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Abstract— Tumor synthesis can generate challenging
cases that AI often misses or over-detects. Training on
these cases improves AI performance. However, most
existing synthesis methods are either unconditional—
generating images from random variables—or conditioned
only on tumor shape. As a result, they lack control over
clinically important tumor characteristics, such as tex-
ture, heterogeneity, boundary, and pathology. The gener-
ated tumors are therefore overly similar or duplicates of
existing training cases, failing to effectively address AI’s
weaknesses. We propose a new text-driven tumor syn-
thesis approach, termed TextoMorph, that provides tex-
tual control over tumor characteristics in conjunction with
mask control. This approach is particularly beneficial for
examples that confuse the AI the most, such as early
tumor detection (improving Sensitivity by +6.5%), tumor
segmentation for precise radiotherapy (improving NSD by
+3.1%), and classification between benign and malignant
tumors (improving Sensitivity by +8.2%). By incorporat-
ing text mined from radiology reports into the synthesis
process, we increase the variability and controllability of
the synthetic tumors to target AI’s failure cases more
precisely. Moreover, TextoMorph uses contrastive learning
across different texts and CT scans, significantly reducing
dependence on scarce image-report pairs (only 141 pairs
used in this study) by leveraging a large corpus of 34,035
radiology reports. Finally, we have developed rigorous tests
to evaluate synthetic tumors, showing that our synthetic
tumors is realistic and diverse in texture, heterogeneity,
boundary, and pathology. Code and models are available
at https://github.com/MrGiovanni/TextoMorph

Index Terms— Tumor Synthesis, Generative Models, Re-
port Mining, Tumor Detection, Tumor Classification
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Fig. 1. Text-Driven Tumor Synthesis. Existing synthesis methods
lack controllability and often generate tumors based only on shapes or
random noise. This results in synthetic tumors that lack essential fea-
tures like texture, boundaries, and attenuation, reducing its effectiveness
in analyzing and addressing AI weaknesses. TextoMorph addresses
this limitation by exploiting a dataset of 34,035 radiology reports to
generate tumors with medically precise features described in clinical
language. Examples include phrases such as ‘hypodensity ’, ‘ill-defined ’,
and ‘cystic’, paired with CT scans of the liver, pancreas, and kidney.

TUMOR synthesis plays a critical role in targeted data
augmentation by generating examples that AI models

tend to miss (false negatives) or over-detect (false positives),
focusing on areas needing improvement [1], [2] and address-
ing privacy concerns and reducing annotation costs [3]–[7].
However, existing synthesis methods are typically uncon-
ditional [8]—generating images from random variables—or
conditioned only on shape masks [9], lacking controls over
specific tumor characteristics such as texture, heterogeneity,
boundaries, and pathology type. We find that text should be
considered an important conditioning factor when generating
tumors because it carries much richer information1 than ran-
dom variables or shape masks can offer. Moreover, tumor-
related text is readily available in radiology reports, which are
routinely generated by radiologists in clinical workflows [10]–
[14]. We hypothesize that incorporating text as a condition,
alongside tumor masks, allows us to develop stronger AI
models for tumor detection, segmentation, and classification
due to greater controllability of generating such tumors that
AI models often make mistakes.

Text-driven generative models [15]–[19] have significantly
advanced in recent years. These models leverage natural lan-
guage descriptions to control the synthesis of images/videos,
enabling fine-grained manipulation of generated content. Ap-
plications range from data augmentation for AI training to
commercial products that generate images/videos for creative
and practical purposes [20]–[23]. However, these models have

1For example, a report goes ‘slightly enlarged ill-defined liver lesions’ and
‘more well-defined appearance of liver lesions.’ The corresponding CT scans
are shown in Figure 1.

https://github.com/MrGiovanni/TextoMorph
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not been fully explored in tumor synthesis due to several
challenges: First, lack of annotated tumors: Only a very small
proportion (less than 5%) of publicly available abdominal
CT datasets contain voxel-wise annotated tumors [24]–[30].
Second, lack of text descriptions: Very few publicly available
datasets have radiology reports or text descriptions for tumors
in CT scans [31]–[36]. Third, need of large-scale paired
datasets for training: For example, DALL·E was trained on
250 million image-text pairs [37], and Imagen Video was
trained on 14 million video-text pairs along with 60 million
image-text pairs [38]. Forth, difficulty in evaluating generated
synthetic tumors: AI-generated images/videos can be assessed
by anybody, while generated tumors must be visually inspected
by busy, costly medical professionals [39]–[43].

