

ALMA MATER STUDIORUM Università di Bologna

Andrea Cavalli^{2,3,6}, Kang Wang⁴, Yang Yang⁴, Alan L. Yuille¹, and Zongwei Zhou¹, 1 Iohn Honkins University 2 University of Bologna

¹John Hopkins University ²University of Bologna ³Italian Institute of Technology ⁴University of California, San Francisco ⁵University of California, Berkeley ⁶École Polytechnique Fédérale de Lausanne

zzhou82@jh.edu; Code, Data, AI (QR Code): github.com/mrgiovanni/R-Super

Shortlisted for Best Paperand Young Scientist Awards

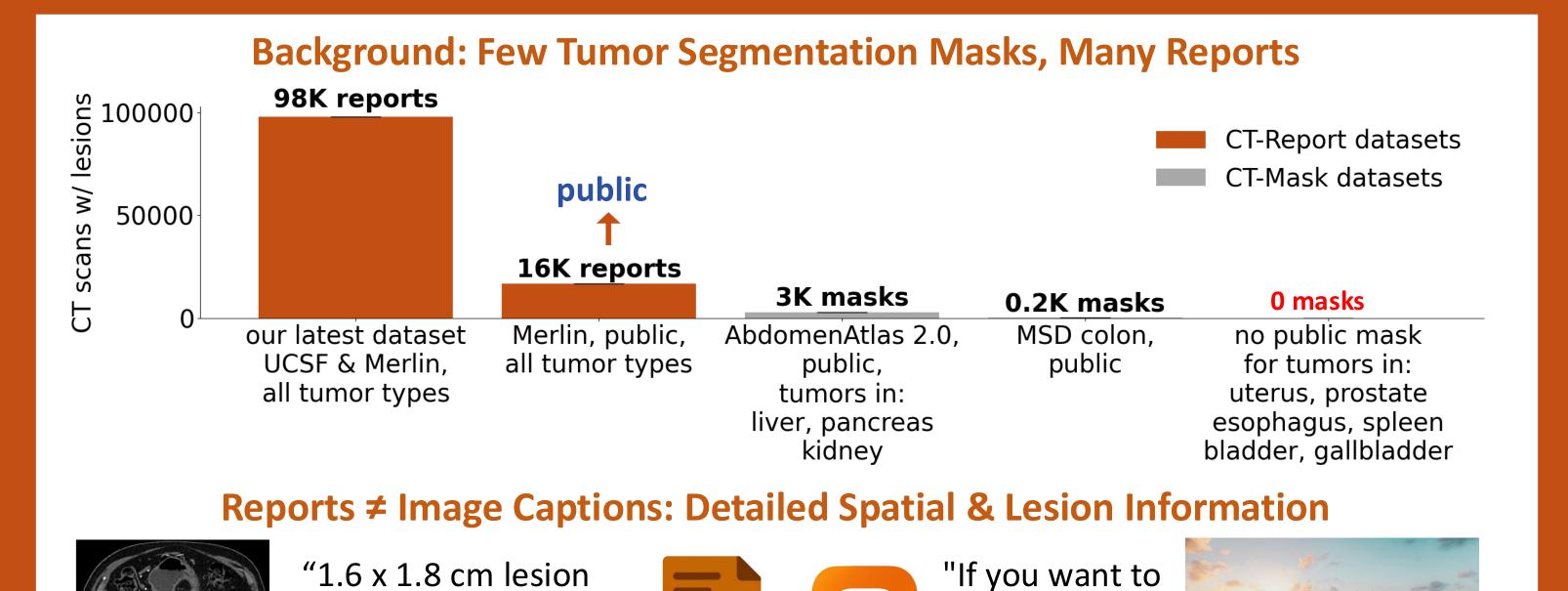
New Loss Functions Transform Radiology Reports into Per-Voxel Supervision for Tumor Segmentation

Background: Public datasets have few tumor *Image-Mask* pairs, often only tens to hundreds. By contrast, reports are written every day by radiologists—hospitals and new public datasets have more than 500K *Image-Report* pairs. Our goal is to enable AI to learn tumor segmentation directly from these reports.

