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Abstract

Resnik and Yarowsky (1997) made a set of observations about the state of the art in au-

tomatic word sense disambiguation and, motivated by those observations, o�ered several

speci�c proposals regarding improved evaluation criteria, common training and testing

resources, and the de�nition of sense inventories. Subsequent discussion of those proposals

resulted in senseval, the �rst evaluation exercise for word sense disambiguation (Kilgarri�

and Palmer forthcoming). This article is a revised and extended version of our 1997 work-

shop paper, reviewing its observations and proposals and discussing them in light of the

senseval exercise. It also includes a new in-depth empirical study of translingually-based

sense inventories and distance measures, using statistics collected from native-speaker

annotations of 222 polysemous contexts across 12 languages. These data show that mono-

lingual sense distinctions at most levels of granularity can be e�ectively captured by trans-

lations into some set of second languages, especially as language family distance increases.

In addition, the probability that a given sense pair will tend to lexicalize di�erently across

languages is shown to correlate with semantic salience and sense granularity; sense hierar-

chies automatically generated from such distance matrices yield results remarkably similar

to those created by professional monolingual lexicographers.

1 Introduction

Word sense disambiguation (WSD) is perhaps the great open problem at the lexical

level of natural language processing. For English, at least, performance of state-of-

the-art systems on other lexical tasks such as part-of-speech (POS) tagging and

morphological analysis is respectable, if not perfect, and the dominant approaches
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(noisy channel models for tagging, two-level morphology) are by now well under-

stood. These developments enable applications that can rely on accurate output

from lexical analysis | for example, Davis (1996) improves performance in cross-

language information retrieval using a constrained word-translation technique that

relies on accurate part-of-speech analysis for query terms.

In contrast, although word sense ambiguity has been a central concern of natural

language processing since the inception of the �eld (Weaver 1949), algorithms for

word sense selection have not yet reached the level of a reliable enabling technology.

Until fairly recently, evaluation of WSD algorithms on a small set of \interesting"

cases was the norm, and few, if any, researchers had even attempted broad-coverage

disambiguation. Prospects have changed, however, with the improved availability

of common lexical resources (e.g. (Fellbaum 1998)), community-wide awareness of

algorithms for exploiting large text corpora (Church and Mercer 1993), and the

appearance of manually sense-tagged corpora (Landes et al. 1998; Ng and Lee 1996).

As a result of these developments, a SIGLEX Semantic Tagging Workshop was

held in April, 1997, where we suggested a protocol for community-wide comparative

analysis of word sense disambiguation techniques (Resnik and Yarowsky 1997). The

proposal sparked a lively debate, and subsequent discussions led to the �rst evalua-

tion exercise for word sense disambiguation, senseval (Kilgarri� and Palmer forth-

coming), and a related evaluation (romanseval) for Romance languages (V�eronis

1998). This paper briey reviews our observations and extends the presentation

of our proposals, including additional discussion in light of the senseval exercise.

We also include a new empirical study of our proposals regarding translingually

motivated sense inventories and semantic distance measures.

2 Observations

Traditional evaluation for WSD is not standardized. In other natural lan-

guage processing tasks such as POS tagging and parsing, evaluation has become

fairly standardized, with most reported studies using common training and testing

resources such as the Brown Corpus and Penn Treebank and fairly well accepted

evaluation metrics. In contrast, apart from a few studies using common test suites

(e.g. the 1993 Leacock et al. line data, shared by Lehman, 1994, Mooney, 1996 and

others) there have traditionally been nearly as many WSD test suites as there are

researchers in this �eld. As a consequence, it can be di�cult to assess the state of

the art.

The potential for WSD varies by task. As Stevenson and Wilks (1996)

emphasize, WSD is not an end in itself, but rather an intermediate, enabling task.

Among the most common language-related applications, speech recognition has seen

little use for word senses, since equivalence classes of contexts (e.g. Bahl et al. 1983;

Katz 1987) have a far better track record than smoothing based on classes of words

(e.g. Brown et al. 1992). In information retrieval, even perfect word sense informa-

tion may be of only limited utility (Krovetz and Croft 1992; Voorhees 1993), though

NLP techniques do appear to show more promise in cross-language information re-

trieval than in monolingual retrieval (Doug Oard, personal communication). The
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potential for using word senses in high quality machine translation seems greater;

for example, there is good reason to associate information about syntactic realiza-

tions of verb meanings with verb senses rather than verb tokens (Dorr and Jones

1996a, 1996b).

The �eld has narrowed down approaches, but only a little. In the area

of POS tagging, the noisy channel model dominates (e.g. (Bahl and Mercer 1976;

Jelinek 1985; Church 1988)), accompanied by transformational rule-based methods

(Brill 1993) and grammatico-statistical hybrids (e.g. Tapanainen and Voutilainen

1994). There seems to be consensus on what makes POS tagging successful:

� The inventory of tags is small and fairly standard.

� Context outside the current sentence has little inuence.

� The within-sentence dependencies are very local.

� Prior (decontextualized) probabilities dominate in many cases.

� The task can generally be accomplished successfully using only tag-level mod-

els without lexical sensitivities besides the priors.

� Standard annotated corpora of adequate size have long been available.

In contrast, approaches toWSD attempt to take advantage of many di�erent sources

of information (e.g. see McRoy 1992; Ng and Lee 1996; Bruce andWiebe 1994;Wilks

and Stevenson 1998); it seems possible to obtain bene�t from sources ranging from

local collocational clues (Yarowsky 1993) to membership in semantically or topically

related word classes (Yarowsky 1992; Resnik 1993) to consistency of word usages

within a discourse (Gale et al. 1992a); and disambiguation seems highly lexically

sensitive, in e�ect requiring specialized disambiguators for each polysemous word.

An up-to-date sampling of a wide range of methods can be found in the recent

special issue of Computational Linguistics on WSD (Ide and V�eronis 1998).

