

Learning Segmentation from Radiology Reports

Pedro R. A. S. Bassi

Postdoctoral Researcher

Dept. Computer Science, Johns Hopkins University
psalvad2@jh.edu

Awards:

- MICCAI 2025 Best Paper Award (runner-up), top 2 of 1,027 papers
- RSNA 2025 Certificate of Merit Award

RSNA 2025
Imaging the Individual

AI Can Help Early Tumor Detection

- Early detection drastically improves survival
 - Detected early: often >90% 5-year survival
 - Detected late: often <20% 5-year survival
- 300M CT scans/year, multiple reasons
- Tumors are often difficult to see
 - E.g., studies show that about 50% of early pancreatic tumors may be missed by radiologists
- Al can see details not perceptible to humans
 - o E.g., Pancreatic tumors in non-contrast CT
- Segmentation models: detect and locate tumors
 - Interpretability and trustability

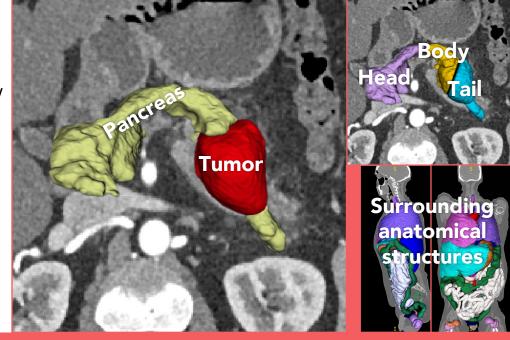
A Successful Story

- Radiologists can detect pancreatic cancer from contrast-enhanced CT scans,
 but the sensitivity of early pancreatic cancer is only 33-44%
- Our AI has achieved very high performance in early detection

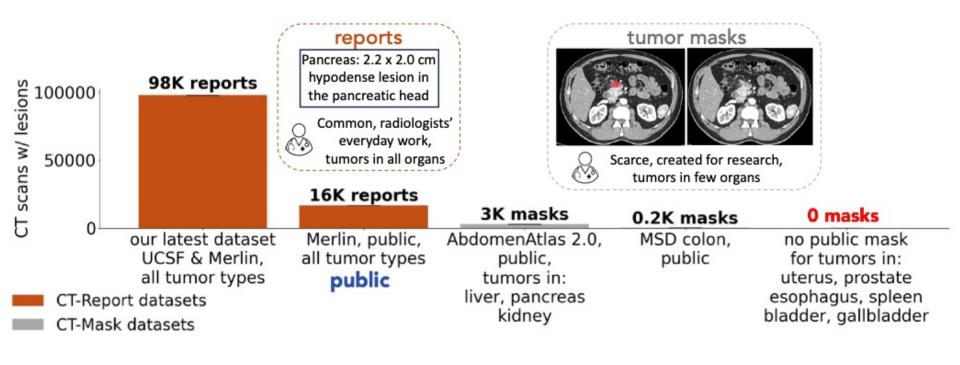
	Sensitivity early tumors ≤2 cm	Sensitivity all-size tumors	Specificity				
Radiologists	33–44%	76–92%	82–96%				
Our Al	94%	97%	99%				

Behind the Scenes

- >5,000 voxel-wise annotated CT scans at JHU, taking 25 person years
- \$6M, five-year annotations
- Drawing masks is:
 - Labor-intensive
 - Costly
 - Not part of standard clinical workflow
 - o 15-30 minutes per 3D CT
- All for 1 tumor type, 1 hospital

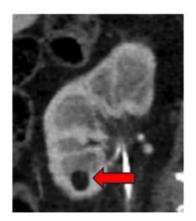


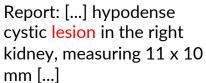
Problem: Few Per-voxel Tumor Masks



Problem: Few Per-voxel Tumor Labels

- Informative: tumor size, location, attenuation, and quantity



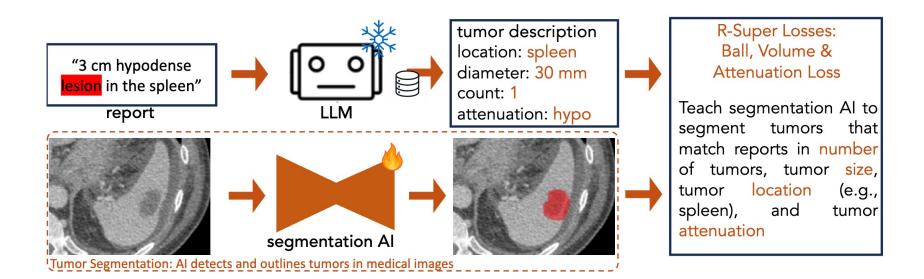


X.com

I'm using this post in my 4 PM VLM3D talk — just a quick reminder that social media captions are not always related to the images \Leftrightarrow