Contribution: R-Super, a novel AI training method that enforce the consistency between AI segmented tumors and report descriptions such as tumor number, size, and location. It can train any AI architecture with Image-Report or Image-Report-Mask pairs, scaling existing Image-Mask datasets into much larger ones with enormous Image-Report pairs.

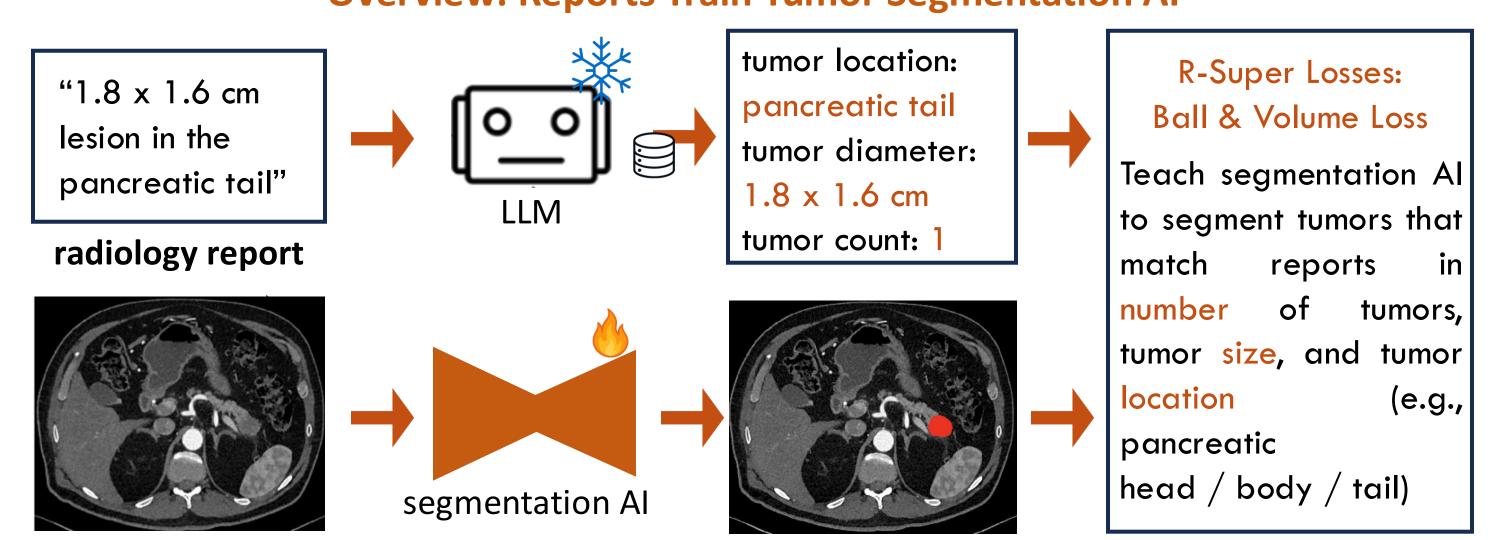
Results: Our Image-Report-Mask training improves +16%/+11% F1-Score/DSC compared with conventional Image-Mask training. The benefit of incorporating reports in training is significantly large both when the training dataset has as few as 50 Images-Mask pairs or as many as 1,700. See our GitHub (QR) for code, models, and a public-data demo.

Current & future work: We have curated a dataset of 117,000 Image—Report and 270 CT-Mask pairs for tumors in the adrenal, bladder, esophagus, gallbladder, prostate, spleen, and uterus. No publicly available Image—Mask pairs exist for these tumor types. With the help of R-Super, we release the first AI model that can segment these tumors.



Overview: Reports Train Tumor Segmentation Al

be happy, be."