To address these challenges, we first create a dataset con-
sisting of 141 CT-Report pairs containing tumors in the liver,
pancreas, and kidney, along with 34,035 radiology reports
that provide textual descriptions of tumors or normal findings
(see examples in Figure 1). We then develop a new text-
driven tumor synthesis approach, termed TextoMorph, which
can generate targeted tumors based on the described tumor
characteristics. By incorporating textual descriptions mined
from radiology reports into the synthesis process, TextoMorph
increases the variability and controllability of the synthetic
tumors, allowing us to precisely target the AI’s failure modes.
Our TextoMorph outperforms a total of four existing gen-
erative methods. It is particularly beneficial for such cases
that challenge AI the most, including (1) early-stage tumor
detection (less than 20mm), increasing Sensitivity by +6.5%
(Figure 5), (2) tumor segmentation for precise radiotherapy,
increasing NSD by +3.1% (Figure 5), and (3) classification
between benign and malignant tumors, improving Sensitivity
by +8.2% (Table IV).

More importantly, we have also developed rigorous tests
to evaluate the effectiveness of synthetic tumors for targeted
data augmentation. First, Text-Driven Visual Turing Test to
examine tumor fidelity. Radiologists were asked to distinguish
real and synthetic tumors with the same shape mask and
text description (e.g., both being ‘cystic tumors’). As shown
in Table I, they erred 22.5–45.0% of the time, significantly
higher than previous rates of 7.5–30.0%, suggesting that
TextoMorph generates highly realistic, text-accurate synthetic
tumors. Second, Radiomics Pattern Analysis to analyze the
diversity of generated tumor appearance. We compute texture-
wise radiomics features of synthetic tumors conditioned on
different random noise. TextoMorph showed greater variance
than prior arts (e.g., 1.03 for TextoMorph vs. 0.93 for DiffTu-
mor [9]; Table II). This indicates that TextoMorph generates
diverse, text-aligned, realistic tumors, explaining the robust
performance of AI trained on them. These promising results
are attributable to the following novel design of TextoMorph:

1) Tumor Report Preprocessing (§III-A). To address the
lack of paired text-image data, we applied Large Lan-
guage Models (LLMs) [44], [45] to automatically gen-
erate detailed descriptions highlighting tumor texture,
margins, and pathology. These LLM-generated texts
undergo semantic validation, ensuring consistency with
original reports and providing reliable textual conditions

for tumor synthesis.
2) Text-Driven 3D Diffusion Model (§III-B). We develop

a 3D diffusion model conditioned on radiology report
text to control tumor appearance, including texture,
margins, and pathology. To strengthen text–image align-
ment, we apply contrastive learning [46], [47]: CTs
paired with identical descriptions form positive pairs
across different scans, while the same scan with differing
descriptions forms negative pairs. The contrastive objec-
tive is applied to tumor-specific features and scaled with
a corpus of 34,035 reports, yielding robust associations
between textual phrases and visual tumor characteristics.

3) Targeted Data Augmentation (§III-C). We analyzed
the model failures (e.g., false negatives) and gener-
ated tailored synthetic tumors specifically designed to
address these shortcomings. Incorporating this targeted
data augmentation led to notable improvements in tumor
detection, segmentation, and classification performance.

II. RELATED WORK

Tumor synthesis has emerged as a critical research fo-
cus across various medical imaging modalities, including
colonoscopy videos [48], MRI [49], CT [50]–[52], and en-
doscopic images [53]–[55]. While early methods [50]–[52],
[56]–[58] relied on low-level image processing, their limited
realism often produced noisy synthetic data that degraded
downstream performance. To address this, condition-guided
synthesis has gained traction, enabling precise tumor local-
ization and morphology control for stronger augmentation in
detection and segmentation [59]–[64]; we include representa-
tive methods as baselines. In parallel, advances such as latent
diffusion [65] and ControlNet-style conditioning [66] have
substantially improved fidelity and structural controllability in
general imaging. Recent medical adaptations, including Med-
CLIP [67], VoCo [68], and Unified Contrastive Learning [69],
further explore image–text alignment and contrastive objec-
tives for representation learning and global-level synthesis.
Our framework builds upon these advances but focuses on
lesion-level, mask and text conditioned generation in 3D CT to
achieve descriptor-controllable tumor synthesis. Nevertheless,
most medical tumor synthesis remains mask-only, offering
limited control over texture, heterogeneity, and boundaries.

Text-driven synthesis has emerged as a transformative tool
in medical imaging, enabling the generation of diverse medical
images, such as chest X-rays, histopathology, and retinal
images, based on descriptive text [70]. This approach has
significantly advanced tasks like multi-abnormality classifica-
tion and rare condition research, while also improving data
curation efficiency through automated labeling and synthetic
data generation [40], [71]–[73]. Additionally, applications in
privacy-preserving analytics and digital technology further
highlight its potential [74]–[76]. However, existing methods
primarily focus on whole-CT-level synthesis, limiting their
utility for pathology-specific tasks. To address this, we develop
a novel text-driven tumor synthesis framework termed Texto-
Morph that enables the precise generation of tumors based on
described characteristics.
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Fig. 2. Overview of the TextoMorph Framework. The framework consists of four steps: (I) Tumor Report Preprocessing (§III-A): From each
radiology report, we extract descriptive phrases (highlighted in yellow) and generate radiology sentences containing these keywords. A text encoder
converts these text inputs into language embeddings. (II) Text-driven 3D Diffusion Model Training (§III-B): A diffusion model with an image
encoder and decoder is trained to synthesize high-fidelity tumors conditioned on mask, text representation, and latent CT features. (III) Tumor
Synthesis (§III-C): Using the frozen diffusion model, we synthesize tumors jointly conditioned on large sets of masks and text descriptions (e.g.,
PDAC, a type of pancreatic lesion). (IV) Segmentation Model Training (§III-D): Large-scale synthesis of tumors is used to augment training for the
segmentation model, improving downstream performance including segmentation, detection, and classification.