Adequately large sense-tagged data sets are di�cult to obtain. An-

notated data has facilitated recent advances in POS tagging, parsing, and other

language processing subproblems. Unfortunately, of the few sense-annotated cor-

pora currently available, virtually all are tagged collections of a single ambiguous

word such as line or tank. The WordNet semantic concordance, semcor (Miller

et al. 1994), is an important and useful exception, providing the �rst large-scale,

balanced data set for studying distributional properties of polysemy in English.

However, its utility in supervised WSD is limited by its token-by-token sequential

tagging methodology, yielding too few tagged instances of the large majority of

polysemous words (typically fewer than 10 each). In addition, sequential tagging

forces annotators to repeatedly refamiliarize themselves with the sense inventories

of each word, slowing annotation speed and lowering intra- and inter-annotator

agreement rates. The DSO corpus (Ng and Lee 1996), also having WordNet-based

sense tags, is another potential resource, but it must be viewed with caution: mea-

surements of agreement between DSO and semcor are su�ciently low compared

to semcor inter-annotator agreement that, as Kilgarri� (1998, p. 583) comments,

it is \impossible to regard [DSO] as a gold standard."

Another potential source of sense-tagged data comes from parallel aligned bilin-

gual corpora, where translation distinctions can provide a practical correlate to
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Table 1. Probability distributions assigned by four hypothetical systems

System

Sense 1 2 3 4

(1) monetary (e.g. on a loan) �47 �85 �28 1�00

(2) stake or share ( correct �42 �05 �24 �00

(3) bene�t/advantage/sake �06 �05 �24 �00

(4) intellectual curiosity �05 �05 �24 �00

sense distinctions (e.g. French droit and devoir correspond to English duty/tax

versus duty/obligation). The availability and diversity of such corpora are in-

creasing, o�ering the possibility of limitless \tagged" training data without manual

annotation, and the World Wide Web represents another high-potential source of

parallel text, with the added advantage that, unlike static corpora, text on the Web

tracks the continuous evolution of languages and their lexicons (Resnik 1998; Resnik

1999). Given the data requirements for supervised learning algorithms and the cur-

rent paucity of such data, we believe that unsupervised and minimally supervised

methods o�er the primary near-term hope for broad-coverage sense tagging.

1

3 Proposals

3.1 A better evaluation criterion

Prior to senseval, the standard for evaluation of word sense disambiguation algo-

rithms was the appealingly simple \exact match" criterion, or simple accuracy:

% correct = 100�

# exactly matched sense tags

# assigned sense tags

However, consider the context

... bought an interest in Lydak Corp. ...(1)

and assume the existence of 4 hypothetical systems that assign the probability

distributions in Table 1 to the 4 major senses of interest.

Each of the systems prefers the incorrect classi�cation (sense 1) over the correct

sense 2 (a stake or share). However, System 1 has been able to nearly rule out

senses 3 and 4 and assigns reasonably high probability to the correct sense, but

is given the same penalty as other systems that either have ruled out the correct

sense (systems 2 and 4) or e�ectively claim ignorance (system 3).

If we intend to use the output of the sense tagger as input to another probabilistic

1

In this context, we take \supervised learning" to mean algorithms requiring training on

correctly sense-tagged text using a known inventory of senses, and \unsupervised" to

refer to any method that does not require tagged training data; c.f. Sch�utze's (1998)

use of the term \sense discrimination."
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Table 2. Illustration of cross-entropy calculation

System

1 2 3 4

Pr

A

(cs

i

jw

i

; context

i

) �42 �05 �24 �00

�log

2

Pr

A

(cs

i

jw

i

; context

i

) 1�25 4�32 2�05 1

system, such as a speech recognizer, topic classi�er, or IR system, it is important

that it yield probabilities that are as accurate and robust as possible. If the tagger

is con�dent, it should assign high probability to its chosen classi�cation. If it is

less con�dent, but has e�ectively ruled out several options, the assigned probability

distribution should reect this, too.

Experience in the speech community suggests that cross-entropy (or its related

measures, perplexity and Kullback-Leibler divergence) can measure how well a

model assigns probabilities to its predictions. It is easily computed as

�

1

N

N

X

i=1

log

2

Pr

A

(cs

i

jw

i

; context

i

)

where N is the number of test instances and Pr

A

is the probability assigned by

the algorithm A to the correct sense, cs

i

of word w

i

in context

i

. Crucially, given

the hypothetical case above, System 1 would get much of the credit for assigning

high probability, even if not the highest, to the correct sense. Just as crucially,

an algorithm would be penalized heavily for assigning very low probability to the

correct sense,

2

as illustrated in Table 2. Optimal performance is achieved under

this measure by systems that assign accurate probabilities, neither too conservative

(System 3) nor too overcon�dent (Systems 2 and 4).

This evaluation measure need not replace exact match. However, a measure based

on cross-entropy or perplexity would add a fairer test, especially for the common

case where several �ne-grained senses may be correct and it is nearly impossible

to select exactly the sense chosen by the human annotator. A variant of the cross

entropy measure without the log term (

1

N

P

N

i=1

Pr

A

(cs

i

jw

i

; context

i

)) can be used

to measure improvement in restricting and/or roughly ordering the possible classi-

�cation set without excessive penalties for systems with poor or absent probability

estimates. In the latter case, when the assigned tag is given probability 1 and all

other senses probability 0, this variant is equivalent to exact match.

3

2

The extreme case of assigning 0 probability to the correct sense is given a penalty of 1

by the cross-entropy measure.

