Publications from 2023

  • Forecasting Earnings Surprises from Conference Call Transcripts

    There is a multitude of textual data relevant to the financial markets, spanning genres such as financial news, earnings conference calls, and social media posts. Earnings conference calls are one of the most important to information flow as they reflect a direct communication between company executives, financial analysts, and large shareholders. Since these calls contain content that is forward-looking in nature, they can be used to forecast the future performance of the company relative to market expectations. However, they typically contain over 5,000 words of text and large amounts of industry jargon. This length and domain-specific language present problems for many generic pretrained language models. In this work, we introduce a novel task of predicting earnings surprises from earnings call transcripts and contribute a new long document dataset that tests financial understanding with complex signals. We explore a variety of approaches for this long document classification task and establish some strong baselines. Furthermore, we demonstrate that it is possible to predict companies’ future earnings surprises from solely the text of their conference calls with reasonable accuracy. Finally, we probe the models through different interpretability methods and reveal some intuitive explanations of the linguistic features captured that go beyond traditional sentiment analysis.

    Ross Koval , Nicholas Andrews , Xifeng Yan

    Findings of the Association for Computational Linguistics: ACL 2023, 2023

    PDF BibTeX

    #finance #benchmark #language_grounding

  • Can Authorship Representation Learning Capture Stylistic Features?

    Automatically disentangling an author’s style from the content of their writing is a longstanding and possibly insurmountable problem in computational linguistics. At the same time, the availability of large text corpora furnished with author labels has recently enabled learning authorship representations in a purely data-driven manner for authorship attribution, a task that ostensibly depends to a greater extent on encoding writing style than encoding content. However, success on this surrogate task does not ensure that such representations capture writing style since authorship could also be correlated with other latent variables, such as topic. In an effort to better understand the nature of the information these representations convey, and specifically to validate the hypothesis that they chiefly encode writing style, we systematically probe these representations through a series of targeted experiments. The results of these experiments suggest that representations learned for the surrogate authorship prediction task are indeed sensitive to writing style. As a consequence, authorship representations may be expected to be robust to certain kinds of data shift, such as topic drift over time. Additionally, our findings may open the door to downstream applications that require stylistic representations, such as style transfer.

    Andrew Wang , Cristina Aggazzotti , Rebecca Kotula , Rafael Rivera Soto , Marcus Bishop , Nicholas Andrews

    Transactions of the Association for Computational Linguistics, 2023

    PDF BibTeX

    #forensics

  • Learning to Generate Text in Arbitrary Writing Styles

    Prior work in style-controlled text generation has focused on tasks such as emulating the style of prolific literary authors, producing formal or informal text, and mitigating toxicity of generated text. Plentiful demonstrations of these styles are available, and as a result modern language models are often able to emulate them, either via prompting or discriminative control. However, in applications such as writing assistants, it is desirable for language models to produce text in an author-specific style on the basis of a potentially small writing sample. For example, someone writing in a particular dialect may prefer writing suggestions that retain the same dialect. We find that instruction-tuned language models can struggle to reproduce author-specific style demonstrated in a prompt. Instead, we propose to guide a language model to generate text in a target style using contrastively-trained representations that capture stylometric features. Our approach (StyleMC) combines an author-adapted language model with sequence-level inference to improve stylistic consistency, and is found to be effective in a variety of conditions, including unconditional generation and style transfer. Additionally, we find that the proposed approach can serve as an effective anonymization method, by editing a document to mask authorship while preserving the original meaning.

    Aleem Khan , Andrew Wang , Sophia Hager , Nicholas Andrews

    arXiv preprint arXiv:2312.17242, 2023

    PDF BibTeX

    #controllable_generation #llm #preprint

Back to all publications