III. TEXTOMORPH

A. Tumor Report Preprocessing

Radiology reports often contain fragmented and inconsistent
descriptions, which makes text-controlled tumor synthesis
challenging. To address this issue, we adopt a two-stage pre-
processing strategy that extracts and augments tumor-specific
textual descriptions.

Text Extraction. We employed GPT-4o [44] to extract tu-
mor characteristics, focusing on texture and margins. Using
prompts such as ‘Extract detailed texture and margin char-
acteristics central to the tumor field,’ we generated a cleaned
descriptive output Si. To verify accuracy, we computed cosine
similarity between Si and the original report by Llama 3.1, ex-
cluding cases with similarity below 0.9 to ensure consistency.

Text Generation. For each Si, we generated N = 100
variant reports Ri1,Ri2, . . . ,Ri100 by varying sentence struc-
tures while carefully retaining core descriptive features. We
prompted GPT-4o with ‘generate 100 reports with distinct
sentence structures, ensuring that critical texture and margin
information is retained accurately.’ Llama 3.1 evaluated cosine
similarity, excluding variants with similarity below 0.9 to
rigorously maintain alignment. This systematic process ex-
panded each CT image’s textual association from one report
to 100 semantically consistent variants, forming a robust
dataset X = (xi,Rij) for controlled tumor synthesis enriched
with diverse textual descriptions. Here, xi denotes the i-th
CT image. We selected 100 text variants to generate each
augmented report Ri. This selection is motivated by three
important considerations: (i) to enhance model robustness to
text variability during inference; (ii) to sufficiently account
for the exponential growth in combinations of medical terms,
synonyms, and anatomical substructures (e.g., liver, hepatic,
liver sub-segment); and (iii) to effectively capture diverse real-
world reporting styles across hospitals. Our experiments also
confirmed that generating an excessive number of text variants
risks redundancy and reduced effectiveness.

B. Text-Driven 3D Diffusion Model Training

Text-Driven Tumor Generator. We adopt latent diffusion
models (LDMs) [65], [77]–[79] to extract compact features
from 3D CT volumes and enable controlled tumor synthesis.
Each CT sub-volume x ∈ RH×W×D is encoded by a 3D
VQGAN [80] into a latent representation z0 = E(x), which is
reconstructed by the decoder D to preserve important details.

Following DiffTumor [9], we apply a 200-step diffusion pro-
cess that gradually corrupts z0 with noise. A time-conditional
3D U-Net ϵθ learns to reverse this process. We denote the
overall text-driven 3D diffusion generator as gθ(R, x,m),
which synthesizes a tumor-containing CT volume conditioned
on the input report R, healthy CT x, and binary mask m. Its
conditioning inputs include the healthy tissue latent zhealthy =
E((1−m)⊙x), a binary tumor mask m, and text embeddings
τθ(Ri) derived from augmented radiology reports. We selected
100 text variants to generate each augmented report Ri, with
the rationale detailed in §III-A. The denoising network predicts
the noise according to ϵ̂ = ϵθ(zt, t, zhealthy, τθ(Ri),m), and
recovers the latent representation by

ẑ0 =
1√
ᾱt

(
zt −

√
1− ᾱt ϵ̂

)
, (1)

where ᾱt =
∏t

s=1 αs denotes the cumulative noise attenuation
factor. The forward process is defined as zt =

√
ᾱt z0 +√

1− ᾱt ϵ, with ϵ ∼ N (0, I). After 200 denoising iterations,
the refined latent ẑ0 is decoded by D to produce a CT with a
tumor exhibiting the characteristics.

