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Abstract. Skin tumor is one of the most common diseases worldwide
and the survival rate could be drastically increased if the cancerous le-
sions were identified early. Intrinsic visual ambiguities displayed by skin
tumors in multi-modal imaging data impose huge amounts of challenges
to diagnose them precisely, especially at the early stage. To achieve
high diagnosis accuracy or precision, all possibly available clinical data
(imaging and/or non-imaging) from multiple sources are used, and even
the missing-modality problem needs to be tackled when some modality
may become unavailable. To this end, we first devise a new disease-wise
pairing of all accessible patient data if they fall into the same disease
category as a remix operation of data samples. A novel cross-modality-
fusion module is also proposed and integrated with our transformer-based
multi-modality deep classification framework that can effectively perform
multi-source data fusion (i.e., clinical images, dermoscopic images and
accompanied with clinical patient-wise metadata) for skin tumors. Ex-
tensive quantitative experiments are conducted. We achieve an absolute
6.5% increase in averaged F1 and 2.8% in accuracy for the classification
of five common skin tumors by comparing to the prior leading method
on Derm7pt dataset of 1011 cases. More importantly, our method ob-
tains an overall 88.5% classification accuracy using a large-scale in-house
dataset of 5601 patients and in ten skin tumor classes (pigmented and
non-pigmented). This experiment further validates the robustness and
implies the potential clinical usability of our method, in a more realistic
and pragmatic clinic setting.
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1 Introduction

Accurate early skin lesion diagnosis is crucial to prevent skin cancers and can
significantly increase the 5-year survival rate of malignant tumors [10] such as
Melanoma (Mel). However, it remains a challenging task even for well-trained
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(a) Mel (b) BCC (c) SCC

Fig. 1: Samples of X-SkinTumor-10 dataset

professionals, and experienced dermatologists find clues in multi-modal data
from different types of clinical sources. For example, precision diagnosis of skin
tumors often involves examining lesions, analyzing details in dermatoscopic im-
ages, and referencing metadata, e.g., medical history. Fig. 1 shows three skin
tumor cases with different conditions, where the clinical and dermoscopic im-
ages are listed and accompanied with patients’ meta information. Specifically, in
Fig. 1(a), patient’s non-imaging data (the age, slow progression over the years,
and long duration of the sun exposure) largely support the diagnosis of malignant
melanoma in addition to the observation of black plaque visually.

In recent years, computer-aided diagnosis has shown some impressive per-
formance in supporting dermatologists’ diagnoses [4–7, 11–15]. Esteva et al. [4]
demonstrated that the convolutional neural networks (CNN) are capable of clas-
sifying malignant and benign skin tumors with a level of competence comparable
to dermatologists. Tschandl et al. [13, 14] also reported that learning-based clas-
sifiers not only can outperform human experts in the diagnosis of pigmented
skin lesions but can further improve the diagnostic accuracy when high quality
computer-aided clinical decision-making is available to dermatologists. Such a
way performs better over those by either algorithms or physicians alone. When
it comes to employing multi-modal data, Ge et al. [5] proposed a deep convolu-
tional neural network architecture to capture discriminative features from both
clinical and dermoscopic images and showed that the multi-modality method sig-
nificantly outperforms single-modality methods. Furthermore, Haenssle et al. [6,
7] studied CNN’s diagnostic performance with a large group of dermatologists,
in which most dermatologists were outperformed by the CNN models when only
dermoscopic images are provided. When given multi-modal information, most
dermatologists only performed equivalently as the CNN-based models. Thus,
one can reasonably assume that better performance can be achieved provided
that the neural networks are also trained with a range of multi-modal data as
dermatologists did. Most recently, Tang et al. [12] constructed a two-stage ap-
proach named FusionM4Net. It concatenates features of clinical and dermoscopic
images at the first stage, and then incorporates the patient’s metadata with the
prediction from the first stage via SVM-based clustering. The final diagnosis is
formed by the fusion of the predictions from two stages.

To achieve the performance on a par with human experts, a computer-aided
skin tumor diagnosis system should have the similar capability of processing
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multi-modal data, as a dermatologist does in a realistic clinic environment. How-
ever, training neural network on multi-modal data also add extra burden to the
already tidy data collection and annotation process. Although we can adopt and
use the data as we have, we face several technical challenges while training the
multi-modal neural networks. First, it is more than common in multi-modal data
to have some modalities inaccessible, whenever they are not acquired or indeed
missing. It is often unrealistic to ensure the completeness of every modality for
each sample/patient. Furthermore, another difficulty is how to effectively merge
the multiple source of information for the multi-modality models, especially to-
gether with the first challenge in the training phase. In contrast to previous
methods [8, 1, 12], where paired data are required for the training, a novel data
sampling strategy via disease-wise pairing (DWP as a remix of data samples on
the disease-class level) is presented. Integrated with a scalable cross-modality-
fusion module, our proposed multi-modal classification framework can better
handle the incomplete data in the model training and achieve higher classifica-
tion accuracy in both the publicly released dataset (covering mainly pigmented
tumors) and a large-scale private skin tumor dataset with 10 categories, contain-
ing additional non-pigmented skin tumors such as basal cell carcinoma (BCC)
and squamous cell carcinoma (SCC) which have higher incidence rates in clinics.