3

This variant of the cross entropy measure was suggested by Dan Melamed; expanded

in (Melamed and Resnik submitted).
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Table 3. Example sense inventory and distance/cost matrix for bank

I Bank - repository

I.1 Financial Bank

I.1a - the institution

I.1b - the building

I.2 General Supply/Reserve

II Bank - geographical

II.1 Shoreline

II.2 Ridge/Embankment

III Bank - array/group/row

I.1a I.1b I.2 II.1 II.2 III

I.1a 0 1 2 4 4 4

I.1b 1 0 2 4 4 4

I.2 2 2 0 4 4 4

II.1 4 4 4 0 1 4

II.2 4 4 4 1 0 4

III 4 4 4 4 4 0

3.2 Evaluation sensitive to semantic/communicative distance

CurrentWSD evaluation metrics also fail to take into account semantic/communicative

distance between senses when assigning penalties for incorrect labels. This is most

evident when word senses are nested or arranged hierarchically, as illustrated in Ta-

ble 3, left. An erroneous classi�cation between close siblings in the sense hierarchy

should be given relatively little penalty, while misclassi�cations across homographs

should receive a much greater penalty. A penalty matrix distance(subsense

1

; subsense

2

)

could capture taxonomic semantic distance, derived from a single semantic hierar-

chy such as WordNet, or be based on a weighted average of simple hierarchical

distances from multiple sources such as sense/subsense hierarchies in several dictio-

naries. A very simple example of such a distance matrix for the bank sense hierarchy

is given in Table 3, right.

Penalties could also be based on general pairwise functional communicative dis-

tance: errors between subtle sense di�erences would receive little penalty while

gross errors likely to result in misunderstanding would receive a large penalty. Such

distances could be based on psycholinguistic data or models, such as experimen-

tally derived estimates of similarity or confusability (e.g. (Miller and Charles 1991;

Resnik forthcoming)). They could be based on a given task; for example, in speech

synthesis penalizing only sense distinction errors corresponding to pronunciation

distinctions (e.g. bass-/b�s/ vs. bass-/beis/). For machine translation, only sense

di�erences lexicalized di�erently in the target language would be penalized, with the

penalty proportional to communicative distance. Distances based on the weighted

percentage of all languages that lexicalize two subsenses di�erently are proposed

in detail in Section 3.5. In general such a distance matrix could support arbitrary

communicative cost/penalty functions, dynamically changable according to task.

There are several ways in which such a (hierarchical) distance penalty weighting

could be utilized along with a cross-entropy measure. The simplest is to minimize

mean distance/cost between assigned sense (as

i

) and correct sense (cs

i

) over all N

examples as an independent �gure of merit:

1

N

N

X

i=1

distance(cs

i

; as

i

)

However, one could also use a metric such as the following, which measures e�cacy
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of probability assignment in a manner that penalizes probabilities assigned to in-

correct senses weighted by the communicative distance/cost between that incorrect

sense and the correct one:

1

N

N

X

i=1

S

i

X

j=1

distance(cs

i

; s

j

)� Pr

A

(s

j

jw

i

; context

i

)

where for any test example i, we consider all S

i

senses (s

j

) of word w

i

, weighting the

probability mass assigned by the classi�erA to incorrect senses (Pr

A

(s

j

jw

i

; context

i

))

by the communicative distance or cost of that misclassi�cation.

4

Melamed and Resnik (submitted) proposed a variation of these ideas for the sen-

seval exercise, which used the hector dictionary (Atkins 1993), organized in a

fashion similar to Table 3, as its sense inventory. One innovation of that proposal

was a scheme for the distribution of probability across levels of the sense hierarchy,

accommodating selection of higher-level nodes (e.g. homograph-level distinctions)

rather than bottom-level senses by human annotators and by disambiguation sys-

tems. Another innovation was an extension to handle test instances for which which

multiple \correct" sense tags are identi�ed, interpreting such multiple taggings dis-

junctively.

In senseval, scoring was done a number of di�erent ways, varying the assumed

level of granularity (bottom-level versus higher-level senses), the assumption of

unique tags underlying the probabilistic scoring proposal, and the treatment of

multiple correct tags. The Melamed-Resnik scoring was adopted as one of the set,

but other scores were computed according to di�erent assumptions | for example,

interpreting multiple correct tags conjunctively rather than disjunctively, thus pe-

nalizing systems whenever they failed to include all the human-assigned sense tags

for a test instance. Computing the \score of reference" for systems in senseval,

instances assigned multiple tags by the human annotators were excluded from the

test set, reducing it by about 15%. In retrospect, there appears to have been some

confusion as to whether multiple human-assigned sense tags were intended to have

been interpreted conjunctively or disjunctively; presumably this will be resolved by

clearer speci�cations in future evaluations.

In practice, it appears that most of the senseval systems provided categorical

responses (whether a single tag or multiple tags) rather than a probability distri-

bution, and senseval scoring more closely resembles the traditional exact match

criterion than it does some variant of cross-entropy.

3.3 A framework for common evaluation and test set generation

Supervised and unsupervised sense disambiguation methods have di�erent needs re-

garding system development and evaluation. Although unsupervised methods may

4

Although this function enumerates over all S

i

senses of w

i

, because distance(cs

i

; cs

i

) = 0

this function only penalizes probability mass assigned to incorrect senses for the given

example. Note that in the special case of sense tagging without probability estimates (all

are either 0 or 1), this formula is equivalent to the previous one (simple mean distance

or cost minimization).
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1. Collect a very large (e.g., N = 1 billion words), diverse unannotated corpus.

2. Select a sense inventory (e.g. WordNet, LDOCE) with respect to which algorithms

will be evaluated (see Section 3.4).

3. Pick a subset of R < N (e.g., 100 million) words of unannotated text, and release

it to the community as a training set.

4. Pick a smaller subset of S < R < N (e.g., 10 million) words of text as the source

of the test set. Generate the test set as follows:

(a) Select a set of M (e.g., 100) ambiguous words that will be used as the basis for

the evaluation, without revealing what those words will be.

(b) For each of the M words, annotate all available instances of that word in the

test corpus. Make sure each annotator tags all instances of a single word, e.g.

using a concordance tool, as opposed to going through the corpus sequentially.