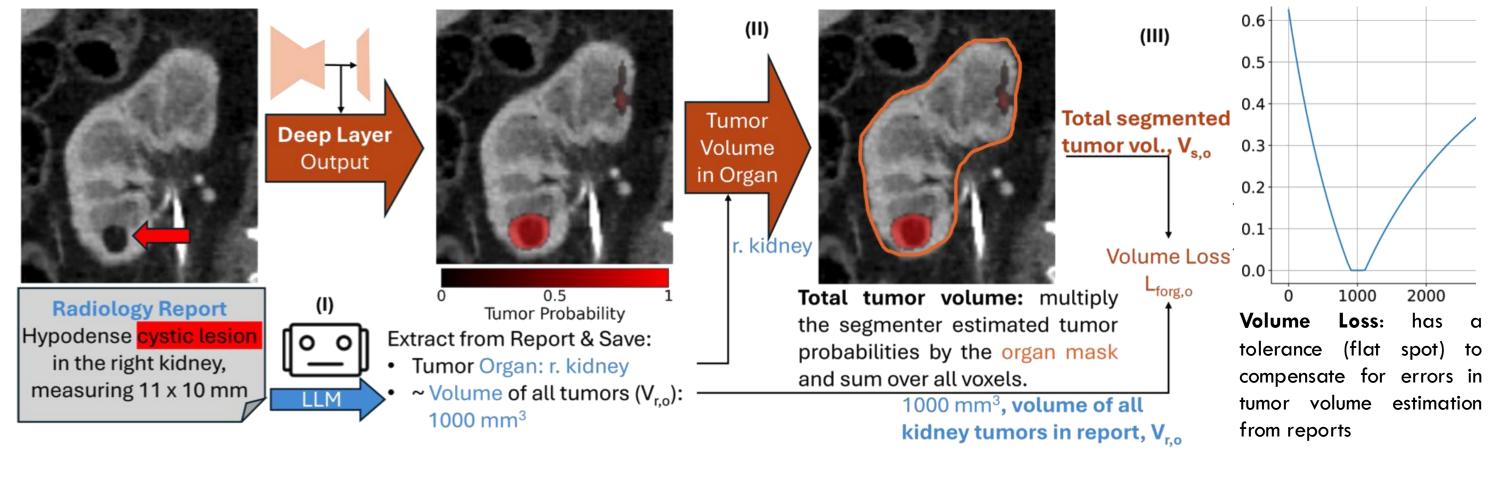


New Loss Functions — The Core of R-Super

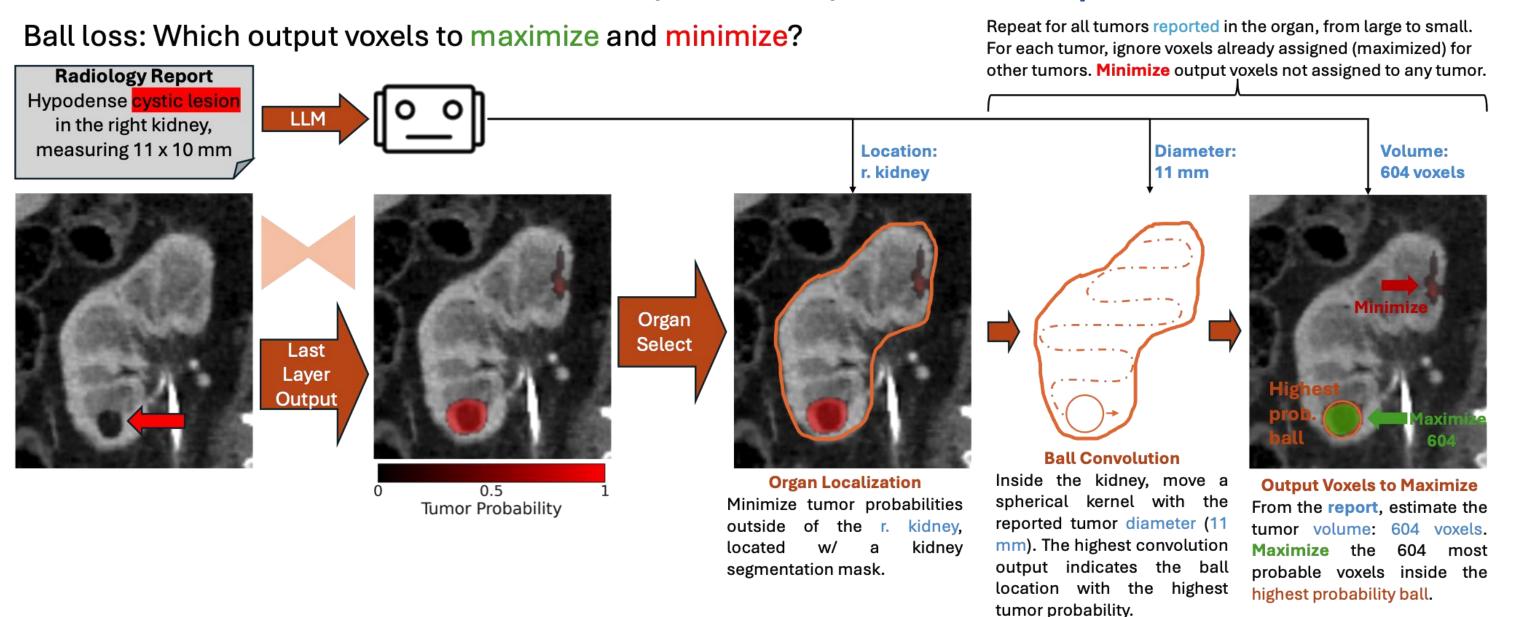
I. The Volume Loss Matches Tumor Volume/Location in Reports