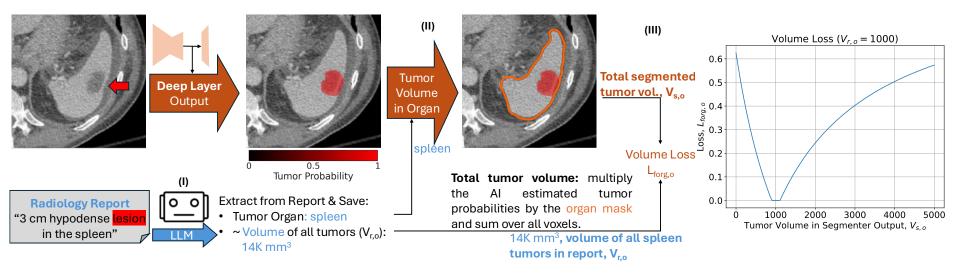
How to use this rich information to improve tumor segmentation AI?

Report Supervision: Overview



- Reports can supplement or substitute masks
- Reports only used in training
- Any architecture

Volume Loss: Matches Tumor Volume/Location



Organ segmentation is easier than tumor segmentation: TotalSegmentator, Touchstone, AbdomenAtlas,...

Ball Loss: Matches Tumor Diameter/Location/Count

Repeat for all tumors reported in the organ, from large to small. For **Ball loss:** Which output voxels to maximize and minimize? each tumor, ignore voxels already assigned (maximized) for other Extract from Report & Save: tumors. Minimize output voxels not assigned to any tumor. (IV) Radiology Report Tumor Organ: spleen "3 cm hypodense lesion Diameter: Location: Volume: Tumor Diameter: 30 mm in the spleen" spleen 30 mm 14K voxels Tumor Number: 1 (III) (II) Locate Last Organ Layer Output aximize 14 **Organ Localization Voxels Ball Convolution** Output 0.5 Minimize tumor Tumor Probability Inside the spleen, move a **Maximize** outside probabilities spherical kernel with the **Maximize** the 14K the spleen, located w/ reported tumor diameter most probable voxels a spleen mask (Al-(30 mm). The highest inside the highest made, pre-saved). convolution output probability ball.

indicates

the

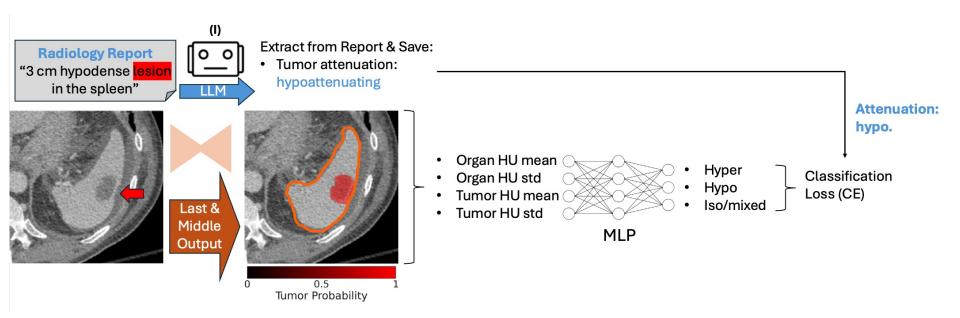
location with the highest

tumor probability.

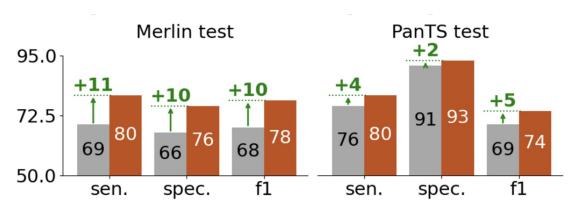
ball

- What if the AI found no tumor? Volume Loss helps
- Can it enforce a false positive? In one sample yes, over the dataset no