(c) For each of the M words, compute evaluation statistics using individual anno-

tators against other annotators.

(d) For each of the M words, go through the cases where annotators disagreed and

make a consensus choice, by vote if necessary.

5. Instruct participants in the evaluation to \freeze" their code; that is, from this point

onwards, no changes may be made.

6. Have each participating algorithm do WSD on the full S-word test corpus.

7. Evaluate the performance of each algorithm considering only instances of the M

words that were annotated as the basis for the evaluation. Compare exact match,

cross-entropy, and inter-judge reliability measures (e.g. Cohen's �) using inter-

annotator results as an upper bound.

8. Release this year's S-word test corpus as a development corpus for those algorithms

that require supervised training, so they can participate from now on, being evalu-

ated in the future via cross-validation.

9. For next year's evaluation, go back to Step 3..

Fig. 1. Protocol for common evaluation and test set generation

be evaluated (with some limitations) by a sequentially tagged corpus such as sem-

cor (with a large number of polysemous words represented but with few examples

of each), supervised methods require much larger data sets to provide adequate

training and testing material. The protocol in Figure 1 satis�es the needs of both

supervised and unsupervised tagging research; it served with some modi�cation as

the basis for the senseval exercise.

There are a number of advantages to this paradigm, in comparison with simply

trying to annotate large corpora with word sense information.

First, it combines an emphasis on broad coverage with the advantages of evaluat-

ing on a limited set of words, as is done traditionally in the WSD literature. Step 4.a

can involve any desired criteria (frequency, level of ambiguity, part of speech, etc.)

to narrow down to a set of candidate words, and then employ random selection

among those candidates. At the same time, it avoids a common criticism of studies

based on evaluation using small sets of words, namely that there is not enough

attention given to scalability. In this evaluation paradigm, all algorithms must be

able to sense tag all words in the corpus meeting speci�ed criteria, because there

is no way to know in advance which words will be used to compute the �gure(s) of

merit.

Second, the process avoids some problems that arise in using exhaustively anno-

tated corpora for evaluation. By focusing on a relatively small set of polysemous

words, much larger data sets for each word can be produced. This focus will also

allow more attention to be paid to selecting and vetting comprehensive and robust
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sense inventories, including detailed speci�cations and de�nitions for each. Fur-

thermore, by having annotators focus on one word at at time using concordance

software, the initial level of consistency is likely to be far higher than that obtained

by a process in which one jumps from word to word to word by going sequentially

through a text, repeatedly refamiliarizing oneself with di�erent sense inventories

at each word. Finally, by computing inter-annotator statistics blindly and then al-

lowing annotators to confer on disagreements, a cleaner test set can be obtained

without sacri�cing trustworthy upper bounds on performance.

Third, the experience of the Penn Treebank and other annotation e�orts has

demonstrated that it is di�cult to select and freeze a comprehensive tag set for the

entire vocabulary in advance. Studying and writing detailed sense tagging guide-

lines for each word is comparable to the e�ort required to create a new dictionary.

By focusing on only 100 or so polysemous words per evaluation, the annotating

organization can a�ord to do a multi-pass study of and detailed tagging guidelines

for the sense inventory present in the data for each target word. This would be

prohibitively expensive to do for a full vocabulary. Also, by utilizing di�erent sets

of words in each evaluation, such factors as the level of detail and the sources of

the sense inventories may change without worrying about maintaining consistency

with previous data.

Fourth, both unsupervised and supervised WSD algorithms are better accommo-

dated in terms of the data available. Unsupervised algorithms can be given very

large quantities of training data: since they require no annotation the value of R can

be quite large. And although supervised algorithms are typically plagued by sparse

data, this approach will yield much larger training and testing sets per word.

The senseval exercise adopted some though not all aspects of this protocol. The

diverse, balanced corpus (Step 1) was a 17M word pilot for the British National

Corpus, which has since reached a size of over 100M words. The selected sense inven-

tory (Step 2) was the hector database, constructed by selecting a sample of words

and sense-tagging all instances of them in the corpus | thus, as suggested above,

the sense-tagging process provided feedback for re�nement of the sense inventory

itself.

Because the evaluation exercise included both supervised and unsupervised sys-

tems, the initial distribution of training materials included tagged rather than un-

tagged data (contrary to Step 3) for a set of 29 target words; otherwise, however,

the creation of the test set proceeded largely as speci�ed in Step 4, for a set of 34

target words and a test set of 8448 instances, and systems were frozen in advance

of the release of test data, as speci�ed in Step 5.

The greatest departure of the senseval exercise from the protocol described

above was the requirement that systems perform WSD on all words in a test corpus

(Steps 6 and 7), with their developers remaining ignorant of which words were to

be used for scoring. Instead, participating systems were grouped into categories,

making it possible to do within-group comparisons of systems that disambiguated

only the words in the test set, and a separate within-group comparison for those that

disambiguated all content words appearing in the test collection. Comparison across

groups indicates, not surprisingly, that the highest performance was obtained by
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systems using supervised training to learn classi�ers speci�cally tuned to the words

in the test set.

3.4 A multilingual sense inventory for evaluation

One of the most vexed issues in applied lexical semantics is how to de�ne word

senses. Although we certainly do not propose a de�nitive answer to that question,

we suggest here a general purpose criterion that can be applied to existing sources

of word senses in a way that, we suggest, makes sense both for target applications

and for evaluation, and is compatible with the major sources of available training

and test data.