Text-Driven Contrastive Learning. We propose a robust text-
driven contrastive loss to improve both alignment with tex-
tual descriptions and enhanced diversity of generated tumors.
Given a detailed report Ri, CT scan xi, and corresponding
mask mi, we generate a synthetic tumor Ti = gθ(Ri, xi,mi).
To encourage greater diversity and variability, we sample a
different report Rj and generate Tj = gθ(Rj , xi,mi) on the
same CT context, strictly maximizing their feature distance; to
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Fig. 3. Targeted Data Augmentation. Undetected tumors are leveraged as informative cases to generate synthetic training samples guided
by GPT-4o-produced descriptions, enhancing the model’s sensitivity. Left: Original false-negative tumors, presented in three orthogonal views
(axial, coronal, and sagittal), and their paired radiology reports generated by GPT-4o, describing tumor features like heterogeneous enhancement,
cystic appearance, and ill-defined margins. Right: Synthetic tumors generated by TextoMorph, conditioned on the original tumor masks and their
corresponding GPT-4o-generated reports.

promote semantic consistency and visual fidelity, we sample a
similar report R′

i and generate T ′
i = gθ(R′

i, xk,mk) under a
different CT context (xk,mk), minimizing its feature distance
to Ti. The contrastive loss is defined as:

Lcontrast = ∥f(Ti)− f(T ′
i )∥2 +max(0, δ − ∥f(Ti)− f(Tj)∥)2. (2)

Here, (Ti, T ′
i ) are positives (similar text across different

CTs) to be minimized, while (Ti, Tj) are negatives (distinct
texts under the same CT) enforced apart by margin δ, where
f(·) is a frozen feature extractor and δ is a predefined margin.

C. Tumor Synthesis

Randomized Tumor Synthesis. We assembled a large repos-
itory of healthy CT volumes to ground text- and mask-
conditioned tumor synthesis. It contains liver, pancreas, and
kidney volumes sampled across scanners and sites to ensure
protocol diversity. Tumor masks are seeded by randomized
ellipsoids and iteratively adjusted with radiologist feedback for
realism [4]. Textual report Rrand is sampled from a curated
pool of 34,035 de-identified radiology reports, providing broad
coverage of texture and margin expressions. Combining the
healthy context, randomized masks, and sampled reports yields
realistic, heterogeneous syntheses that enhance downstream
detection, segmentation, and classification. Concretely, given
a healthy CT, xrand from the repository, a randomized mask
mrand, and a sampled report Rrand, we synthesize:

T rand = gθ(Rrand, xrand, mrand). (3)

Targeted Tumor Synthesis. Targeted data augmentation ad-

dresses false negative (FN) tumors encountered in detection
and segmentation tasks, i.e., real tumors missed by the model,
to enhance the model’s ability to recognize complex and rare
tumors. Given FN cases {(T FN,mFN)}nFN=1 collected from
prior detectors, we use GPT-4o [44] with few-shot prompting
to derive concise descriptors RFN (texture, margins, etc.)
for each (T FN,mFN). The text-driven 3D diffusion model

(§III-B) conditions on RFN, the tumor mask mFN, and a
healthy CT xrand, the text and mask specify appearance and
location, while xrand provides normal context. Iterative latent
denoising then synthesizes realistic hard examples resembling
FN cases, expanding coverage of rare/complex phenotypes and
improving downstream detection/segmentation performance.
Formally, for each (xFN,mFN) we generate:

T FN′
= gθ(RFN, xrand, mFN). (4)

Class-specific Tumor Synthesis. We leveraged class infor-
mation to drive category-specific augmentation. For example,
pancreatic classes (e.g., PDAC) are distilled into large pools
of concise, class-discriminative textual descriptors and paired
with large sets of randomized masks. A frozen diffusion gen-
erator, jointly conditioned on the mask and text, synthesizes
class-consistent tumors at scale. The resulting class-balanced
additions sharpen decision boundaries and mitigate distribution
shift, improving classification performance. Concretely, for a
target class with a class-consistent text Rcls, a healthy CT
xrand, and randomized mask mrand, we produce:

T cls = gθ(Rcls, xrand, mrand). (5)

D. Segmentation Model Training

Tumor Detection & Segmentation. We trained a 3D seg-
mentation model on the synthesized tumor data generated
under joint mask–text conditioning by our frozen diffusion
model. The network architecture and training protocol follow
the same design as DiffTumor [9]. The model learns voxel-
wise tumor delineation from synthetic and real cases jointly,
enabling quantitative assessment of how text-guided synthesis
improves lesion boundary precision and small-lesion recall.

Tumor Classification. For tumor type classification, we adopt
the same 3D backbone as the segmentation model but modify
the output head to predict a scalar probability rather than a
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TABLE I
TUMOR REALISM: TEXT-DRIVEN VISUAL TURING TEST (§IV-B). WE

REPORT THE READER DISCRIMINATION RATE (%), DEFINED AS THE

ACCURACY OF DISTINGUISHING REAL FROM SYNTHETIC TUMORS.
RESULTS ARE REPORTED AS SENIOR | JUNIOR READER. LOWER

VALUES INDICATE HIGHER REALISM. EACH EVALUATION INCLUDED 60
TUMORS: 20 REAL, 20 GENERATED BY BASELINE METHODS, AND 20
GENERATED BY TEXTOMORPH. BY CONDITIONING ON BOTH TUMOR

MASKS AND RADIOLOGY REPORTS, TEXTOMORPH PRODUCES MORE

REALISTIC TUMORS THAN MASK-ONLY APPROACHES [9].

