

Report Supervision

Report Supervision Loss: Scaling Tumor Segmentation with radiology reports

Pedro R. A. S. Bassi, Wenxuan Li, Jieneng Chen, Zheren Zhu, Tianyu Lin, Sergio Decherchi, Andrea Cavalli, Kang Wang, Yang Yang, Alan Yuille, Zongwei Zhou Medical Image Computing and Computer Assisted Intervention (MICCAI 2025)

Problem: Few Per-voxel Tumor Labels

What are reports and per-voxel labels?

Why are reports important?

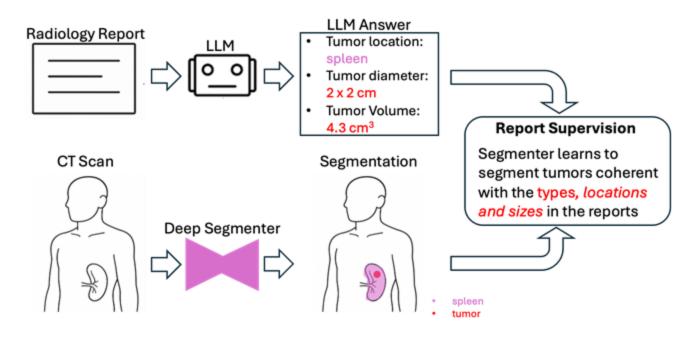
- Public CT datasets: 0 to 1.7K per-voxel tumor labels
 - **0.9-1.7K**: liver, kidney, pancreas, lungs
 - **53-190**: Colon, Adrenal Glands
 - 0: Uterus, Prostate, Esophagus, Spleen, Gallbladder, Bladder, Duodenum, Stomach

- One Hospital (UCSF): 0 per-voxel labels; 300K tumor reports
 - Reports for all tumor types
 - Everyday work of a radiologist

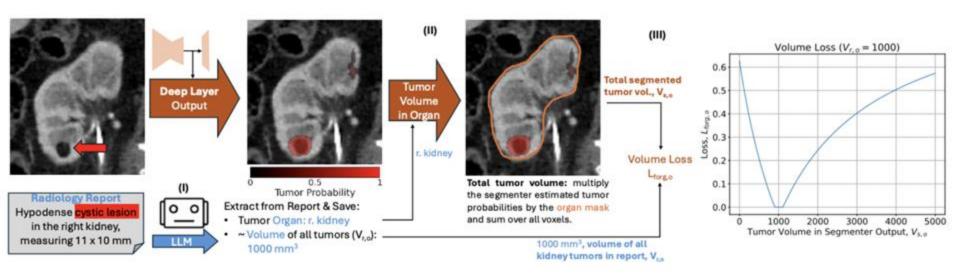
Problem: Few Per-voxel Tumor Labels

Informative: tumor size, location, and quantity

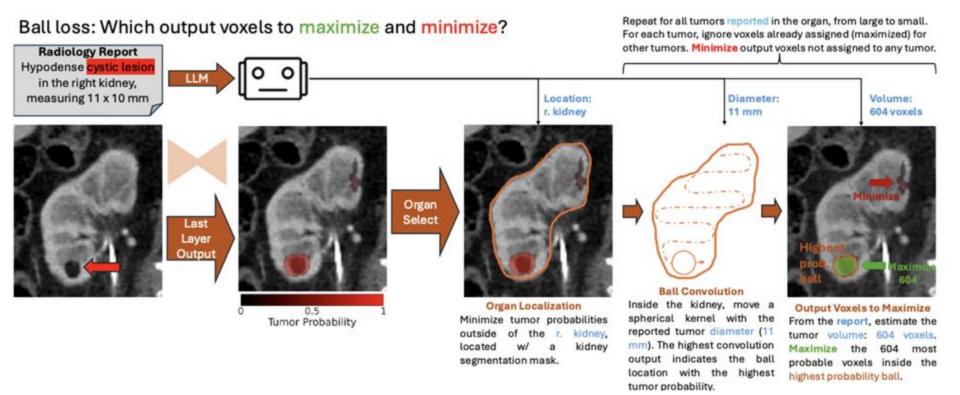
Report: [...] hypodense cystic lesion in the right kidney, measuring 11 x 10 mm [...]