The essence of the proposal is to restrict a word sense inventory to distinctions

that are typically lexicalized cross-linguistically. This cuts a middle ground between

restricting oneself to homographs within a single language, which tends toward

a very coarse-grained distinction, and an attempt to express all the �ne-grained

distinctions made in a language, as found in monolingual dictionaries. In practice

the idea would be to de�ne a set of target languages (and associated bilingual

dictionaries), and then to require that any sense distinction be realized lexically in

a minimum subset of those languages. This would eliminate many distinctions that

are arguably better treated as regular polysemy. For example, table can be used to

refer to both a physical object and a group of people:

(1) a. The waiter put the food on the table.

b. Then he told another table their food was almost ready.

c. He �nally brought appetizers to the table an hour later.

In German, for example, the two meanings can actually be lexicalized di�erently

(Tisch vs. Tischrunde). However, as such sense distinctions are typically conated

into a single word in most languages, and because even German can use Tisch in

both cases, one could plausibly argue for a common sense inventory for evaluation

that conates these meanings.

A useful reference source for both training and evaluation would be a table link-

ing sense numbers in established lexical resources (such as WordNet or LDOCE)

with these crosslinguistic translation distinctions, such as Table 4. A comparable

mapping could readily be extracted semi-automatically from bilingual dictionaries

or EuroWordNet (Bloksma et al. 1996). We note that the table follows many lex-

ical resources, such as the original WordNet, in being organized at the top level

according to parts of speech. This seems to us a sensible approach to take for

sense inventories, since POS tagging accomplishes much of the work of semantic

disambiguation, at least at the level of homographs (Stevenson and Wilks 1996).

Although cross-linguistic divergence is a signi�cant problem, and 1-1 translation

maps do not exist for all sense-language pairs, this table suggests how multiple

parallel bilingual corpora can be used to yield sets of training data covering di�erent

subsets of the English sense inventory, that in aggregate may yield tagged data for

all given sense distinctions when any one language alone may not be adequate.

For example, a German-English parallel corpus could yield tagged data for senses
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Table 4. Mapping between cross-linguistic sense labels and established lexicons

Target WordNet English

Word Sense # description Spanish French German Italian Japanese

interest 1 monetary inter�es, int�erêt Zinsen interesse rishi,

(noun) (e.g. on loan) r�edito risoku

2 stake/share inter�es, int�erêt Anteil interesse riken

participaci�on participation

3,4 intellectual inter�es, int�erêt Interesse interesse kanshin,

curiosity ky�omi

5 bene�t, provecho, inte- int�erêt Interesse interesse rieki

advantage r�es, bene�cio

drug 1a medicine medicamento, medicament Medikament, medicina kusuri

(noun) droga Arzheimittel

1b narcotic narc�otica drogue Drogue, droga mayaku

droga Rauschgift

bank 1 shoreline ribera, orilla banc, rive Ufer sponda,riva kishi

(noun) 2 embankment loma, cuesta talus, terasse Erdwall muccio teib�o

3 �nancial inst. banco banque Bank banca gink�o

4 supply/reserve banco banque Bank banca gink�o

5 bank building banco banque Bank banca gink�o

6 array/row hilera, bater��a rang, batterie Reihe batteria retsu

�re 1 dismiss despedir, renvoyer feuern licenziare kubi ni

(t. verb) from job echar shimasu

2 arouse, provoke excitar, enammer, be�ugeln accendere k�ofun

enardecer animer entz�unden in�ammare saseru

4 discharge weapn disparar lâcher abfeuern sparare happ�o s.

5 bake pottery cocer cuire brennen cuocere yaku

1 and 2 for interest, and the presence of certain Spanish words (provecho, bene�-

cio) aligned with interest in a Spanish-English corpus will tag some instances of

sense 5, with a Japanese-English aligned corpus potentially providing data for the

remaining sense distinctions. In some cases it will not be possible to �nd any lan-

guage (with adequate on-line parallel corpora) that lexicalizes some subtle English

sense distinction di�erently, but this may be evidence that the distinction is regular

or subtle enough to be excluded or handled by other means. Section 3.5 provides

empirically-observed examples of such cases.

Table 4 is not intended for direct use in machine translation. Also note that

when two word senses are in a cell they are not necessarily synonyms. In some

cases they realize di�erences in meaning or contextual usage that are salient to the

target language. However, at the level of sense distinction given in the table, they

correspond to the same word senses in English and the presence of either in an

aligned bilingual corpus will indicate the same English word sense.

Monolingual sense tagging of another language such as Spanish would yield a

similar map, such as distinguishing the senses of the Spanish word dedo, which can

mean �nger or toe. Either English or German could be used to distinguish these

senses, but not Italian or French, which share the same sense ambiguity.

It would also be helpful for Table 4 to include alignments between multiple mono-
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lingual sense representations, such as COBUILD sense numbers, LDOCE tags, or

WordNet synsets, to support the sharing and leveraging of results between multiple

systems. This highlights an existing problem, of course: di�erent sense inventories

lead to di�erent algorithmic biases. For example, WordNet as a sense inventory

would tend to bias an evaluation in favor of algorithms that take advantage of

taxonomic structure; LDOCE might bias in favor of algorithms that can take ad-

vantage of topical/subject codes, and so forth. Unfortunately we have no solution

to propose for the problem of which representation (if any) should be the ultimate

standard; we anticipate that discussion of the use of hector in senseval will shed

some light on this issue.

5

3.5 A translingual empirical study of sense inventories and measures

This section presents an empirical investigation of the proposals outlined in Sec-

tions 3.2 and 3.4. Speci�cally, it will de�ne a translingually motivated distance

measure for word senses, and show how this can be used to generate an empirically

motivated sense inventory and cost matrix. This measure will also be used to eval-

uate the hector sense inventory used in the senseval framework. To this end, 21

native speakers of 12 diverse languages annotated 222 words in context, randomly

selected from the senseval round-2 training set.

6

Each of the examples had an

associated hector sense tag, but these were hidden from the annotators. For 180

of the sentences, annotators were asked to select a single preferred translation of

the English senseval word in context in their native language, and give the unin-

ected root form of that word.