reader discrimination rate (%)

tumor synthesis diameter (mm) liver pancreas kidney

SynTumor [4] all size 71.0 | 26.5 - -
Pixel2Cancer [6] all size 68.4 | 60.9 72.4 | 57.1 75.8 | 67.6

DiffTumor [9]
d < 20 80.0 | 72.5 70.0 | 62.5 74.5 | 65.0
20 ≤ d < 50 74.5 | 70.0 75.0 | 72.5 77.5 | 75.0
d ≥ 50 92.5 | 87.5 75.0 | 67.5 80.0 | 72.5

TextoMorph
d < 20 67.5 | 60.0 60.0 | 52.5 67.5 | 57.5
20 ≤ d < 50 62.5 | 55.0 60.0 | 55.0 60.0 | 50.0
d ≥ 50 77.5 | 75.0 55.0 | 47.5 55.0 | 52.5

Fig. 4. Turing Test Visualization (§IV-B). Examples of synthetic
tumors in the liver, pancreas, and kidney, generated using corresponding
textual descriptions as input. By jointly conditioning on radiology report
text and tumor masks, our method enables precise control over tumor
appearance and location, producing tumors that better align with clinical
descriptions than mask-only approaches [9].

voxel mask. Specifically, the final convolution and softmax
layers are replaced with a global average pooling and a linear
classifier that outputs tumor-type probabilities (e.g., cyst vs.
PDAC). This configuration preserves spatial feature learning
from the segmentation backbone while enabling lesion-level
classification. All other training settings (optimizer, learning
rate, augmentations) remain identical for consistency.

IV. EXPERIMENT AND RESULT

A. Dataset and Evaluation Metrics

Tumor Synthesis. The training dataset consists of 207 care-
fully curated CT scans, including 98 liver, 31 pancreas, and
78 kidney cases, each associated with regions of uncertain or
lesion status. Ground truth labels indicating tumor presence
were initially derived solely from expert-reviewed radiology
reports. Since the original dataset did not contain segmentation
masks, we employed DiffTumor [9] to semi-automatically
generate corresponding tumor masks. From these generated

results, we selected a high-confidence subset of true positive
cases—66 liver, 15 pancreas, and 60 kidney scans—yielding
a total of 141 CT scans paired with reports as input. Ad-
ditionally, a large-scale corpus comprising 34,035 radiology
reports is leveraged in our Text-Driven Contrastive Learning
framework to further enhance the synthetic tumor generation
process. To evaluate the realism of synthetic tumors, we
measure precision, defined as the reader discrimination rate
when distinguishing real from synthetic tumors. Lower reader
discrimination rate indicates greater realism in the synthesized
tumors. Furthermore, comprehensive radiomic pattern analysis
is utilized to quantify tumor variability by computing the mean
variance (MV) of 102 carefully selected radiomic texture fea-
tures. Higher MV values indicate greater diversity, reflecting
enhanced tumor heterogeneity across varied clinical contexts.
Tumor Detection & Segmentation. We used LiTS [81] (131
CTs) for liver, MSD-Pancreas [82] (281 CTs) for pancreas,
and KiTS [83] (300 CTs) for kidney to train and test our
segmentation models with a 5-fold cross-validation strategy.
For healthy data, we selected CT scans from the AbdomenAt-
las [32], [35], [36] focusing on the liver, kidney, and pancreas.
Tumors were synthesized by randomly deforming spherical
shapes to generate masks representing tiny, small, or medium-
sized tumors, with randomly selected masks and descriptive
text inputs to ensure the realism and variability. For evaluation,
we measured detection Sensitivity across small (d<20 mm),
medium (20≤d<50 mm), and large (d≥50 mm) tumor sizes,
and assessed segmentation quality using the Dice Similarity
Coefficient and Normalized Surface Distance.
Tumor Classification. A proprietary dataset comprising 5,119
CT volumes has been utilized in this study, including both
normal cases and cases categorized into pancreatic ductal ade-
nocarcinoma (PDAC), cysts, and pancreatic neuroendocrine
tumors (PNET) [29] (seeexamples in Figure 7). The data are
split into 3,159 training scans and 1,960 test scans. From the
training set, we select 20 cases per tumor type and 60 healthy
cases to fine-tune our method, and use an additional 120 real
tumors to train the classification model. Our study is the first to
generate class-specific synthetic tumors (PDAC, PNET, cysts).
We evaluate performance at the patient level using Sensitivity
and Positive Predictive Value (PPV).