in the pancreatic

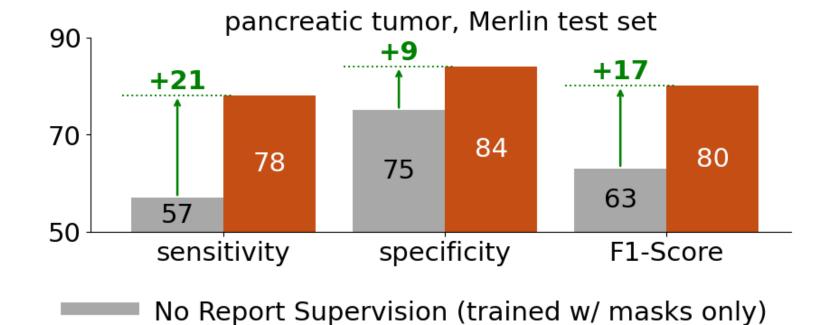
tail"



II. The Ball Loss Matches Tumor Number/Diameters/Locations in Reports



Results on Public Data: By Learning from Public Masks (*N*=344) & Reports (*N*=1.8K), R-Super Improves Pancreatic Tumor Detection

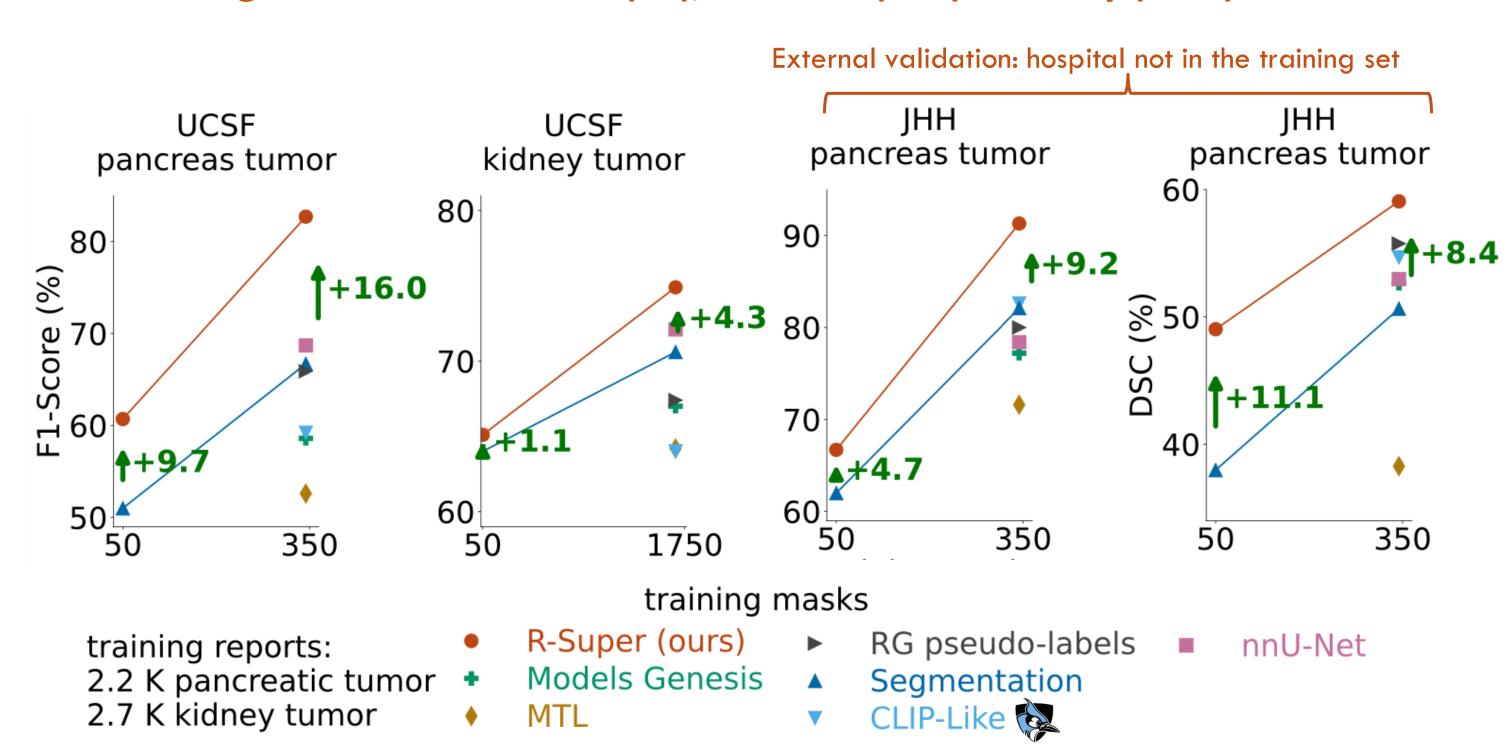


Report Supervision (trained w/ masks & reports)

Public Datasets:

- Merlin: 25K CT-Reports,
 16K with lesions, 2K pancreatic.