7

An example of this tagging environment is given

in Table 5, with the annotator's response in the boxes on the left.

Table 5. Example of the free annotation task for a Japanese annotator

Japanese hector Sense

Translation Word In Context (hidden)

bando West Country folk jazz band Red Jasper will be I.1

haba cope with quite a narrow band of frequencies . II.2.1

suji of obsidian , except for a band of turquoise around II.2.3

ichidan �end who with his rag-tag band of followers, obtains I.2

ittai under-populated. In a wide band of west Africa , II.1.3

ichidan are preparing to repel a band of gypsies who have I.2

5

The SIGLEX'99 workshop on \Standardizing Lexical Resources" (University of Mary-

land, June 1999) focuses on standardization of lexical resources and performance-

preserving mappings between existing resources.

6

Basque, Japanese, Korean, Chinese, Turkish, Hungarian, Romanian, Greek, Hindi, Ara-

bic, Spanish, and Swedish native speakers, all at a high level of English pro�ciency.

7

Nancy Ide proposed a similar cross-lingual annotation and clustering e�ort using native

speakers in her Herstmonceux senseval presentation (Ide forthcoming).
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Table 6. Example of the pairwise annotation task for a Turkish annotator

Turkish hector Sense

Translation Word In Context (hidden)

topluluk marvelous jazz and blues band . I.1

bant hand he bent the exible band around the bird's leg II.2.1

bant hand he bent the exible band around the bird's leg II.2.1

serit of obsidian , except for a band of turquoise around II.2.3

The remaining 52 examples consisted of paired senseval sentences exhibiting

two di�erent senses of a single word. The granularity of the sense di�erence varied

from di�erent top-level (homograph) sense numbers to di�erent subsenses of the

same major sense, as illustrated in Table 6. Additional details are given in Section

3.5.2.

Annotators were asked speci�cally on the pairwise test to identify if there was any

word pair in their language that distinguished the two meanings, i.e. a translation

for word 1 that could not be used for word 2, and a translation for word 2 that could

not be used for word 1. Thus these pairwise annotations attempted to elicit directly

whether a lexical distinction existed in the tagger's native language su�cient to

separate the two meanings (and hence would be usable as cross-lingual sense labels

for this particular sense distinction).

3.5.1 A cross-linguistic measure of sense di�erence

One measure of the signi�cance of a particular sense di�erence sense

i

/sense

j

in a

given inventory is the probability that these two senses will be lexicalized di�erently

in some language L, or more formally, P

L

(di�erent-lexicalizationjsense

i

; sense

j

).

One can estimate this probability directly from the pairwise data shown in Table

6 by presenting several sense

i

/sense

j

pairs and measuring the percentage that are

lexicalized di�erently in language L. Although this directly addresses the question,

data collection costs limit pairwise enumeration to a relatively small subset of the

possible sense pairs. Thus this measure is primarily useful for computing aggregate

values such as the average probability for a given granularity of sense ambiguity.

The second method of estimating P

L

(di�erent-lexicalizationjsense

i

; sense

j

) is

based on the other part of the data set, where annotators simply gave their preferred

translation for a randomly ordered set of examples covering several instances of all

the target hector word senses. The probability of di�erent lexicalization can be

averaged over all possible pairings of sense

i

/sense

j

examples, as follows:

P

L

(di�erent-lexicalizationjsense

i

; sense

j

) =

1

jsense

i

jjsense

j

j

X

x2fsense

i

examplesg;

y2fsense

j

examplesg

translation[x; L] == translation[y; L]:



14 P. Resnik and D. Yarowsky

Essentially this computes the likelihood of an arbitrary pairing of examples of sense

i

and sense

j

in the data being labelled with the same translation in language L. It

is a weaker estimate of the probability that language L lexicalizes the distinction

between sense

i

and sense

j

in that annotators were not told to use distinguishing

words if they exist, nor would this be possible as they were not considering speci�c

pairings. They may have choosen to use the same word for two subtly di�erent

meanings even though another word pair may exist that can capture the meaning

di�erence. Nevertheless, this measure does capture the tendency for the preferred

word choice in language L to lexicalize a given English/hector sense distinction.

This measure can also be computed over all pairs sense

i

/sense

j

, not merely the

selected subset given in the experiment. For these two reasons the measure is of

practical merit.

3.5.2 Sensitivity of cross-lingual lexicalization di�erences to sense granularity

Before considering speci�c polysemous words, we examine the general e�ect of

sense granularity on the tendency of word senses to be lexicalized di�erently across

languages.

The paired sense data can be classi�ed as one of four levels of similarity: the

Roman-numeraled homograph level (band-I (group) vs. band-II (ring)), the major

sense level (band-I.1 (music group) vs band-I.2 (other group)), the subsense level

(which we arbitrarily use to refer to the distance between a general sense number

such as I.1 and its specialization (I.1.2)), and �nally the subsubsense level (such as

between I.1.1 and I.1.2).

8

Computing averageP

L

(di�erent-lexicalizationjsense

i

; sense

j

)

broken down by granularity yields the following table:

Table 7. Sense lexicalization probabilities based on the pairwise sense annotations

Average P

L

(di�erent-lexicalizationjsense

i

; sense

j

)

All Indo-European Non-IndoEuoropean

Level of Granularity Languages Languages Languages

Homograph Level .95 .94 .96

Major sense level .78 .64 .85

Subsense level .72 .59 .82

Subsubsense level .52 .39 .62

Avg. of all levels .74 .64 .81

Note that for homographs, 95% of all observed pairings were given di�erent

translations.

9

In contrast, at the �ner subsubsense level only 52% of the given

8

The full sense inventories and examples utilized for these data are available at

http://www.cs.jhu.edu/�yarowsky/nle/inventories.html.

