. 1) Identify unambiguous types of each class

CITY - AP datelines
PERSON - AT&T employee database

2) Collect training contexts

3) Measure the distribution of word associations at various positic

- word to left

- word to right
- words in +/- 5 context window

from Aberdee I ()f; ﬂ) = P( 4 I x)
in Boston - P(ﬂ)
visited Sydney
suburban Akron
ees | NEAT Albany e . . ]
* SENT * Austin I("U PLACE) ~ PCM[MCE) » COuD(TIOnAL PR
in Amman Plin G-LoBA
of Philadephia | ) ¢ PRoq
leave , Detroit
said 1 Baker .
- C
condemn Fonda EQ“/IGP:J? é)
opposing" Gephardt Plex) . :
ves | PYEdicted Clinton eee = P(H‘"lPLF}CQ.
| *SENT* Smith -~ Plisleegson) - Plin {PERSON)
|with Hurd PLiny & _
said " | - Thatcher - /"‘D’ ' '
Ms Davidson
but 3 Shamir




4) Compute log likelihoods

H(person)

5) Score new contexts using combination of the models

for various positions

Prob_Ralio =

Lag..Pr_ab_ =

5>

- ok in contexl

f(city) Majority Class Context
3.83 3.| 48 | PERSON said PERSON/CITY
4.43 5 112 | PERSON » PERSON/CITY
3.69 2 26 | PERSON with PERSON/CITY
3.17 31 248 | PERSON #SENT# PERSON/CITY
2.45 1 8 .| PERSON by PERSON/CITY
4.25 189 S | CITY in PERSON/CITY
2.95 1T 2 | CITY near PERSON/CITY
2.94 - 29 . 3| CITY from PERSON/CITY
2.70 148 | - 20| CITY of PERSON/CITY
2.45 3 - 0| CITY outside PERSON/CITY
2.03 30 6 | CITY at PERSON/CITY
1.48 5 1| CITY nearby PERSON/CITY
1.17 26 10 | CITY to PERSON/CITY

Pr(tok;|PERSON)

I1

tok in conlext

Pr(tok;|CITY)

Pr(tok;|PERSON)

log

Pr(tok;|CITY)
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0 CITY -1458 . miles northeast of >Aberdeen< climbed sharply as

1 PERS 1124 the Lexington and >Aberdeen< weapons to Tooele
0 CITY -6324 major city of >Aberdeen< to its collection

0 CITY -2906 load arriving at >Aberdeen< in two weeks

1 PERS 1124 Rapid City and >Aberdeen< setting records for

0 CITY -4558 ' port city of >Aberdeen< said in a

0 CITY -3735 and police in >Aberdeen< at 4:15 a.m

1 PERS 388. leave immediately for >Aberdeen< to oversee care
0 CITY -5453 Elder arrived in >Aberdeen< by helicopter .,

0 CITY -1943 company heads in >Aberdeen< before visiting injured
0 CITY -63 °  also flew to >Aberdeen< to console families .

0 CITY -4770 married life in >Aberdeen< when her 24-year-old
0 CITY -2711 was felt in >Aberdeen< and other parts

0 CITY -5739 annual passengers through.>Aberdeen< airport rose 1,370
0 CITY -2129 , said in >Aberdeen< he had ‘°

0 CITY -1096 coast guard in >Aberdeen< said the Sikorsky

0 CITY -1351 and east of >Aberdeen< and spotty elsewhere .

0 CITY. -4064 news conference in >Aberdeen< total settlements in
0 CITY -1986 Angie Crawford of >Aberdeen< were fishing in

.1 PERS 1520 '’ Chapla said >Aberdeen< is used to

0 CITY -955 be1ng produced at >Aberdeen< proving ground .

0 CITY -1410 will return to >Aberdeen< this weekend if

0 CITY -6705 @ on board into >Aberdeen< harbor , police

0 CITY -2924 accident , which >Aberdeen< police said occurred
0 CITY ~-5582 told reporters in >Aberdeen< that two explosions
.1 PERS 113 be flown to >Aberdeen< for identification .

.1 PERS 1045 police spokesman in >Aberdeen< |

0 CITY =-1025 — Folks in >Aberdeen< are building tall

1 PERS 1045 guard spokesman in >Aberdeen< said .

MLE Pass 0: P: 0.724138 (21/29) cl: 0.000000

'MLE Pass 1: " P: 0.827586 (24/29) cl: 965.080750

'MLE Pass 2 P: 0.965517 (28/29) cl: 1568.616089

'MLE Pass 3 P: 1.000000 (29/29) cl: 3332.203857



Next row

P (Place | w) = P (Place) * P (w | Place)
P (Person | w) = P (Person) * P (w | Person)

T T

Posterior Prior 5
Probability Probability

What if we don’t know initial prior ratio
(initial odds) ?

Ans:
Start off with ratio of 1,
then iteratively reestimate

-- CS466 Lecture XX --



EM ITERATION

e Begin with uninformative prior probability

o ["inal_Prob = Prior_Prob x Model_Prob
e Score all instances of a name with above

¢ Recompute Prior_Prob

Old Prior New Classification
.50 = 21/29 (.72)
72 = 24/29  (.84)
.84 = 28/29  (.97)
97 = 29/29 (1.00)
1.00 = 29/29 (1.00) = Convergence |




Old Prior New Classification
.50 = 21/29 (.72)
72 = 24/29  (.84)
.84 = 28/29 (.97)
97 = 29/29  (1.00)
1.00 = 29/29 (1.00) = Convergenc<e |
Old Prior New Classification -
50 = 20/100 (.20)
20 = 7/100 (.07)
.07 = 3/ 100 - (.03)
.03 = 1/100 = (.01)
01 = 0/100 (.00)
.00 = 0/100 (.00) = Convergence
Old Prior New Classification
.50 = 53/89. (.59)
.59 = 57/89  (.64)
64 = -62/89 (.70)
70 = 64/89  (.72)
72 = 65/89 (.73)
73 = 65/89 (.73) = Convergence
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 OUTPUT OF ALGORITHM

1. A model for classifying an instance of a w01d as PERSON
or PLACE based on context

2. The proba.bility that a given name is either a person or
a place based on a collective analysis of all its mnstances



OTHER EVIDENCE

1) WORD-INTERNAL EVIDENCE

Krulovich ==> PERSON
Yarowsky ==> PERSON
Smitterson ==> PERSON
Endlersberg ==> PERSON
Endlersburg ==> PLACE
Kotterston ==> PLACE
Siouxport ==> PLACE
Causville ==> PLACE

el T R T R A ————————————————E g et e e T T R i ]

2} MORE REFINED MODELS OF CONTEXT
- syntactic relations ( subj/verb, verb/obj)

> invade/V Hanoi
> marry/V Dole

Hanol was invaded =
Dole was married =

i

- trigrams ( in PLACE said )
- wide context window

W AL Rl i i e e m — ——— . —— T — — G IR e —— e WS SN WD D WS D W S D S D S e —— e e =



3) CLASS-MODELS
- Part of speech

PERSON bought |
PERSON listened - ==> PERSON <VBD>

PERSON ran
'— Lemmas (say/V = said/say/saying/says,..)

- Semantic (thesaurus) classes

T T L e ——————PEE e e el et e e e e ]

4) BURST MODELLING
DISCOURSE MODELLING
TOPIC MODELLING

==> How to combine these non-independent
sources of evidence?
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