

1) Identify unambiguous types of each class

CITY - AP datelines

PERSON - AT&T employee database

2) Collect training contexts

3) Measure the distribution of word associations at various positions

- word to left
- word to right
- words in +/- 5 context window

from :	Aberdeen
in	Boston
visited	Sydney
suburban	Akron
near	Albany ...
SENT	Austin
in	Amman
of	Philadelphia
leave :	Detroit

said :	Baker
condemn	Fonda
opposing	Gephardt
predicted	Clinton ...
SENT	Smith
with	Hurd
said	Thatcher
Ms	Davidson
but :	Shamir

$$I(x; y) = \frac{P(y|x)}{P(y)}$$

$$I(\text{in}; \text{PLACE}) = \frac{P(\text{in}|\text{PLACE})}{P(\text{in})} = \frac{\text{CONDITIONAL PR}}{\text{GLOBAL PROB}}$$

$$\frac{\frac{P(\text{in}|\text{PLACE})}{P(\text{in})}}{\frac{P(\text{in}|\text{PERSON})}{P(\text{in})}} \Rightarrow \frac{P(\text{in}|\text{PLACE})}{P(\text{in}|\text{PERSON})}$$

4) Compute log likelihoods

	f(city)	f(person)	Majority Class	Context	
3.83	3	48	PERSON	said " with #SENT# by	PERSON/CITY
4.43	5	112	PERSON		PERSON/CITY
3.69	2	26	PERSON		PERSON/CITY
3.17	31	248	PERSON		PERSON/CITY
2.45	1	8	PERSON		PERSON/CITY
4.25	189	8	CITY	in	PERSON/CITY
2.95	17	2	CITY	near	PERSON/CITY
2.94	29	3	CITY	from	PERSON/CITY
2.70	148	20	CITY	of	PERSON/CITY
2.45	3	0	CITY	outside	PERSON/CITY
2.03	30	6	CITY	at	PERSON/CITY
1.48	5	1	CITY	nearby	PERSON/CITY
1.17	26	10	CITY	to	PERSON/CITY

5) Score new contexts using combination of the models for various positions

$$Prob_Ratio = \prod_{tok \text{ in context}} \frac{Pr(tok_i|PERSON)}{Pr(tok_i|CITY)}$$

$$Log_Prob = \sum_{tok \text{ in context}} \log \frac{Pr(tok_i|PERSON)}{Pr(tok_i|CITY)}$$

CITY LEFT CONTEXT				
felt	in	Aberdeen	and	other
time	,	Aberdeen	was	in
Crawford	of	Aberdeen	were	fishing
board	into	Aberdeen	harbor	,
,	which	Aberdeen	police	said
northeast	of	Aberdeen	climbed	sharply
her	suburban	Akron	home	in
,	near	Akron	,	took
accident	in	Akron	,	where
Capitol	in	Albany	,	.PP
south	of	Albany	,	said
back	toward	Albany	,	a
fire	threatened	Albany	,	the
Shultz	at	Amman	's	military
,	visited	Amman	on	Saturday
capital	of	Amman	,	.PP
"	the :	Amman	decision	will

PERSON LEFT CONTEXT				
to	protest	Fonda	's	visit
behalf	of	Fonda	,	.PP
not	ask	Fonda	publicist	Jerry
spokesman	for	Fonda	,	called
,	predicted	Fonda	's	apology
"	typical	Fonda	hogwash	"
meeting	with	Hurd	,	.SE
Preston	,	Hurd	was	to
,	member	Hurd	said	in
Cabinet		Hurd	's	Home
offered	by	Pell	aide	William
,	said	Pell	,	The
.SB	The	Pell	resolution	declares
,	"	Pell	told	reporters