- AbdomenAtlas 2.0: 9K CT-Masks,
 3K with lesions, 344 pancreatic.
- PanTS: 9K CT-Masks,1K with pancreatic lesions.

Scale: Learning from Reports & Masks, R-Super Boosts Tumor Detection & Segmentation with Few (50), Medium (344) or Many (1.7K) Masks



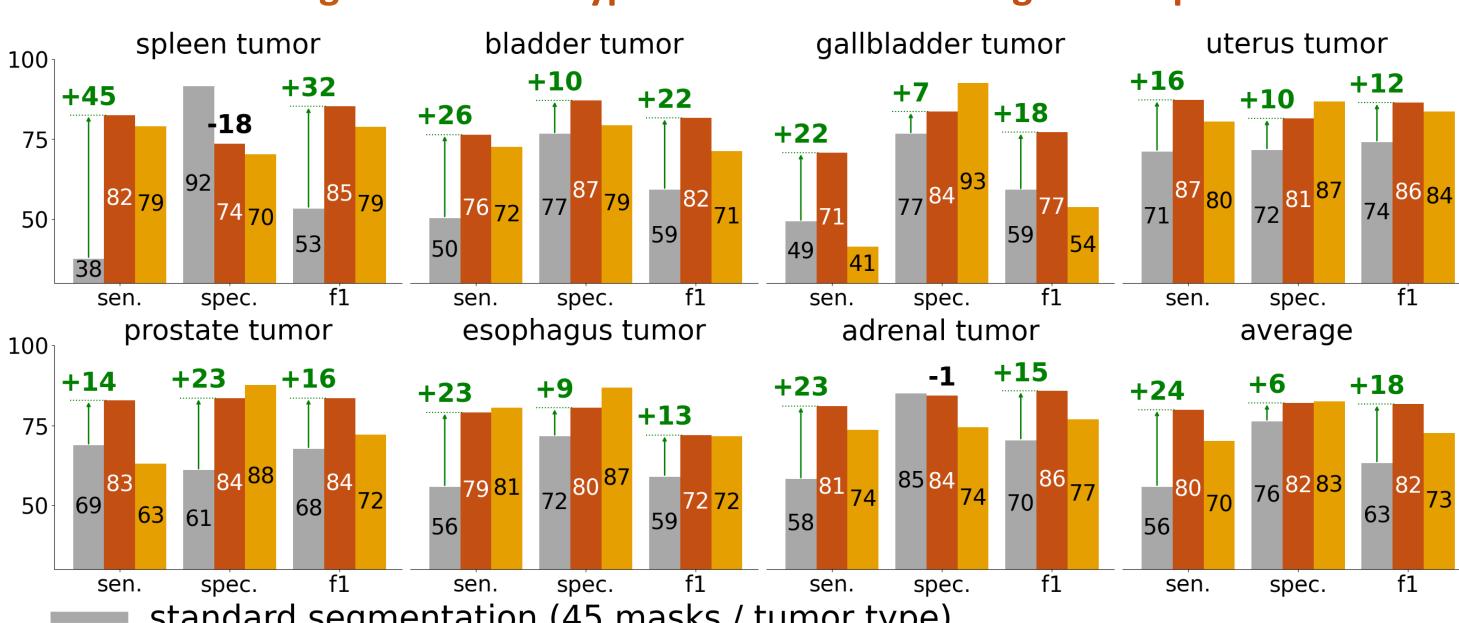
Early Detection: R-Super Improves the Detection of Small (<2 cm) Pancreatic Tumors by +26%/+15%/+8% in sensitivity/F1-Score/DSC — external validation

