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Abstract. Recent studies have emphasized the importance of protect-
ing thoracic duct during radiation therapy (RT), as dose distributions in
thoracic duct may be associated with the development radiation-induced
lymphopenia. Because of its thin/slim size, curved geometry and ex-
tremely poor (intensity) contrast of thoracic duct, manual delineation of
thoracic duct in RT planning CT is time-consuming and with large inter-
observer variations. In this work, we aim to automatically and accurately
segment thoracic duct in RT planning CT, as the first attempt to tackle
this clinically critical yet under-studied task. A two-stage coarse-to-fine
segmentation approach is proposed. At the first stage, we automatically
segment six chest organs and combine these organ predictions with the
input planning CT to better infer and localize the thoracic duct. Given
the coarse initial segmentation from first stage, we subsequently extract
the topology-corrected centerline of initial thoracic duct segmentation at
stage two where curved planar reformation (CPR) is applied to trans-
form the planning CT into a new 3D volume representation that provides
a spatially smoother reformation of thoracic duct in its elongated medial
axis direction. Thus the CPR-transformed CT is employed as input to the
second stage deep segmentation network, and the output segmentation
mask is transformed back to the original image space, as the final seg-
mentation. We evaluate our approach on 117 lung cancer patients with
RT planning CT scans. Our approach significantly outperforms a strong
baseline model based on nnUNet, by reducing 57% relative Hausdorff
distance error (from 49.9mm to 21.2mm) and improving 1.8% absolute
Jaccard Index.
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Fig. 1: (a) Thoracic duct indicated by red arrow (1: esophagus, 2: azygos vein, 3:
spine, 4: aorta). (b) Segmentation breakage produced (indicated by yellow arrow) using
the state-of-the-art segmentation method nnUNet [5] and the result of our topology-
corrected centerline extraction. (c) CPR of CT scan based on extracted centerline. (d)
CPR displayed in grid transform.

1 Introduction

Thoracic cancer is a significant public health challenge in the United States,
with breast, lung, and esophageal cancers accounting for over 540,000 confirmed
patient cases in 2022 alone [18]. Out of these patient poputations, approximately
50 ∼ 60% will receive radiation therapy (RT) as part of their treatment proce-
dure [22]. While radiation is an effective treatment option for thoracic cancer,
it also can cause severe toxic effects, e.g., radiation-induced lymphopenia (RIL),
which is a condition that radiation dosage damages circulating immune cells and
significantly impairs tumor control and patient survival [2, 20]. Several factors,
such as mean lung dose, mean heart dose, and the effective dose to circulating
immune cells (EDIC), are associated with the development of RIL [10, 19, 24].
Recent studies have showed the importance of protecting the thoracic duct dur-
ing RT [15]. Thus it becomes essential for the accurate delineation of thoracic
duct to minimize the risk of RIL in RT planning.

Thoracic duct, as the main collecting vessel of the lymphatic system, is a
continuous tubular structure with a mean diameter of 2-3mm in the axial slices,
and a mean intensity attenuation value of 15.3 HU (ranging between 4.5 to 38
HU) in CT scans that is slightly lower than that of arteries and veins [13, 16].
It is very challenging for accurate thoracic duct delineation due to its slim and
curved 3D structure and the extremely poor contrast with surrounding adipose
tissue in CT scans (see Fig.1 (a, b) for an illustration). Moreover, the low spatial
resolution of RT planning CT may not adequately capture intricate details of the
thoracic duct because the planning CT scans typically have the slice thickness
between 3 and 5 mm with the pixel spacing of 1 ∼ 1.2mm in axial plane. The
imaging quality can become even worse for some medical institutions when the
planning CT is an average intensity projection CT generated from respiratory
four-dimensional (4D-CT) scanning. All these factors compound the difficulty of
manual delineation of thoracic duct, making it time-consuming with large inter-
observer variability. This could ultimately lead to sub-optimal RT planning and
produce potential radiation toxicity.
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Recent advancements in deep learning have shown great promise in au-
tomated segmentation of organs at risk (OARs) and tumors in various body
parts [1, 3, 4, 6–8, 23, 26]. UaNet adopts a segmentation-by-detection strategy
to achieve 28 head & neck OAR segmentation [21], while SOARS [25] achieves a
comprehensive of 42 head & neck OAR segmentation using stratified learning and
neural architecture search [3, 25]. RTP-Net [17] develops a cascade coarse-to-fine
segmentation scheme with organ size adaptive module and attention mechanisms
for organ boundaries to segment 67 whole-body OARs. For thoracic OARs, a
DeepStationing model has segmented 22 chest anatomical structures to support
the mediastinal lymph node station segmentation [4], where high accuracy is
achieved for OARs such as lungs, heart, esophagus and spinal cord. These stud-
ies demonstrate the capability of deep learning models to improve the OAR seg-
mentation accuracy, consistency and reproducibility to benefit the RT planning
in clinical practice. Nevertheless, none of the previous work have tackled tho-
racic duct segmentation. To address this challenging task, important anatomic
knowledge and clinical insights can be leveraged. 1) Anatomy of thoracic duct
is closely related to several key organs, e.g., near the level of the fifth thoracic
vertebra, thoracic duct passes through the space between esophagus and spine.
Physicians often utilize these reference organs to locate the spatial regions that
thoracic duct may appear. 2) Considering that the relative low spatial resolution
of planning CT, physicians often zoom in the potential region of interest (ROI)
to better visualize the 3D extension and boundary of thoracic duct.