0 CITY -1458 miles northeast of >Aberdeen< climbed sharply as
1 PERS 1124 the Lexington and >Aberdeen< weapons to Tooele
0 CITY -6324 major city of >Aberdeen< to its collection
0 CITY -2906 load arriving at >Aberdeen< in two weeks
1 PERS 1124 Rapid City and >Aberdeen< setting records for
0 CITY -4558 port city of >Aberdeen< said in a
0 CITY -3735 and police in >Aberdeen< at 4:15 a.m
1 PERS 388 leave immediately for >Aberdeen< to oversee care
0 CITY -5453 Elder arrived in >Aberdeen< by helicopter ,
0 CITY -1943 company heads in >Aberdeen< before visiting injured
0 CITY -63 also flew to >Aberdeen< to console families
0 CITY -4770 married life in >Aberdeen< when her 24-year-old
0 CITY -2711 was felt in >Aberdeen< and other parts
0 CITY -5739 annual passengers through >Aberdeen< airport rose 1,370
0 CITY -2129 , said in >Aberdeen< he had ''
0 CITY -1096 coast guard in >Aberdeen< said the Sikorsky
0 CITY -1351 and east of >Aberdeen< and spotty elsewhere
0 CITY -4064 news conference in >Aberdeen< total settlements in
0 CITY -1986 Angie Crawford of >Aberdeen< were fishing in
1 PERS 1520 '' Chapla said >Aberdeen< is used to
0 CITY -955 being produced at >Aberdeen< proving ground .
0 CITY -1410 will return to >Aberdeen< this weekend if
0 CITY -6705 on board into >Aberdeen< harbor , police
0 CITY -2924 accident , which >Aberdeen< police said occurred
0 CITY -5582 told reporters in >Aberdeen< that two explosions
1 PERS 113 be flown to >Aberdeen< for identification .
1 PERS 1045 police spokesman in >Aberdeen< said
0 CITY -1025 - Folks in >Aberdeen< are building tall
1 PERS 1045 guard spokesman in >Aberdeen< said .

MLE Pass 0:	P:	0.724138	(21/29)	c1: 0.000000
MLE Pass 1:	P:	0.827586	(24/29)	c1: 965.080750
MLE Pass 2:	P:	0.965517	(28/29)	c1: 1568.616089
MLE Pass 3:	P:	1.000000	(29/29)	c1: 3332.203857

Next row

$$\frac{P(\text{Place} | w)}{P(\text{Person} | w)} = \frac{P(\text{Place})}{P(\text{Person})} * \frac{P(w | \text{Place})}{P(w | \text{Person})}$$

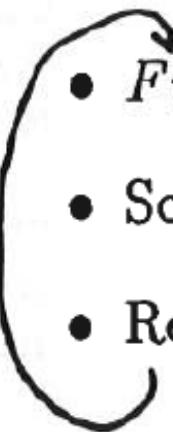
What if we don't know initial prior ratio (initial odds) ?

Ans:

Start off with ratio of 1, then iteratively reestimate

EM ITERATION

- Begin with uninformative prior probability


$$\bullet \text{Final_Prob} = \text{Prior_Prob} \times \text{Model_Prob}$$

- Score all instances of a name with above
- Recompute Prior_Prob

Old Prior		New Classification	
.50	\Rightarrow	21/29	(.72)
.72	\Rightarrow	24/29	(.84)
.84	\Rightarrow	28/29	(.97)
.97	\Rightarrow	29/29	(1.00)
1.00	\Rightarrow	29/29	(1.00) \Rightarrow Convergence

Old Prior	New Classification	
.50	⇒ 21/29	(.72)
.72	⇒ 24/29	(.84)
.84	⇒ 28/29	(.97)
.97	⇒ 29/29	(1.00)
1.00	⇒ 29/29	(1.00) ⇒ Convergence

Old Prior	New Classification	
.50	⇒ 20/100	(.20)
.20	⇒ 7/100	(.07)
.07	⇒ 3/100	(.03)
.03	⇒ 1/100	(.01)
.01	⇒ 0/100	(.00)
.00	⇒ 0/100	(.00) ⇒ Convergence

Old Prior	New Classification	
.50	⇒ 53/89	(.59)
.59	⇒ 57/89	(.64)
.64	⇒ 62/89	(.70)
.70	⇒ 64/89	(.72)
.72	⇒ 65/89	(.73)
.73	⇒ 65/89	(.73) ⇒ Convergence