	pancreas tumor												kidney tumor						
		JHH-Test								JCSF-	${f t}$	UCSF-Test							
train paradigm	$\overline{\mathrm{mask}}$	rep.	dsc	nsd	F1	AUC	Se	$\overline{\mathrm{Sp}}$	F1	AUC	Se	$\overline{\mathrm{Sp}}$	mask	rep.	F1	AUC	Se	$\overline{\mathrm{Sp}}$	
CLIP-Like [5]	344	2.2K	11	19	68	90	100	71	50	74	54	75	1.7K	2.7K	40	65	57	48	
Multi-task l. [7]	344	2.2K	15	26	54	83	87	60	42	61	60	50	1.7K	2.7K	46	65	57	63	
RG Pseudo-l. [6]	344	2.2K	19	32	61	77	73	80	63	82	62	86	1.7K	2.7K	50	71	66	60	
Models G. [29]	344	0	10	20	62	85	80	76	48	70	60	63	1.7K	0	43	65	60	54	
nnU-Net [14]	344	0	7	17	55	74	60	82	60	78	70	74	1.7K	0	53	71	79	53	
segmentation [11]	344	0	17	36	65	83	67	88	59	77	58	85	1.7K	0	39	69	44	68	
R-Super (our)	344	2.2K	25	48	80	89	93	88	75	90	77	89	1.7K	2.7K	56	78	69	69	

Key Takeaways:

- R-Super improves performance both when few and many masks are available. Thus, it can use reports to further scale datasets with many Image-Mask pairs, or to allow the segmentation of tumor types with very few Image-Mask pairs.
- R-Super improves results for small tumors and for unseen hospitals.
- CLIP aligns the entire CT image with the report, but tumors occupy less than 0.0001% of the CT image, making alignment ineffective for segmentation.

Current Work: Training R-Super on 100,000 Image-Report-Mask pairs To Segment Tumor Types without Public Image-Mask pairs



- standard segmentation (45 masks / tumor type)
 - R-Super (45 masks & 700 to 13K reports / tumor type)R-Super No Mask (0 masks & 700 to 13K reports / tumor type)

Current & future work:

- Many Image-Report pairs train AI more effectively than few Image-Mask pairs.
- When Image-Mask pairs are limited or absent, Image-Report pairs provide a strong alternative, enabling segmentation of many tumor types.
- Our dataset of 117,000 Image—Report and 270 CT-Mask pairs yields an +18% F1-Score improvement for multi-tumor segmentation over Image-Mask training.
- We will release the **first** public AI model that can segment 7 tumor types.
- We will create Image-Mask pairs for these 7 tumor types in public Image-Report datasets (e.g., Merlin) to support broader research by the community.