85.8 91.8±13.5 2.4±2.7

too many similar tissues such as vessels. The quantitative instance/volume LN
coverage using predicted LN-stations is reported in the supplementary materials.

Quantitative evaluation in NIH dataset. Table 1 outlines the quantitative
comparisons of different input and model setups when evaluated in the NIH
dataset: 1) only CT images, 2) early fusion of CT and LN-station (CT + LNS),
3) CT masked using the dilation of the whole LN-station region (mCT + LNS),
4) Super-Station-stratified encoders with the default single UNet decoder (mCT
+ S.S.E.), 5) Super-Station-stratified encoders + size-aware decoders without
post fusion (mCT + S.S.E. + S.A.D.). Several observations can be drawn. First,
LN segmentation exhibits the lowest performance with an average 58.2% Dice
and 55.3% Recall at 6.2 FP-PW when using only CT. When using LN-station
as an additional input channel, all metrics show remarked improvements: 8.1%
and 4.8% increase in Dice and Recall, and 1.3 reduction in FP-PW. This demon-
strates the importance and effectiveness of using LN-stations for LNs segmen-
tation. Second, when adopting the ‘mCT + LN-station’ setup, the performance
is markedly improved with another 6.1% boosted Recall and 1.1 reduced FP-
PW. This indicates that constraining the learning space within the mCT region
(hence, eliminating the confusing anatomy tissues in the irrelevant regions) make
the LN identification task much easier. Third, the LN-station- and size-aware
LN segmentation schemes are effective, since both S.S.E. and S.A.D. modules
yield marked improvements boosting the Dice and Recall to 74.1% and 71.2,
respectively. Finally, equipped with a simple post-fusion module, the final pro-
posed model can further reduce the FP-PW from 4.9 to 4.0 while preserving the
high Dice and Recall as compared to the mCT + S.S.E. + S.A.D. model.

Table 1 also shows the performance comparisons in NIH dataset between
our proposed framework and four leading methods [3, 12, 16, 24]. Among the
comparison methods, the best Recall of 59.3% at 6.1 FP-WP is achieved by [24],
which is the leading approach for 3D universal lesion detection. It can be seen the
proposed framework significantly outperforms [24] by 14.4% Dice, 12.7% Recall,
and 2.1 in FP-PW. When analyzing the performance of enlarged LNs (short axis
> 10 mm) commonly studied in previous works, our framework achieves a high
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mCT + S.S.E
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Fig. 3: Examples of LN segmentation results using different setups. green and blue
arrows are used to depict under-segmentations and FPs. It can be observed that se-
vere under-segmentation exists in the CT only method leading to low Dice and Recall
(2nd column). In contrast, when LN-station information is explicitly incorporated into
the model, more LNs can be correctly identified (from 3rd to 5th columns). Size-
stratification (S.A.D) can further improve the LNs segmentation Recall, while the pro-
posed final model suppresses some FPs while maintaining the high Recall.

Recall of 89.8% at 2.4 FP-PW. In comparison, previous leading methods exhibit
inferior performance with the best 85.3% Recall at 3.1 FP-PW [12].

External testing on esophageal dataset. The independent external testing
results on the esophageal dataset are illustrated in Table 2. The proposed frame-
work demonstrates good generalizability by achieving 70.4% Dice and 70.2%
Recall at 4.4 FP-PW, which are comparable to those in the NIH dataset. For
the failure cases, under-segmentation along the z-direction for LNs in the infe-
rior mediastinal region is observed. The assumed reasons might be: 1) unclear
boundaries of the inferior mediastinal LNs, and 2) most LNs are relatively short
in z-direction and the model might bias toward the majority average. For the
enlarged LNs, our framework also shows robust performance of 74.9% Dice and
85.8 Recall at 2.4 FP-PW. The assumed reasons of achieving good generalizabil-
ity might be that segmenting LNs in a much confined Super-Station region is
comparably easy and robust. In contrast, the previous second best performing
detection method [24] yields low generalizability as its FP-PW significantly in-
creased from 6.1 (NIH) to 9.5 (external) for all LNs and from 4.0 (NIH) to 7.6
(external) for enlarged LNs.
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4 Conclusion

In this paper, we propose a novel LN-station-specific and size-aware LN seg-
mentation framework by explicitly utilizing the LN-station priors and learning
the LN size variance. We first segment thoracic LN-stations and then group the
LN-stations into 3 super lymph node stations, based on which a multi-encoder
deep network is designed to learn LN-station-specific LN features. For learning
LN’s size variance, we further stratify decoding path into two decoding branches
to concentrate on learning the small and large LNs, respectively. Validated on
the public NIH dataset and further tested on the external esophageal dataset,
the proposed framework demonstrates high LN segmentation performance while
preserving good generalizability. Our work represents an important step towards
the reliable and automated LN segmentation.
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