Attenuation Loss



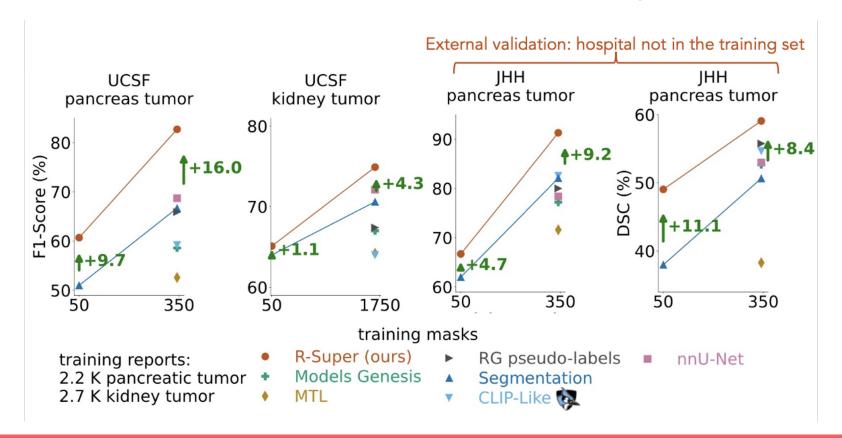
Results on Public Data: By Learning from Public Masks ($\mathcal{N}=1.1K$) & Reports ($\mathcal{N}=1.8K$), R-Super Improves Pancreatic Tumor Detection



Public Datasets:

- Merlin: 25K CT-Reports,
 16K with lesions, 2K pancreatic.
- AbdomenAtlas 2.0: 9K CT-Masks, 3K with lesions, 344 pancreatic.
- PanTS: 9K CT-Masks,
 1.1K with pancreatic lesions.
- standard segmentation (trained w/ 0.9K pancreatic tumor masks)
- R-Super (trained w/ 0.9K pancreatic tumor masks & 1.8K reports)

Results: Reports help with few / many masks



Why are R-Super results better?

training paradigm		,	uses detailed report info. [†]	reports optimize segmentation directly	reports penalize FP/FN directly
Segmentation [14,11]	X	Х	X	X	X
Models Gen. [29,30]	✓	X	X	×	X
Multi-task Learn. [7]	✓	√	X	×	X
RG pseudo-labels [6]	✓	✓	X	✓	X
CLIP-Like [5]	✓	✓	✓	X	X
R-Super (ours)	✓	✓	✓	✓	✓

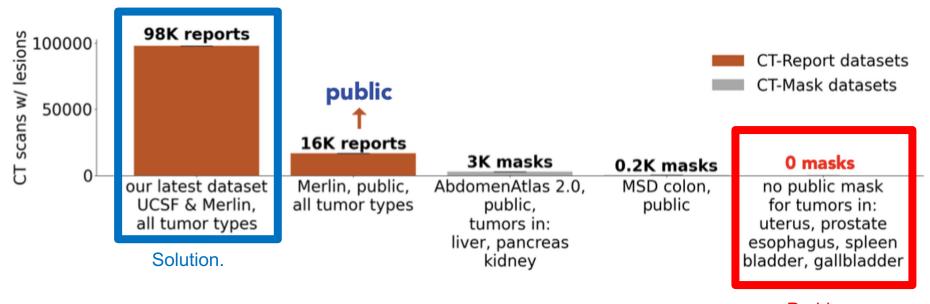
[†] AI learns from tumor count, sizes, and locations (organ/organ sub-segment) in reports.

Early Detection: R-Super Improves the Detection of Small (<2 cm) Tumors

	pancreas tumor										kidney tumor							
		JHH-Test						UCSF-Test			UCSF-Test							
train paradigm	$\overline{\mathrm{mask}}$	rep.	dsc	nsd	F1	AUC	Se	$\overline{\mathrm{Sp}}$	F1	AUC	Se	$\overline{\mathrm{Sp}}$	mask	rep.	F1	AUC	Se	$\overline{\mathrm{Sp}}$
CLIP-Like [5]	344	2.2K	11	19	68	90	100	71	50	74	54	75	1.7K	2.7K	40	65	57	48
Multi-task l. [7]	344	2.2K	15	26	54	83	87	60	42	61	60	50	1.7K	2.7K	46	65	57	63
RG Pseudo-l. [6]	344	2.2K	19	32	61	77	73	80	63	82	62	86	1.7K	2.7K	50	71	66	60
Models G. [29]	344	0	10	20	62	85	80	76	48	70	60	63	1.7K	0	43	65	60	54
nnU-Net [14]	344	0	7	17	55	74	60	82	60	78	70	74	1.7K	0	53	71	79	53
segmentation [11]	344	0	17	36	65	83	67	88	59	77	58	85	1.7K	0	39	69	44	68
R-Super (our)	344	2.2K	25	48	80	89	93	88	75	90	77	89	1.7K	2.7K	56	78	69	69

+26% / +15% / +8% in sensitivity / F1-Score / DSC for pancreatic tumors (external valid.)