B. Tumor Realism: Visual Turing Test
In this Visual Turing Test, two independent readers (Se-

nior and Junior) evaluated 540 CT scans in a randomized,
blinded setting to determine the ability to distinguish real
tumors from synthetic ones. The scans were categorized by
organ type—liver, pancreas, and kidney—and divided into
three tumor size ranges: small (d < 20 mm), medium
(20 ≤ d < 50 mm), and large (d ≥ 50 mm). For each
category, 60 scans were assessed (20 real, 20 DiffTumor [9]-
generated, 20 TextoMorph-generated). Each synthetic case
reused the mask of a corresponding real tumor; TextoMorph
additionally conditioned on the paired radiology report to
better preserve anatomical placement and textural descriptors.
Additional comparisons were conducted with methods such as
SynTumor [4] and Pixel2Cancer [6].
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TABLE II
TUMOR VARIABILITY: RADIOMICS PATTERN ANALYSIS (§IV-C). MEAN

VARIANCE (MV) OF TEXTURE-RELATED RADIOMICS FEATURES FOR

SYNTHETIC TUMORS GENERATED BY BASELINE METHODS AND

TEXTOMORPH ACROSS LIVER, PANCREAS, AND KIDNEY. HIGHER MV
INDICATES GREATER TUMOR DIVERSITY.

mean variance (MV)

methods liver pancreas kidney

cGANs [84] 1.00 0.89 0.92
SynTumor [4] 1.03 0.92 0.89
Pixel2Cancer [6] 0.99 0.91 1.00
DiffTumor [9] 1.09 0.95 0.93
LeFusion [85] 1.10 0.92 1.01

TextoMorph 1.14 0.94 1.03

The readers provided case-level labels (real versus syn-
thetic). We report the discrimination rate in percent for the
Senior and Junior readers respectively; lower values indicate
higher realism. As summarized in Table I, TextoMorph shows
clear reductions versus DiffTumor across organs and sizes.
For large liver lesions, DiffTumor yielded 92.5% and 87.5%
discrimination rate, while TextoMorph reduced this to 77.5%
and 75.0%. For large pancreas tumors, DiffTumor scored
75.0% and 67.5%, whereas TextoMorph dropped to 55.0% and
47.5%. For large kidney tumors, TextoMorph similarly low-
ered the rates to 55.0% and 52.5%. Against all-size baselines,
TextoMorph is also lower than SynTumor in liver and lower
than Pixel2Cancer in both pancreas and kidney. Overall, the
Junior reader consistently exhibited lower discrimination rates,
yet the relative improvement of TextoMorph over baselines
remains robust across both readers.

C. Tumor Variability: Radiomics Pattern Analysis

To assess the diversity of generated tumor appearances, we
build upon previous studies [86]–[88] and conduct a radiomics
pattern analysis to evaluate synthetic tumors produced by
various methods [4], [6], [9], [85]. Specifically, we analyze
variance in texture radiomics features [89] to measure how
well each model captures tumor heterogeneity. We extract
radiomics features (intensity and texture) from 720 synthetic
tumors (120 per method; 40 per organ). For a fair comparison,
all methods use the same tumor masks and healthy CT scans
as spatial and background constraints.

We quantify tumor diversity by the mean variance (MV);
higher MV indicates greater heterogeneity. As shown in Ta-
ble II, we compare MV across liver, pancreas, and kidney
for TextoMorph and strong baselines. Relative to stronger
baselines, TextoMorph shows higher MV than DiffTumor on
liver (1.14 vs. 1.09) and kidney (1.03 vs. 0.95), and exceeds
LeFusion on liver (1.14 vs. 1.10) and kidney (1.03 vs. 1.01);
pancreas is comparable to DiffTumor (0.94 vs. 0.95) while
surpassing LeFusion (0.94 vs. 0.92).

D. Tumor Detection & Segmentation

Figure 5 and Table III compare TextoMorph with state-of-
the-art methods [4], [6], [9], [85] across multiple organs and
metrics. We then conduct targeted ablation studies to isolate

Fig. 5. Tumor Detection & Segmentation (§IV-D). We compare the
performance of TextoMorph with existing generative methods, measured
by sensitivity for detecting small (d<20 mm), medium (20≤d<50 mm),
and large (d≥50 mm) tumors, Dice Similarity Coefficient (DSC), and
Normalized Surface Distance (NSD).

the impact of each core component, and further evaluate the
model’s generalizability across diverse patient demographics.

Ablation on Tumor Report Preprocessing (§III-A). To eval-
uate the effect of Text Extraction and Augmentation, we com-
pare TextoMorph with and without text augmentation. In the
version without text augmentation, only discrete and complex
radiology reports are used for tumor generation. Experimental
results indicate that the version without text augmentation fails
to significantly improve the AI’s ability to segment and detect
tumors. Specifically, as shown in Table III, for large tumors
(d ≥ 50 mm), the detection rate remains at 75.4%, highlighting
its limited capability in handling challenging cases.

Ablation on Text-Driven Contrastive Learning (§III-B). To
study the impact of contrastive learning, we compare Tex-
toMorph with and without the contrastive loss function. In
this approach, the model maximizes similarity between tumors
generated from similar radiology reports while increasing
dissimilarity between those generated from distinct reports.
This encourages the model to better capture subtle variations in
tumor morphology, enhancing its ability to differentiate tumor
types and improve segmentation accuracy for complex tumors,
such as those with irregular borders or mixed densities. As
demonstrated in Table III, increases the detection rate for large
liver tumors by 3.5% and improves the NSD by 1.6%.