In this work, we propose a two-stage coarse-to-fine thoracic duct segmenta-
tion framework based on the anatomy prior and topology guidance. At stage
one, using a recent multi-organ deep segmentation model [4], we first segment
six key chest organs that are spatially related to the thoracic duct. These organ
predictions are then used as anatomy guidance to better localize and segment the
thoracic duct. Specifically, 3D mask image consisting six key organs is concate-
nated with the planning CT to serve as input to the stage one deep segmentation
network. We then extract the centerline from the initial thoracic duct segmen-
tation and use a minimum-cost path approach [9] to connect the discontinuous
ones if there exists. Based on the topology-corrected centerline, CT scan and
key organ mask can be resampled around the initial thoracic duct segmentation
using the curved planar reformation (CPR) technique [11, 12] to generate newly
reformatted 3D volumes (refer Fig. 1(c,d) as an example). The resampled CT
volume provides a spatially smoother representation of thoracic duct along its
medial axial direction, and used as input to the stage two segmentation network.
The segmentation result of stage two is later transformed back into the origi-
nal image space using inverse CPR transform. We evaluate our approach on an
in-house dataset, including 117 lung cancer planning CT scans with manual tho-
racic duct annotations. Our approach significantly outperforms a strong baseline
of nnUNet [5] by reducing 57% relative Hausdorff distance error (from 49.9mm
to 21.2mm) and improving 1.8% absolute Jaccard Index.
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Fig. 2: Overall workflow of our proposed 2-stage Anatomy and Topology Guided Coarse-
to-fine Segmentation of Thoracic Duct. ST and Inv. ST denotes Spatial Transform and
Inverse Spatial Transform.

2 Methods

The proposed coarse-to-fine thoracic duct segmentation framework consists of
two main stages. At stage-1, anatomy-guided coarse segmentation is conducted.
At stage-2, the centerline of coarse segmentation is extracted first, which is uti-
lized to perform the CPR transformation. After that, the fine-scale segmentation
is executed in the CPR space and the segmentation output is transformed back
in the original image space to get the final thoracic duct segmentation. Fig. 2
depicts an overview of our proposed method.

2.1 Anatomy-guided Coarse Segmentation

To better localize and segment thoracic duct at stage one, we first segment a set
of six key organs using a recent multi-organ deep segmentation mode [4]. Six key
organs include: esophagus, aorta, spine, azygos vein, subclavian vein and internal
jugular vein. Their predictions are used as anatomy prior to guide the thoracic
duct segmentation. Let a dataset of N instances denoted as D = {Xn, Yn

S , Yn}N ,
where Xn, Y S

n , Yn denote the input CT image, prediction mask of six supporting
organs and ground truth mask of thoracic duct. Dropping n for clarity, the
anatomy-guided segmentation model at stage one predicts a coarse thoracic duct
Y C given X and Y S :

Ŷ C = fC(X,Y S |WC) (1)

where f (∗)(.) and W(∗) denote the network function and the corresponding net-
work parameters, respectively, and Ŷ C represents the predicted coarse thoracic
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duct output. As demonstrated in the experiment, using six supporting organs
leads to more accurate segmentation results with less false positives.

2.2 Segmentation Refinement through Topology-guided CPR

Although the prediction Ŷ C achieves overall reasonable segmentation results,
however, discontinuous segmentation along vertical axis and inaccurate bound-
ary in xy-planes may still exist. We aim to solve these issues at stage two by
refining the segmentation.