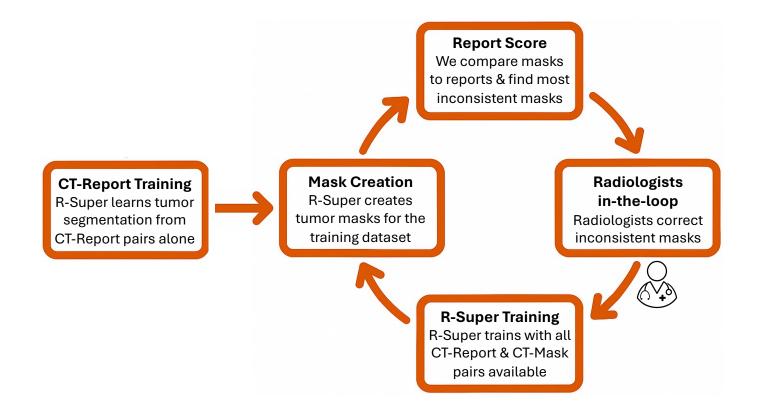
Extension: Unlocking New Tumor Types



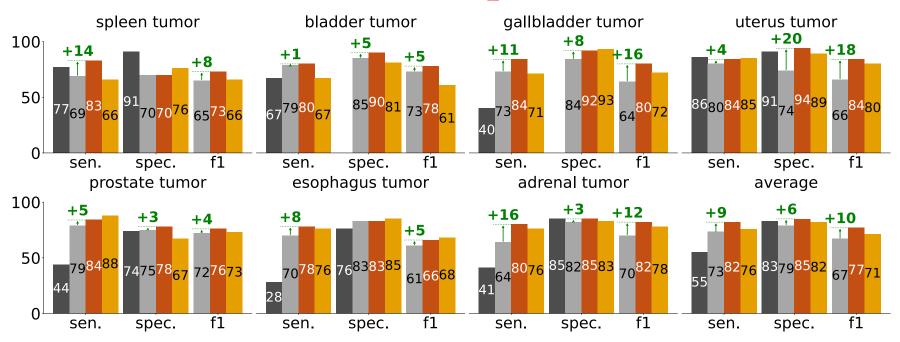
Problem.

PACS (0.5M reports, 30 years) > LLM (98K tumor reports + 18K normal)

Report-based Active Learning

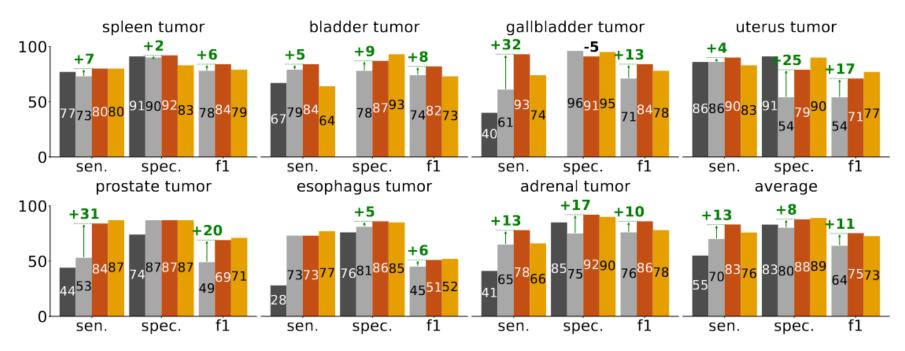


Current Work: 117K CT-Report, 7 New Tumors



- Radiologists (results from literature)
- standard segmentation (29 to 183 masks / tumor type)
- R-Super (29 to 183 masks & 620 to 11K reports / tumor type)
- R-Super No Mask (0 masks & 620 to 11K reports / tumor type)
- SOTA Report Generation VLMs (e.g., MedGemma, Google): <2% average sensitivity

External Validation



- Radiologists (results from literature)
- standard segmentation (29 to 183 masks / tumor type)
- R-Super (29 to 183 masks & 620 to 11K reports / tumor type)
- —— R-Super No Mask (0 masks & 620 to 11K reports / tumor type)

Conclusions

Can reports improve segmentation performance?

- Improved performance with 0, few (50), medium (344) and many (1,674) masks
- Improves results for **small tumors** and for **unseen hospitals**
- Many Image-Report pairs create better segmentation AI than few Image-Mask pairs
- Unlocks the segmentation of more tumor types
- **First** public AI that can segment these 7 tumor types
- **First** public Image-Mask pairs for these 7 tumor types