Ablation on Targeted Data Synthesis (§III-C). To address the
limitations of prior tumor detection methods, we introduce
Targeted Data Augmentation by leveraging False Negative
(FN) tumors as shown in Figure 3. These challenging examples
are magnified and paired with descriptive text generated by
GPT-4o based on tumor-specific terminology. This structured
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TABLE III
ABLATION STUDY ON THE THREE PROPOSED COMPONENTS (§IV-D): COMPARISON OF SENSITIVITY, DICE SIMILARITY COEFFICIENT (DSC), AND

NORMALIZED SURFACE DISTANCE (NSD) FOR LIVER, PANCREAS, AND KIDNEY TUMORS USING SYNTHETIC DATA FOR TRAINING WITH U-NET.

Method Proposed Component Sensitivity (%) wrt. Tumor Size (d, mm) DSC (%) NSD (%)

§III-A §III-B §III-C d < 20 20 ≤ d < 50 d ≥ 50

Liver Tumors

RealTumor - - - 64.5 (20/31) 69.7 (53/76) 66.7 (38/57) 59.1±30.4 60.1±30.0

SynTumor [4] - - - 71.0 (22/31) 69.7 (53/76) 73.7 (42/57) 62.3±12.7 87.7±21.4

Pixel2Cancer [6] - - - - - - 57.2±21.3 63.1±15.6

DiffTumor [9] - - - 77.4 (24/31) 75.0 (57/76) 73.7 (42/57) 64.2±33.3 66.1±32.8

LeFusion [85] - - - - - - 70.8±9.1 72.0±13.1

TextoMorph (ours)

✗ ✗ ✗ 74.2 (23/31) 72.4 (55/76) 75.4 (43/57) 65.5±25.0 61.3±28.6

✓ ✗ ✗ 77.4 (24/31) 75.0 (57/76) 77.2 (44/57) 68.4±30.4 69.2±31.0

✓ ✓ ✗ 80.6 (25/31) 77.6 (59/76) 80.7 (46/57) 69.7±27.2 70.8±26.0

✓ ✓ ✓ 83.9 (26/31) 77.6 (59/76) 87.7 (50/57) 71.6±27.2 72.4±30.3

Pancreatic Tumors

RealTumor - - - 58.3 (14/24) 67.7 (21/31) 57.1 (4/7) 53.3±28.7 40.1±28.8

SynTumor [4] - - - 62.5 (15/24) 64.5 (20/31) 57.1 (4/7) 54.0±31.4 47.2±23.0

Pixel2Cancer [6] - - - - - - 57.9±13.7 54.3±19.2

DiffTumor [9] - - - 66.7 (16/24) 67.7 (21/31) 57.1 (4/7) 58.9±42.8 52.8±26.2

LeFusion [85] - - - - - - 68.7±13.5 63.4±21.0

TextoMorph (ours)

✗ ✗ ✗ 66.7 (16/24) 64.5 (20/31) 57.1 (4/7) 55.8±32.6 51.1±35.6

✓ ✗ ✗ 70.8 (17/24) 61.3 (19/31) 57.1 (4/7) 59.7±36.1 60.6±38.3

✓ ✓ ✗ 66.7 (16/24) 67.7 (21/31) 57.1 (4/7) 60.2±27.3 71.0±31.5

✓ ✓ ✓ 87.5 (21/24) 87.1 (27/31) 85.7 (6/7) 67.3±24.8 65.5±27.1

Kidney Tumors

RealTumor - - - 71.4 (5/7) 66.7 (4/6) 69.0 (29/42) 78.0±14.9 65.8±17.7

SynTumor [4] - - - 71.4 (5/7) 66.7 (4/6) 69.0 (29/42) 78.1±23.0 66.0±21.2

Pixel2Cancer [6] - - - - - - 71.5±21.4 64.3±16.9

DiffTumor [9] - - - 71.4 (5/7) 83.3 (5/6) 69.0 (29/42) 78.9±19.7 69.2±18.5

LeFusion [85] - - - - - - 85.5±15.1 75.3±19.9

TextoMorph (ours)

✗ ✗ ✗ 57.1 (4/7) 83.3 (5/6) 69.0 (29/42) 79.2±22.3 71.4±21.4

✓ ✗ ✗ 71.4 (5/7) 83.3 (5/6) 76.2 (32/42) 80.6±21.8 76.8±19.3

✓ ✓ ✗ 71.4 (5/7) 83.3 (5/6) 73.8 (31/42) 79.7±20.2 75.2±21.5

✓ ✓ ✓ 71.4 (5/7) 83.3 (5/6) 76.2 (32/42) 85.2±9.7 78.4±13.9

input, including tumor masks and healthy CT scans, serves as
control conditions for tumor synthesis using a diffusion model.
Relative to the RealTumor baseline, DSC increases by 7.2%
and sensitivity by 7.2% for kidney large tumor.

