Publications tagged: #forensics
-
The Impact of Automatic Speech Transcription on Speaker Attribution
Speaker attribution from speech transcripts is the task of identifying a speaker from the transcript of their speech based on patterns in their language use. This task is especially useful when the audio is unavailable (e.g. deleted) or unreliable (e.g. anonymized speech). Prior work in this area has primarily focused on the feasibility of attributing speakers using transcripts produced by human annotators. However, in real-world settings, one often only has more errorful transcripts produced by automatic speech recognition (ASR) systems. In this paper, we conduct what is, to our knowledge, the first comprehensive study of the impact of automatic transcription on speaker attribution performance. In particular, we study the extent to which speaker attribution performance degrades in the face of transcription errors, as well as how properties of the ASR system impact attribution. We find that attribution is surprisingly resilient to word-level transcription errors and that the objective of recovering the true transcript is minimally correlated with attribution performance. Overall, our findings suggest that speaker attribution on more errorful transcripts produced by ASR is as good, if not better, than attribution based on human-transcribed data, possibly because ASR transcription errors can capture speaker-specific features revealing of speaker identity.
Cristina Aggazzotti , Matthew Wiesner , Elizabeth Allyn Smith , Nicholas Andrews
Transactions of the Association for Computational Linguistics (TACL), 2025
-
Can Authorship Attribution Models Distinguish Speakers in Speech Transcripts?
Authorship verification is the task of determining if two distinct writing samples share the same author and is typically concerned with the attribution of written text. In this paper, we explore the attribution of transcribed speech, which poses novel challenges. The main challenge is that many stylistic features, such as punctuation and capitalization, are not informative in this setting. On the other hand, transcribed speech exhibits other patterns, such as filler words and backchannels (e.g., um, uh-huh), which may be characteristic of different speakers. We propose a new benchmark for speaker attribution focused on human-transcribed conversational speech transcripts. To limit spurious associations of speakers with topic, we employ both conversation prompts and speakers participating in the same conversation to construct verification trials of varying difficulties. We establish the state of the art on this new benchmark by comparing a suite of neural and non-neural baselines, finding that although written text attribution models achieve surprisingly good performance in certain settings, they perform markedly worse as conversational topic is increasingly controlled. We present an analysis of the impact of transcription style on performance as well as the ability of fine-tuning on speech transcripts to improve performance.
Cristina Aggazzotti , Nicholas Andrews , Elizabeth Allyn Smith
Transactions of the Association for Computational Linguistics, 2024
-
Can Authorship Representation Learning Capture Stylistic Features?
Automatically disentangling an author’s style from the content of their writing is a longstanding and possibly insurmountable problem in computational linguistics. At the same time, the availability of large text corpora furnished with author labels has recently enabled learning authorship representations in a purely data-driven manner for authorship attribution, a task that ostensibly depends to a greater extent on encoding writing style than encoding content. However, success on this surrogate task does not ensure that such representations capture writing style since authorship could also be correlated with other latent variables, such as topic. In an effort to better understand the nature of the information these representations convey, and specifically to validate the hypothesis that they chiefly encode writing style, we systematically probe these representations through a series of targeted experiments. The results of these experiments suggest that representations learned for the surrogate authorship prediction task are indeed sensitive to writing style. As a consequence, authorship representations may be expected to be robust to certain kinds of data shift, such as topic drift over time. Additionally, our findings may open the door to downstream applications that require stylistic representations, such as style transfer.
Andrew Wang , Cristina Aggazzotti , Rebecca Kotula , Rafael Rivera Soto , Marcus Bishop , Nicholas Andrews
Transactions of the Association for Computational Linguistics, 2023
-
Learning universal authorship representations
Determining whether two documents were composed by the same author, also known as authorship verification, has traditionally been tackled using statistical methods. Recently, authorship representations learned using neural networks have been found to outperform alternatives, particularly in large-scale settings involving hundreds of thousands of authors. But do such representations learned in a particular domain transfer to other domains? Or are these representations inherently entangled with domain-specific features? To study these questions, we conduct the first large-scale study of cross-domain transfer for authorship verification considering zero-shot transfers involving three disparate domains: Amazon reviews, fanfiction short stories, and Reddit comments. We find that although a surprising degree of transfer is possible between certain domains, it is not so successful between others. We examine properties of these domains that influence generalization and propose simple but effective methods to improve transfer.
Rafael A Rivera-Soto , Olivia Elizabeth Miano , Juanita Ordonez , Barry Y Chen , Aleem Khan , Marcus Bishop , Nicholas Andrews
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021
-
A Deep Metric Learning Approach to Account Linking
We consider the task of linking social media accounts that belong to the same author in an automated fashion on the basis of the content and metadata of their corresponding document streams. We focus on learning an embedding that maps variable-sized samples of user activity -- ranging from single posts to entire months of activity -- to a vector space, where samples by the same author map to nearby points. The approach does not require human-annotated data for training purposes, which allows us to leverage large amounts of social media content. The proposed model outperforms several competitive baselines under a novel evaluation framework modeled after established recognition benchmarks in other domains. Our method achieves high linking accuracy, even with small samples from accounts not seen at training time, a prerequisite for practical applications of the proposed linking framework.
Aleem Khan , Elizabeth Fleming , Noah Schofield , Marcus Bishop , Nicholas Andrews
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021
-
Learning Invariant Representations of Social Media Users
The evolution of social media users’ behavior over time complicates user-level comparison tasks such as verification, classification, clustering, and ranking. As a result, naive approaches may fail to generalize to new users or even to future observations of previously known users. In this paper, we propose a novel procedure to learn a mapping from short episodes of user activity on social media to a vector space in which the distance between points captures the similarity of the corresponding users’ invariant features. We fit the model by optimizing a surrogate metric learning objective over a large corpus of unlabeled social media content. Once learned, the mapping may be applied to users not seen at training time and enables efficient comparisons of users in the resulting vector space. We present a comprehensive evaluation to validate the benefits of the proposed approach using data from Reddit, Twitter, and Wikipedia.
Nicholas Andrews , Marcus Bishop
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019