9

Indeed the sole case where a homograph-level distinction was translated the same in

a non-Indo-European language was for a single annotator in Japanese, who gave the

musical band and bird-leg-band senses of band the same translation, bando, which is

actually a case of polysemy inherited from English through two independent borrowings.
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pairs were translated di�erently. This suggests that homograph-level distinctions

are broadly salient and tend to be treated consistently as separate words across

languages, while subsubsense distinctions appear to be less salient in that separate

lexicalizations for these similar concepts have not evolved in the majority of the

studied languages.

There also appear to be interesting di�erences in granularity e�ects between

Indo-European and non-Indo-European languages. Both tend to strongly lexical-

ize homograph-level distinctions at nearly equal probability, but for the �ner sense

distinctions, many of the Indo-European languages tend to exhibit parallel ambi-

guities to English and di�erently lexicalize the more subtle meaning distinctions at

a lower probability than more distantly related languages. This suggests the im-

portant practical implication that if parallel bilingual corpora are to be used for

assigning monolingual sense tags, languages more distantly related to English will

tend to be more e�ective at di�erently labelling the �ner sense ambiguities.

3.5.3 Correlation between pair-based annotation and free annotation

As we have observed, pair-based annotation produces a more direct measure of the

ability of languages to di�erently lexicalize speci�c sense distinctions, while free

annotation of unpaired examples achieves broader coverage at the risk of giving the

same translation for a pair of examples where a pair of adequately distinguishing

words may well exist in the target language. However, for all but the �nest sub-

subsense level, these two di�erent measuring strategies tend to yield results that

are closely correlated. Table 8 is the analog to Table 7 above, but based on free

translation rather than pairwise annotation. The correlation coe�cient between the

all-languages columns in the two tables exceeds r = :99. This suggests that the free

annotations of translations on average tend to capture the same general distin-

guishing capacity for word senses as an explicit pairwise analysis of speci�c sense

di�erences. This indicates that at least at the coarser levels of sense granularity,

the statistics utilized in this approach may be collected adequately from bilingual

corpora produced by human translation.

Table 8. Sense lexicalization probabilities based on the free translation annotations

Average P

L

(di�erent-lexicalizationjsense

i

; sense

j

)

All Indo-European Non-IndoEuoropean

Level of Granularity Languages Languages Languages

Homograph Level .95 .94 .96

Major sense level .74 .69 .80

Subsense level .68 .58 .78

Subsubsense level .44 .38 .50

Avg. of all levels .70 .65 .76
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3.5.4 Correlation between language distance and tendency to lexicalize di�erently

Table 9 lists the mean probability that a given language di�erently lexicalizes an

English sense distinction in the hector inventory, averaged over the 4 di�erent

levels of sense granularity. There appears to be a strong association between lan-

guage distance from English and this mean probability value, further re�ning the

di�erences in distinguishing strength observed between Indo-European (IE) and

non-Indo-European (NI) languages.

Table 9. Mean probablility that a language L will di�erently lexicalize an English

sense ambiguity, correlated with language family distance

Language Avg. P

L

# Taggers Language Avg. P

L

# Taggers

NI - Basque 0.885 1 IE - Romanian 0.667 3

NI - Japanese 0.856 4 IE - Greek 0.635 2

NI - Korean 0.846 1 IE - Hindi 0.558 2

NI - Chinese 0.808 3 NI - Arabic 0.538 1

NI - Turkish 0.692 1 IE - Spanish 0.500 1

NI - Hungarian 0.692 1 IE - Swedish 0.461 1

One implication of these results for machine translation is that for relatively sim-

ilar languages, such as Spanish-English, the importance of word sense disambigua-

tion is apparently lower, given that approximately 50% of the sense distinctions

noted by lexicographers need not be resolved due to parallel polysemy in the target

language, while for more distant languages from English such as Japanese, 86% of

the monolingual sense distinctions also corresponded to translation distinctions and

hence need resolving for MT. Nevertheless, both values are arguably high enough to

warrant some form of word sense disambiguation for lexical choice in MT systems.

3.5.5 A cross-lingually motivated de�nition for cost matrices

Section 3.2 discusses the advantages of evaluating sense taggers via a matrix of

semantic distance and/or the communicative cost of confusing two senses. A very

natural measure of this semantic distance is the mean probability that the two

senses will be lexicalized di�erently in a second language, which we have already

argued is an indication of the salience of a sense distinction and clearly correlates

directly with error rate in lexical choice.

10

We can de�ne a single-language-speci�c cost function as:

Cost(sense

i

; sense

j

; L) = P

L

(di�erent-lexicalizationjsense

i

; sense

j

)

or a multi-lingual cost function:

Cost(sense

i

; sense

j

) =

1

jLanguagesj

X

L2Languages

P

L

(di�-lexicalizationjsense

i

; sense

j

)

10

Senses lexicalized di�erently in a target language tend to yield translation errors when

confused.
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Table 10. Translingually generated distance matrices for band and bitter

I/1 I/2 II/1 II/1.2 II/1.3 II/2 II/2.1

band/I/1 (music) 0 0.857 0.885 0.943 0.979 0.962 0.943

band/I/2 (group) 0.857 0 0.995 0.969 1.000 0.865 0.961

band/II/1 (strip) 0.885 0.995 0 0.740 0.729 0.847 0.844

band/II/1.2 (stripe) 0.943 0.969 0.740 0 0.698 0.833 0.750

band/II/1.3 (portion) 0.979 1.000 0.729 0.698 0 0.778 0.729

band/II/2 (range) 0.962 0.865 0.847 0.833 0.778 0 0.771

band/II/2.1 (radio) 0.943 0.961 0.844 0.750 0.729 0.771 0

 band/II/2.1 - radio

 band/II/2 - range 

 band/II/1.3 - portion

 band/II/1.2 - stripe 

 band/II/1 - strip 

 band/I/2 - group

 band/I/1 - music

 bitter//6 - beer

 bitter//1 - taste

 bitter//4 - end

 bitter//2 - feelings

 bitter//3 - argument

 bitter//5 - weather

1 2 3 4 5 6

bitter//1 (taste) 0 0.576 0.875 0.549 0.896 0.250

bitter//2 (feelings) 0.576 0 0.788 0.514 0.882 0.583

bitter//3 (argument) 0.875 0.787 0 0.725 0.879 0.875

bitter//4 (end) 0.549 0.514 0.725 0 0.875 0.583

bitter//5 (weather) 0.896 0.882 0.879 0.875 0 0.896

bitter//6 (beer) 0.250 0.583 0.875 0.583 0.896 0

This estimates the pairwise cost of confusing hector sense

i

and sense

j

based

on the tendency of the language to use di�erent words for the two meanings. If the