E. Generalizable to Different Demographics

To evaluate the enhancement provided by TextoMorph
across demographics, we used a proprietary dataset [27], [29],
[89], [90] containing malignant pancreatic tumors (PDACs)
from patients of varying ages and genders (Figure 6).

Since TextoMorph is designed with an early-screening goal,
our synthesis prioritizes small (d < 20 mm) and malignant
lesions, enabling better recognition of subtle, low-contrast
tumors that conventional models often miss. Overall, Texto-
Morph improves tumor-wise Sensitivity from 61.9% to 70.1%
and DSC from 28.1% to 45.5% across all demographics. By
age, gains are most pronounced in the younger brackets e.g.,
(30–40] and (40–50] with Sensitivity rising by about 15%
and DSC by 27.4%, because our synthesis explicitly targets
small malignant lesions that are more prevalent and harder
to detect in these cohorts. For sex subgroups, Sensitivity
increases from 53.8% to 61.5% for males, and 39.2% to
59.5% for females, confirming that TextoMorph consistently
improves detection of subtle malignant lesions across both
groups without subgroup-specific tuning.

TABLE IV
TUMOR CLASSIFICATION PERFORMANCE (§IV-F). TUMOR-LEVEL

SENSITIVITY AND POSITIVE PREDICTIVE VALUE (PPV) FOR

MALIGNANT TUMORS (PDAC, PNET) AND BENIGN CYSTS ON A

PROPRIETARY TEST DATASET [29]. WE COMPARE REALTUMOR

(TRAINED ON REAL DATA ONLY) WITH TEXTOMORPH, WHICH

AUGMENTS REAL DATA USING CLASS-SPECIFIC SYNTHETIC TUMORS.

method
malignant tumor benign cyst

sensitivity PPV sensitivity PPV

RealTumor 61.9 (304/491) 46.1 (390/846) 50.7 (245/483) 27.4 (261/953)

TextoMorph 70.1 (344/491) 55.2 (359/650) 57.8 (279/483) 43.1 (286/663)

F. Benign & Malignant Tumor Classification

TextoMorph generates class-specific tumors to improve
tumor-level classification and model robustness. For pancreatic
tumors, we consider three classes: PDAC, PNET, and cysts.
For each class, we select 20 representative CT scans and derive
concise, class-consistent textual descriptions (e.g., ‘a cystic
lesion in the pancreas is present’). These descriptions, together
with the corresponding CT scans and tumor masks, are used
to fine-tune the text-driven 3D diffusion model for reliable
class-conditioned tumor synthesis.

Using the fine-tuned model, we generate 40 additional
synthetic tumors per class. The synthetic tumors are combined
with real tumor cases and healthy scans to form a balanced
training set for classification. The RealTumor baseline is
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Fig. 6. Generalizable Across Patient Demographics (§IV-E). Tex-
toMorph demonstrates consistent performance improvements in de-
tecting malignant tumors in the pancreas (e.g., PDAC) in both tumor-
wise Sensitivity (%) and segmentation DSC (%) across various patient
demographic groups.

Fig. 7. Tumor Sub-Type Synthesis. Visual comparison of real and
synthetic pancreatic tumors across three clinically important subtypes:
cyst, PDAC, and PNET. The left panel shows real images with char-
acteristic appearances (fluid-filled cysts, hypoattenuating PDAC, and
hypervascular PNET), while the right panel shows the correspond-
ing synthetic tumors, demonstrating accurate preservation of subtype-
specific texture, shape, and contrast.

trained on real data only, whereas TextoMorph is trained on the
same real data augmented with class-specific synthetic tumors.

As shown in Table IV, augmenting with TextoMorph yields
consistent gains. For malignant tumors, RealTumor achieves
46.1% PPV, whereas TextoMorph improves these to 55.2%
PPV (+9.1%). For benign cysts, RealTumor attains 50.7% sen-
sitivity, while TextoMorph increases them to 57.8% sensitivity
(+7.1%). These results indicate that class-aware synthetic tu-
mors generated by TextoMorph strengthen both detection and
discrimination of pancreatic tumor types. Additional tumor-
and patient-level comparisons are provided in Figure 7.

V. CONCLUSION

TextoMorph improves AI for cancer imaging by generating
realistic, diverse tumors with fine-grained control over key
characteristics in CT scans, such as texture, boundaries, size,
and pathology. By exploiting descriptive text from radiology
reports, TextoMorph addresses the limitations of existing syn-
thesis methods, enabling targeted data augmentation to create
tumors that AI models often miss due to the scarcity of training
CT scans with real tumors, leading to significant improvements
in tumor detection, segmentation, and classification. Further-
more, this text-driven synthesis reduces reliance on scarce
annotated medical datasets, offering a scalable and efficient

solution to augment medical imaging data and better address
critical clinical needs.
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