Our contributions are three-fold: (a) We propose a new transformer-based
multi-modality classification framework for skin tumors, which includes the novel
DWP sampling strategy for tackling the missing modality issue in training data.
This disease-wise pairing augmentation process makes our framework more flexi-
ble for model training, and more importantly, provides better training generaliz-
ability for the trained model; (b) We improve the multi-modal data fusion with a
more efficient cross-modality fusion module than the conventional concatenation.
A leading recognition accuracy of 81.3% is achieved on Derm7pt [8] dataset; (c)
We compose a large-scale multi-modality dataset with significantly more cases
than the existing databases and importantly, it covers both pigmented and non-
pigmented skin tumors (closer to the real data distributions of daily clinical
routines). Our multi-modal framework achieves 88.5% accuracy and 98.4% AUC
on this more comprehensive and realistic database.

2 Method

Our proposed framework is outlined in the Fig. 2. During training, the multi-
modal samples are first grouped in a disease-wise fashion, i.e., multi-modal data
can be randomly selected and paired as long as they belong to the same disease
category. It can be seen as a remix of the multi-modal data on the disease level
since a multi-modal tuple here will have data from different studies/patients.
There are numerous possible permutations of modalities among all the data in
the same disease class. It not only significantly increases the amount of training
data (as a form of effective data augmentation) but also largely enhances the
robustness and generalizability of the trained model.
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Fig. 2: The pipeline of our multi-modal cross-fusion transformer

A Swin Transformer [9] is adopted as the unified backbone to encode the
clinical and dermoscopic images. Metadata is separately processed using the one-
hot representation and followed by a linear embedding. The image features and
metadata feature are fed into the cross-modality fusion (CMF) module to form
a global representation for the final disease classification. The entire framework
can be trained in an end-to-end manner using a standard cross entropy loss.

2.1 Unified Transformer Backbone

During diagnosis, experienced dermatologists usually consider various visual fea-
tures including shape, size, color, texture, location and distribution, etc., of
which some are localized features and some need spatial global context. Al-
though multi-scale convolutional neural networks can be used to model these
complicated local-global interactions, Transformer [3] based methods (ViTs) are
more suitable choices by the virtue of their non-local modeling capabilities. Be-
sides, Transformer is a natural choice for multi-modal feature encoding. As an
improvement to ViT, Swin Transformer [9] only computes self-attention locally
within non-overlapping windows and thus has less complexity. From previous
work [8, 1, 12], separate backbones are employed for clinical and dermoscopic
images. We empirically find that using the shared backbone for both clinical
and dermoscopic images will not compromise the performance, and actually this
simplicity design of choice makes the training and inference more efficient. Tak-
ing all these considerations into account, a unified Swin Transformer backbone
is adopted into our multi-modal framework.

2.2 Disease-wise Pairing

Missing modality has been common when dealing with multi-modal data. Re-
quiring the completeness of every modality in the clinical dataset adds extra
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Fig. 3: The Cross-Modality-Fusion module.

burden to the already hash process of data collection and cleanse. To learn a
good multi-modality representation at the class level, we integrate a disease-wise
pairing scheme into our data augmentation pipeline during training to complete
some of the modality missing. Unlike using instance-wise pairs for training, the
DWP encourages the network to input/fuse the different modality data channels
from different patients (as long as they belong under the same disease category)
into the feature space. Our framework is convenient to add new training samples
for any modality, which greatly reduces the cost of data collection and maxi-
mizes the data utilization. Furthermore, it serves as an additional regularization
to prevent the model from learning some spurious correlation within a certain
pair of modalities, and thus provides better generalizability (i.e., semantic data
modality fusion at the disease level) and extra performance boosts.