It is noticed that physicians often use the curved planar reformation (CPR)
to visualize vascular abnormalities for small vessels [11, 12], where CPR can
generate longitudinal cross-sections of a tubular structure in a curved plane.
Inspired by that, we apply the CPR to transform the planning CT into a new
3D volume representation that provides a spatially smoother reformation of tho-
racic duct in its elongated medial axis direction. Then, the CPR-transformed
CT along with CPR-transformed organ mask are employed as input to the sec-
ond stage deep segmentation network for fine-scale thoracic duct segmentation.
This refinement stage two consists of the following steps: 1) extract a single and
continuous centerline Ĉ from predicted thoracic duct Ŷ C mask even if Ŷ C has
segmentation breakage; 2) compute CPR transformation map based on Ĉ; 3)
apply CPR transformation to CT and support organ mask and train a deep
segmentation network using transformed CT and organ mask in CPR space, 4)
apply inverse CPR transformation to get the final thoracic duct segmentation in
original CT space. The centerline extraction and CPR transformation steps are
described as follows.

Topology-corrected Centerline Extraction. To compute the CPR trans-
formation, it first requires to extract a complete single centerline regardless of
the number of components that Ŷ C has. To achieve that, consider Ŷ C has M
connected components Ŷ C

m because of the breakage in the coarse segmentation.
Centerline of each component Ŷ C

m can be extracted by a thinning algorithm [14],
i.e., Ĉm = Thinning(Ŷ C

m ). Then, the gap between components are connected
by iteratively computing a minimum-cost path [9] between each two adjacent
components. This leads to a complete connected centerline of the same topology
as original thoracic duct. The process is illustrated in Fig. 1 (b).

CPR Transformation. The goal of CPR transformation is to make a tubular
structure visible in it’s entire length within one single image. In particular, we
use the stretched CPR. To do this, thoracic duct centerline is required. Assume
that the extracted centerline Ĉ of Ŷ C is a sequence of points at sub-voxel resolu-
tion. By processing all points successively, the corresponding lines-of-interest are
mapped to the image. This is done by rotating the consecutive point around the
current line-of-interest. The point is rotated in a way that the resulting plane is
coplanar to the viewing plane. Let Pi to be the last processed point and point
Pi+1 the currently processed point of the centerline. The vector di = PiPi+1
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and l represent the path direction at position i and the normalized direction of
the line-of-interest respectively. The offset ∆i in image space is derived as:

∆i =
√
|di|2 − l · di. (2)

The image position (y-coordinates) yi+1 of the line-of-interest related to point
Pi+1 is given by yi+1 = yi+∆i where y0 = 0. The resampling map is computed by
consecutive viewing planes perpendicular to derived line-of-interest. An example
of CPR transformed CT using centerline of thoraic duct is shown in Fig. 1 (c)
with its grid transform map in (d).

3 Experiments and Results

Dataset. After obtaining approval by the appropriate institutional review board,
we retrospectively collected patients with primary lung cancer treated by radio-
therapy from May 2005 to February 2020 at The University of Hong Kong,
Shenzhen Hospital. A total of 117 patients with RT planning CT were included,
with an average CT volume size of 514× 514× 139 voxels and an average voxel
resolution of 1.2 × 1.2 × 3.0mm3. The thoracic duct is manually delineated by
an experienced radiation oncologist (10 yr) with the guidance of a second senior
radiation oncologist (25 yr), while the segmentation of six supporting organs,
including azygos vein, aorta, esophagus, spine, left internal jugular vein and left
subclavian vein, are provided using a recent multi-organ segmentation model [4].

Implementation details. We adopt ‘3d-fullres’ version of nnUNet [5] with
Dice+CE losses as our backbone modules. Each encoder is the same as the de-
fault nnUNet encoder. We use the default nnU-Net data augmentation settings
for our model training, and set the patch size to 192×192×48 and 96×96×208 for
1st and 2nd stages. We implemented our framework using PyTorch and trained
on an NVIDIA Tesla V100. The total training epochs is 500. The average train-
ing time is 0.5 GPU days. For CPR transform, we set the field of view to 6.4×6.4
cm and adopt a resampling spacing of 0.5× 0.5× 1.5 mm.

Comparing method and evaluation metrics. We employ five-fold cross-
validation protocol split at the patient level. As there is no previous works solv-
ing the thoracic duct segmentation, we compare our method with nnUNet [5],
which represents the current leading organ segmentation approach and use it as
our segmentation backbone. Three quantitative metrics are reported to evaluate
the thoracic duct segmentation performance: Jaccard Index (Jac.), Dice score
(DSC), and Hausdorff distance (HD) in “mm”. We further divide the whole tho-
raic duct (TD) into two anatomical segments, upper TD and lower TD based
on the top of aortic arch, and report their corresponding quantitative metrics,
respectively.