meaning distinction has a high probability of being lexicalized in many languages,

then this provides some evidence that the distinction is important. If few or no hu-

man languages lexicalize this meaning distinction, this may be considered evidence

that the distinction is less salient or has lower cost of ambiguity.

Tables 10 and 11 show distance matrices computed using the multi-lingual cost

function above, based on the free translation rather than pairwise annotation method

of computing P

L

(di�erent-lexicalizationjsense

i

; sense

j

). Finer sense distinctions

clearly have lower pairwise costs than coarser distinctions under this measure in

the given examples. To help visualize these matrices better, we have applied a hier-

archical agglomerative clustering procedure using maximal linkage (Duda and Hart

1973), yielding automatically derived sense trees that optimize between-cluster dis-

tance. These trees (also shown in Tables 10 and 11) are based exclusively on the

free-tagging of the preferred translations of randomly ordered examples in context,

and the hector sense numbers were not utilized in any way in the clustering pro-

cedure. Yet these induced trees precisely mirror the sense hierarchy given by the

hector lexicographers, at not only the homograph level but down to the subsub-

sense level as well.
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Table 11. Translingually generated distance matrices for brilliant and accident

1 2 3 4 5 6 9

brilliant//1 (achievement) 0 0.537 0.570 0.781 0.756 0.850 0.637

brilliant//2 (performance) 0.537 0 0.405 0.862 0.866 0.929 0.625

brilliant//3 (intelligence) 0.570 0.405 0 0.844 0.856 0.900 0.613

brilliant//4 (color) 0.781 0.863 0.844 0 0.320 0.656 0.766

brilliant//5 (sun) 0.756 0.866 0.856 0.320 0 0.630 0.750

brilliant//6 (smile) 0.850 0.929 0.900 0.656 0.630 0 0.792

brilliant//9 (admiration) 0.637 0.625 0.613 0.766 0.750 0.792 0

 brilliant//9 - admiration

 brilliant//3 - intelligence

 brilliant//2 - performance

 brilliant//1 - achievement

 brilliant//6 - smile

 brilliant//5 - sun

 brilliant//4 - color

 accident//2.1 - by accident

 accident//2 - chance event

 accident//1.b - crash/n-mod

 accident//1  - crash/mishap

1 1.b 2 2.1

accident//1 (crash/mishap) 0 0.18 0.97 0.98

accident//1.b (crash/n-mod) 0.18 0 0.97 0.96

accident//2 (chance event) 0.97 0.97 0 0.45

accident//2.1 (by accident) 0.98 0.96 0.45 0

Interestingly, many of the hector sense inventories are quite at (such as for

the adjectives bitter and brilliant), exhibiting only a single non-hierarchical list of

major numbered senses. However, the sense trees derived using the translingual

cost matrix show a quite natural hierarchical clustering of these meanings, such as

recognizing that bitter//1 (taste) and bitter//6 (beer) are quite similar (only 25%

probability of being lexicalized di�erently across languages). Also, note that the

\radiant" senses of brilliant (4=color,5=sun,6=smile) are clustered together while

the achievement/accomplishment/intelligence senses (1,2,3,9) are also clustered to-

gether in a natural hierarchy. This suggests that hierarchical clustering based on the

probability of di�erential lexicalization across languages may have additional merit

in superimposing an empirically motivated sense hierarchy on at sense inventories.

4 Conclusions

The most important of our observations about the state of the art in word sense

disambiguation is that it is still a di�cult, open, and interesting problem, on which

the �eld has not typically reached consensus. We have made several suggestions that

we believe will help assess progress and advance the state of the art. In summary:

� We proposed that the accepted standard for WSD evaluation include a cross-

entropy like measure that tests the accuracy of the probabilities assigned to

sense tags and o�ers a mechanism for assigning partial credit.
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� We suggested a paradigm for common evaluation that combines the bene�ts of

traditional \interesting word" evaluations with an emphasis on broad coverage

and scalability.

� We outlined a criterion that should help in determining a suitable sense inven-

tory to use for comparison of algorithms, compatible with both hierarchical

sense partitions and multilingually motivated sense distinctions.

These proposals have in large part been put into practice by the �rst senseval

exercise, yielding an impressive array of new comparative data on the performance

of sense disambiguation systems, insights into the nature of the problem, and fresh

debates over the process of evaluation.

We also presented a substantial exploration of the relationship between monolin-

gual sense inventories and translation distinctions across languages. Speci�cally, we

measured the probability of English monolingual sense distinctions in the hector

database being lexicalized di�erently across 12 widely diverse languages, studied at

several levels of sense granularity. This measure has been shown to correlate with

monolingual sense distance, and thus may be e�ective as the basis of a semantic

distance or cost matrix for sense disambiguation evaluation. New sense hierarchies

automatically generated from these matrices using hierarchical agglomerative clus-

tering also yield results remarkably similar to those created by the hector mono-

lingual lexicographers. These parallel structures suggest that the lexicographer's

intuitions regarding sense distance and clustering closely resemble empirically mea-

sured distances in cross-lingual data, providing further evidence for the plausibility

of these monolingual sense hierarchies.
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