Specifically, we define a sample data as si = {ci, di,mi}, where ci, di, and mi

represent a clinical image, a dermoscopic image, and a set of metadata respec-
tively. S = {si | i ∈ {1, ..., I}} is used to indicate the set of sampled training data
with the total amount of I. Let C, D, M be the three modalities of clinical im-
age, dermoscopy and metadata, respectively; Ck, Dk, Mk be the grouped sets of
data with the corresponding disease class k. When DWP is turned on (based on
p > Tp, p ∈ [0, 1]), ci is randomly sampled from {ckj | ∀ ckj ∈ Ck, k ∈ {1, ...,K}},
di from {dkj | ∀ dkj ∈ Dk, k ∈ {1, ...,K}}, and mi from {mk

j | ∀ mk
j ∈ Mk, k ∈

{1, ...,K}}, where K is the number of diseases to be considered. Otherwise,
{ci, di,mi} will naturally be from the same study and patient if available (zero
padding is used for missing modalities during training and testing). Tp is a cut-
off threshold to control the probability of applying DWP to the input samples,
where p is a random number generated by a uniform distribution on the interval
[0, 1]. For each input sample, we apply DWP when p > Tp (Tp is empirically set
to 0.6).
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2.3 Cross-Modality Fusion

Partially inspired by [2], the CMF module is designed to fuse the global features
of each modality with the local features from another modality in a cyclic manner
across all modalities. Specifically, the global features from each modality will
exchange information with the local features from other modalities through a
multi-head attention module. Since the global feature has already gathered the
information from local features in its own modality, the multi-head attention
will fuse the information from the local features of other modalities.

The detailed diagram for the fusion of three engaged modalities is shown in
Fig. 3. lC or lD is the output feature map of the last stage in Swin Transformer.
gC or gD are generated by applying a global average pooling (GAP) layer, and
they are the class tokens for ViT backbones. gM is the output by a linear layer
after one-hot embedding with metadata. After layer normalization (LN), a cross-
attention block is utilized to fuse features by taking the local features as K and
V and global features as Q:

gX′ =

{
GAP(l1X′ , l2X′ , ..., lnX′), X ′ ∈ {C,D}
gM , X ′ = M

(1)

fX
X′ = LN

(
concat(gX′ , l1X , l2X , ..., lnX)

)
, g̃X′ = fX

X′ [0], zX = fX
X′ [1 :] (2)

Q = g̃X′WQ
XX′ , K = zXWK

XX′ , V = zXW V
XX′ (3)

Matt = softmax(
QKT√
F/h

), M cross = MattV (4)

gX
X′ = g̃X′ + linear(M cross), X ∈ {C,D}, X ′ ∈ {C,D,M} \X (5)

where X and X ′ are defined as two different modalities, l is the local feature and
g is the global feature.WQ

XX′ ,W
K
XX′ ,W V

XX′ ∈ RF×F are learnable parameters,
F is the dimension of features and h is the number of heads.

3 Experiment and Results

Data We employ two datasets in this study: one public and one private dataset.
The public dataset Derm7pt contains 413 training cases, 203 validation cases
and 395 testing cases. Each case comprises a dermoscopic image and a clinical
image, the diagnostic label is divided into 5 types: Mel, Nevus (Nev), Seborrheic
Keratosis (SK), BCC, and Miscellaneous (Misc). Please refer to [8] for details,
on which we will compare our method with the previous leading Fusion4MNet
[12]. Our private dataset named X-SkinTumor-10 was collected from Xiangya
Hospital from 2016 to 2021, and annotated by the dermatologists with at least
five years experience. The dataset contains 14,941 images and 5,601 patients,
and only 2,198 patients have the three-modality paired data. The percentages of
missing data are 0.4%, 33.6% and 37.7% for clinical images, dermoscopic images
and metadata, respectively. The patient’s metadata with 9 attributes is shown in
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Method
F1

Acc
Nev BCC Mel Misc SK Avg.

HcCNN[1] — — 0.605 — — — 0.699
Inception-comb[8] 0.838 0.588 0.632 0.559 0.552 0.634 0.742
ViT-S/16 [3] 0.855 0.414 0.723 0.706 0.429 0.625 0.777
FusionM4net[12] 0.878 0.452 0.727 0.646 0.181 0.577 0.785
RemixFormer 0.883 0.595 0.755 0.743 0.519 0.699 0.813

Table 1: Comparison of our proposed model with other methods on Derm7pt.

Fig. 1. The dataset has ten types of skin tumors: SCC (8.5%), Mel (6.1%), BCC
(13.4%), AK (2%), keloid (Kel, 3.4%), dermatofibroma (DF, 3.2%), sebaceous
nevus (SN, 3.1%), SK (22.9%), Nev (35.7%), haemangioma (Hem, 1.6%).