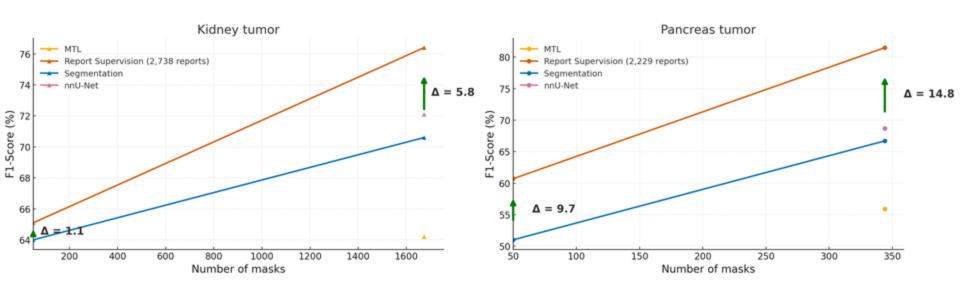


Caption: 9 misconceptions about alcohol.

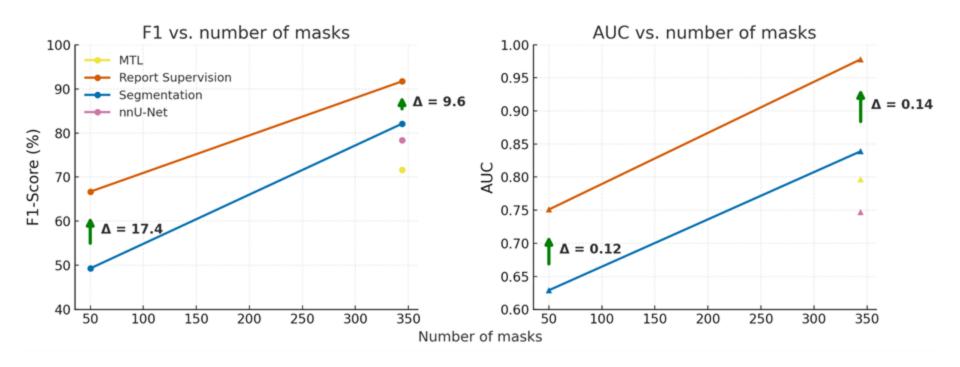

How to use this rich information to improve tumor segmentation AI?

Report Supervision: Overview


Report Supervision Training Strategy


Methodology: Volume Loss

Methodology: Ball Loss


Results: Reports help with few / many masks

Results: IID

supervision for training		pancreas tumour				kidney tumour			
voxel- wise	report- wise	sen.	spec.	F1	AUC	sen.	spec.	F1	AUC
2 018	0	61.9 (86/139)	85.3 (191/224)	66.7	0.78	65.1 (110/169)	67.5 (131/194)	70.6	0.73
2018	4 967	80.6 $(112/139)$	87.1 $(195/224)$	81.5	0.90	69.8 (118/169)	70.6 $(137/194)$	76.4	0.78
50	0	46.8 $(65/139)$	77.2 $(173/224)$	51.0	0.63	67.3 (113/168)	62.6 $(122/195)$	64.0	0.68
50	4 967	59.7 $(83/139)$	75.0 $(168/224)$	60.7	0.70	62.5 $(105/168)$	70.8 (138/195)	65.1	0.66

Results: OOD (Pancreas Tumors)

Results: OOD

supervision	for training	pancreas tumor			
pancreatic tumor masks	pancreatic tumor reports	sen.	spec.		
344 344	0 2,229	71.5% (974/1364) 84.7% (1155/1364)	$88.4\% \ (550/622) \ 92.1\% \ (573/622)$		

Conclusions

Can reports improve segmentation performance?

- Improved performance in the hospital that provides the report
- Improved performance in unseen hospitals
- Improved performance with a small (50), medium (344) and large (1,674) number of masks
- Reports can: scale large segmentation datasets & create reasonable segmentation AI when very few masks are available, which can help further annotation