601.436/636 Algorithmic Game Theory - Spring 2020

Instructor: Michael Dinitz
Lecture: T Th 3:00 - 4:15 pm, Shaffer 301
Office Hours: Tuesday 9:30 - 10:30am, and by appointment

Teaching Assistant: Yasamin Nazari
Office Hours: Wednesday 11 - 11:50am

Syllabus

Course Description: This course provides an introduction to algorithmic game theory: the study of games from the perspective of algorithms and theoretical computer science. There will be a particular focus on games that arise naturally from economic interactions involving computer systems (such as economic interactions between large-scale networks, online advertising markets, etc.), but there will also be broad coverage of games and mechanisms of all sorts. Topics covered will include a) complexity of computing equilibria and algorithms for doing so, b) (in)efficiency of equilibria, and c) algorithmic mechanism design. Students may receive credit for 601.436 or 601.636, but not both. Pre-req: 601.433/633 or permission.

Textbook: Algorithmic Game Theory, Nisan, Roughgarden, Tardos, and Vazirani, Cambridge University Press, 2007.
Optional: Twenty Lectures on Algorithmic Game Theory, Tim Roughgarden, Cambridge University Press, 2016.

Online Discussion Group: Piazza

Schedule

The following is a tentative schedule. As the class proceeds, there will likely be changes and modifications.

Date Topic Reference Notes
 Jan 28   Introduction. What is AGT? Basic Game Theory   Chapter 1. Lecture Notes   
 Jan 30   Two-Player Zero-sum Games   Lecture Notes, Chapters 1.4.2, 3.1, 3.2   HW1 released 
 Feb 4   Algorithms for Two-Player Games: Lemke-Howson   Lecture Notes, Chapters 2.3, 3.2 - 3.6 
 Feb 6   Hardness of Computing Nash: PPAD   Lecture Notes, Roughgarden Chapter 20, NRTV Chapters 2.1 - 2.6 
 Feb 11   Potential Games and PNE; Hierarchy of Equilibria   Lecture Notes, Roughgarden Chapter 13, NRTV Chapter 1.3    
 Feb 13   No-Regret and Coarse Correlated Equilibria   Lecture Notes, Roughgarden Chapter 17, NRTV Chapters 4.1-4.4   HW1 due, HW2 released 
 Feb 18   No-Regret and Equilibria (continued)   Lecture Notes, Roughgarden Chapters 17, 18, NRTV Chapters 4.1-4.4 
 Feb 20   No-Swap-Regret and Correlated Equilibria   Lecture Notes, Roughgarden Chapter 18, NRTV Chapters 4.4, 4.5 
 Feb 25   Introduction to Inefficiency of Equilibria   Chapter 17    
 Feb 27   Routing Games   Chapter 18   HW2 due, HW3 released 
 Mar 3   Smooth Games   Roughgarden Chapter 14 
 Mar 5   Facility Location Game   Chapter 19.4 
 Mar 10   Connection Game, Strong Nash   Chapter 19.3    
 Mar 12   Load Balancing   Chapter 20   HW3 due 
 Mar 17   No class - Spring Break       
 Mar 19   No class - Spring Break    
 Mar 24   Introduction to Mechanism Design   Chapters 9.1, 9.3.1, 9.3.2, 9.3.5   HW4 released 
 Mar 26   Single-Parameter Environments (Myerson's Lemma)   Chapters 9.5.4, 9.5.5    
 Mar 31   Knapsack Auctions and the Revelation Principle   Chapters 9.4.3, 12.1, 12.2    
 Apr 2   Revenue Maximizing Auctions   Chapters 13.1, 13.2. Optional: Chapter 3.3 from Hartline's book.    
 Apr 7   "Simple" Auctions and Bulow-Klemperer   Chapters 4.2, 5.1, 5.2.1 of Hartline's book, and Lecture Notes from Stanford   HW4 due, HW5 released 
 Apr 9   VCG and General Mechanism Design   Chapter 9.3.3    
 Apr 14   Combinatorial Auctions, Spectrum Auctions   Chapters 11.1, 11.2    
 Apr 16   Mechanisms Without Money   Chapters 10.3, 10.4    
 Apr 21   Online Auctions   Chapter 16.1, Slides from Maryland. Optional: Chapter 16.2, 16.3.   HW5 due 
 Apr 23   Voting Schemes and Social Choice   Chapter 9.2    
 Apr 28   No class - Mike out of town       
 Apr 30   No class - Mike out of town    


Assignments

Please submit homeworks using Gradescope.

Project Information

This class will have a final project, whose exact form is still to be determined. One option will be to read a modern research paper on algorithmic game theory and write up an overview. Good conferences to look for interesting papers are EC (Electronic Commerce), WINE (Workshop in Internet and Network Economics), SAGT (Symposium on Algorithmic Game Theory), STOC, FOCS, and SODA.

Additional Resources

Some texts that are related to topics we will cover. They are useful for further study in this field. Similar courses with nice notes.