Implementations On X-SkinTumor-10, we perform 5-fold cross-validation to
evaluate our method, where the entire dataset is randomly divided into 5 folds
on the patient level with a 3:1:1 ratio as training, validation, and testing set. Our
backbone is a regular Swin-B/384, the data augmentation includes flip, rotation,
random affine transformation. We adopt SGD optimizer with cosine learning rate
schedule, and the initial learning rate is 1e-4. Models are trained for 200 epochs
on 4 NVIDIA Tesla V100 GPUs with batch size 64. On Derm7pt, we use exactly
the same data augmentation as [12], and apply Swin-T/224 model with fewer
parameters to verify the effectiveness of our method. In the CMF module, the
dimensions of the local features and global features are 768 in Swin-T, 1024 in
Swin-B, and the number of heads is 8. We initialize the model parameters with
ImageNet pretrained weights to speed up the convergence. We utilize area under
the curve, macro-averaged F1-score, sensitivity, precision, specificity, and overall
accuracy as the evaluation metrics, corresponding to the abbreviations AUC,
F1, Sen, Pre, Spe, and Acc respectively.

Results As listed in Table 1, we compare the proposed RemixFormer with other
methods on the public dataset of Derm7pt [8]. For completeness, we use ViT-
S/16 and fuse the three features (only class tokens of C and D, metadata feature)
by concatenation. Our method with Swin-T backbone outperforms FusionM4Net
by 12.2% and 2.8% in the average F1 and overall Acc, respectively. The relatively
poor performance of SK is mainly due to the long-tail problem, which may be
addressed in future work. It worth mentioning that our model has noticeably
less parameters than FusionM4Net (32.3M vs. 54.4M).

Using 5-fold cross-validation, RemixFormer with Swin-B backbone achieves
an overall 88.5%±0.8% classification accuracy on the more comprehensive X-
SkinTumor-10. The average AUC, F1, Sen, Spe and Pre of the 10 conditions
are 98.4%±0.3%, 81.2%±1.2%, 80.4%±2.2%, 98.6%±0.1% and 82.8%±1.1%, re-
spectively, and the corresponding metrics for each condition are shown in Fig. 4.
The huge performance difference between Nev and Hem is largely due to the
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Fig. 4: 5-fold cross validation result on X-SkinTumor-10. The far right is the
average accuracy of 5 folds, and error bars indicate the standard deviation.

Modality
Fusion

DWP AUC F1 Sen Pre Spe Acc
concat CMF

Clinical 0.952 0.599 0.592 0.619 0.968 0.766
Dermoscopy 0.953 0.606 0.601 0.629 0.769 0.778
C + D ✓ 0.962 0.661 0.717 0.630 0.974 0.788
C + D ✓ 0.966 0.681 0.729 0.652 0.975 0.805
C + D + M ✓ 0.970 0.702 0.744 0.677 0.979 0.835
C + D + M ✓ 0.976 0.749 0.765 0.740 0.983 0.864
C + D + M ✓ ✓ 0.984 0.784 0.795 0.778 0.985 0.885

Table 2: Ablation Study for multi-modality models.

imbalanced data distribution. For multi-instance cases, we use majority voting
to select the prediction during inference.

To justify our design choices, we set aside 1034 three-modality cases from X-
SkinTumor-10 as the test set to perform ablation study. Each case has one clinical
and one dermoscopic image with metadata. We first conduct the modality-wise
ablation experiments on this fixed test set. As listed in Table 2, model using
only dermoscopic images performs better than clinical images. Combining two
modalities (C+D) brings better performance, and simple features concatenation
can improve F1 and Acc by 5.5% and 1% respectively. When the concatenation
is replaced by CMF, the F1 and Acc are further improved by 2% and 1.7%.
Increasing the modality to three (C+D+M) also brings significant performance
gain. The model with CMF again outperforms the one using concatenation,
with 4.7% and 2.9% improvements in F1 and Acc. We further validated the
effectiveness of CMF with a t-test by running ten times, and the p-values of the
F1 and Acc are 1.8e-4 and 7.2e-6 (p < 0.01). Additionally, DWP well addresses
the missing modality problem and provides extra performance gain, achieving
an overall accuracy of 88.5%.
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4 Conclusion

We have presented an effective multi-modal transformer model, in which multi-
modal data are properly fused by a novel cross-modality fusion module. To
handle the missing modality problem, we implement a new disease-wise sam-
pling strategy, which augments to form class-wise multi-modality image pairs
(within the same class) and facilitates sufficient training. Swin transformer as
an efficient image feature extractor is shared by both the dermoscopic and clini-
cal image network streams. Through quantitative experiments, we achieve a new
record on the public dataset of Derm7pt, surpassing the previous best method
by 2.8% in accuracy. Our method is also validated on a large scale in-house
dataset X-SkinTumor-10 where our reported quantitative performance of an
overall 88.5% classification accuracy on recognizing ten classes of pigmented
and non-pigmented skin tumors demonstrates excellent clinical potential.
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