Quantitative results.
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Table 1: Quantitative ablation results for proposed 2-stage Thoracic Duct (TD) segmen-
tation framework using nnUNet [5] as backbone. AG represents the anatomy-guided
coarse segmentation (with six key supporting organs). CPR refers to the topology-
guided curved planar reformation based segmentation. DSC and Jacarrd (Jac.) Index
are shown in "%" and Hausdorff distance (HD) in “mm".

AG CPR Upper TD Lower TD Whole TD

Jac. DSC HD Jac. DSC HD Jac. DSC HD

− − 21.31 32.85 34.89 47.45 63.96 29.71 42.48 59.18 49.79
✓ − 27.88 41.90 28.32 47.67 64.17 20.58 43.24 60.04 38.19
− ✓ 26.78 41.70 28.11 47.38 63.68 27.56 43.27 58.06 40.44
✓ ✓ 30.21 43.99 12.22 48.87 65.34 14.46 44.15 60.09 21.18

Our quantitative ablation results which demonstrate the effectiveness of each
component in the proposed framework and comparison to leading general organ
segmentation approach nnUNet [5] are tabulated in Table 1. The volumetric
index of Jac. or DSC scores are low in general. This indicates the difficulty of
this task. However, we can observed that by applying the proposed anatomy
guidance using six key support organs to nnUNet newtork (row 2 vs. row 1), HD
drops from 49.79 mm to 38.19 mm, meanwhile improves the absolute Jac. score
by 0.8%. Especially, for upper TD region, the Dice score increase around 30%,
from 32.85% to 41.90% which clearly demonstrated the importance of incorpo-
rating anatomy priors for segmenting small and hard organs in CT scans. The
effectiveness of proposed topology-guided CPR based segmentation refinement is
first validated by comparing row 3 vs. row 1 where one can observe a similar im-
provement as using anatomy guidance. Note that, since our proposed framework
is a two-stage pipeline, the performance of stage 2 relies on the output of stage 1.
Thus, although the AG or CPR alone can help better segment the thoracic duct,
their combination further significantly improves the results (row 4 vs. row 2/3).
For instance, even if AG is already utilized in the nnUNet model to guide the
segmentation, combining it with the second stage CPR segmentation refinement
still leads to an additional 16 mm, 6 mm and 17 mm Hausdorff distance error
reduction in upper, lower and whole TD respectively. When compared with orig-
inal nnUNet, our complete 2-stage framework (AG + CPR) showed a significant
improvement in terms of all metrics (row 4 vs. row 1). Furthermore, we exam-
ined the inter-observer variation in 117 patients. The consistency between two
physicians following our internal delineation guideline is 64.64% in Dice score.
As comparison, our method achieves 60.09% Dice score.

Qualitative results. Apart from the quantitative comparison, we also compare
our method with nnUNet qualitatively by the visual inspection. Three qualita-
tive results are shown in Fig. 3. As can be observed, the proposed 2-stage method
can generate topology desired and more complete thoracic duct segmentation. In
contrast, nnUNet yields several clear segmentation breakages. While our stage
one segmentation model (nnUNet with AG) can reasonably improve the perfor-
mance, breakages or under-segmentations still exist as shown in the figure. With
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Fig. 3: Qualitative results of thoracic duct segmentation in three patients using different
methods. nnUNet is the leading comparison method. AG is our stage one segmenta-
tion method, while AG+CPR represents the proposed two-stage method. Segmentation
breakages and missing thoracic duct are indicted by yellow and blue arrows, respec-
tively.

AG+CPR as our proposed 2 stage framework, all previous defects are absent in
all three example cases.

4 Conclusion

In this work, we present a two stage coarse-to-fine thoracic duct segmentation
approach. Recent studies have emphasized the importance of protecting thoracic
duct during radiation therapy, and we are the first to tackle this clinically critical
yet under-studied task using an automated method. Because of its thin/slim size,
curved geometry and extremely poor (intensity) contrast of thoracic duct, we
propose to use anatomy priors and topology guidance in a two stage framework
to address these challenges. At stage one, six key chest organs are automati-
cally segmented and combined with the planning CT to better infer and localize
the thoracic duct. At stage two, we subsequently extract the centerline of ini-
tial thoracic duct segmentation, where curved planar reformation is applied to
transform the planning CT into a new 3D volume representation that provides
a spatially smoother reformation of thoracic duct in its elongated medial axis
direction. Then, the CPR-transformed CT is employed as input to the stage
two deep segmentation network, and the output prediction is transformed back
to the original image space, as the final thoracic duct segmentation. Experi-
mental results demonstrate the effectiveness of our approach, as it significantly
outperforms a strong baseline nnUNet by reducing 57% relative HD error (from
49.9mm to 21.2mm) and improving 1.8% absolute Jaccard Index.
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