0.000000	0.000000	<u>0.004950</u>	100	<u>Anderson</u>
0.000000	0.000000	0.004950	100	Baker
0.000000	0.000000	0.004950	100	Burns
0.000000	0.000000	0.008065	61	Walker
0.000000	0.000000	0.008333	59	Tucker
0.000000	0.000000	0.009259	53	Campbell
0.000000	0.000000	0.009804	50	Richardson
0.000000	0.000000	0.011364	43	Martinez
0.000000	0.020000	0.024752	100	Taylor
0.000000	0.024390	0.035714	41	Hinckley
0.000000	0.027027	0.039474	37	Roosevelt
0.000000	0.030303	0.044118	33	Hayes
0.126471	0.070000	0.074257	100	Williams
0.165132	0.153846	0.166667	26	Perry
0.186924	0.181818	0.195652	22	Stanley
0.347209	0.311111	0.315217	45	Carson
0.367992	0.357143	0.366667	14	Greenfield
0.371823	0.363636	0.375000	11	Hershey
0.435153	0.428571	0.431818	21	Greenwood
0.462830	0.458333	<u>0.460000</u>	24	<u>Medina</u>
0.500000	0.500000	0.500000	12	Chatham
0.500000	0.500000	<u>0.500000</u>	26	Dixon
0.500000	0.500000	<u>0.500000</u>	40	<u>Rhodes</u>
0.528220	0.534884	0.534091	43	Florence

0.347209	0.311111	0.315217	45	Carson
0.367992	0.357143	0.366667	14	Greenfield
0.371823	0.363636	0.375000	11	Hershey
0.435153	0.428571	0.431818	21	Greenwood
0.462830	0.458333	<u>0.460000</u>	24	<u>Medina</u>
0.500000	0.500000	0.500000	12	Chatham
0.500000	0.500000	<u>0.500000</u>	26	Dixon
0.500000	0.500000	<u>0.500000</u>	40	<u>Rhodes</u>
0.528220	0.534884	0.534091	43	Florence
0.540823	0.553571	<u>0.552632</u>	56	<u>Pyongyang</u>
0.544586	0.570000	<u>0.569307</u>	100	<u>Baghdad</u>
0.647015	0.720000	0.717822	100	Islamabad
0.654478	0.730000	0.727723	100	Beijing
0.654478	0.730000	0.727723	100	Berlin
0.684328	0.770000	0.757426	100	Austin
0.790246	0.785714	0.766667	14	Warwick
0.898864	0.929825	0.922414	57	Madison
1.000000	0.990000	0.985148	100	Budapest
1.000000	0.990000	0.985148	100	Kabul
1.000000	0.990000	0.985148	100	Khartoum
1.000000	0.990000	0.985148	100	Sacrament
1.000000	1.000000	0.995049	100	Tampa
1.000000	1.000000	<u>0.995049</u>	100	<u>Zurich</u>

OUTPUT OF ALGORITHM

1. A model for classifying an instance of a word as PERSON or PLACE based on context
2. The probability that a given name is either a person or a place based on a collective analysis of all its instances

OTHER EVIDENCE

1) WORD-INTERNAL EVIDENCE

Krulovich	==> PERSON
Yarowsky	==> PERSON
Smitterson	==> PERSON
Endlersberg	==> PERSON
Endlersburg	==> PLACE
Kotterston	==> PLACE
Siouxport	==> PLACE
Causville	==> PLACE

2) MORE REFINED MODELS OF CONTEXT

- syntactic relations (subj/verb, verb/obj)

Hanoi was invaded ==> invade/V Hanoi
Dole was married ==> marry/V Dole

- trigrams (in PLACE said)
- wide context window

3) CLASS-MODELS

- Part of speech

PERSON bought

PERSON listened ==> PERSON <VBD>

PERSON ran

- Lemmas (say/V = said/say/saying/says...)
- Semantic (thesaurus) classes

4) BURST MODELLING DISCOURSE MODELLING TOPIC MODELLING

==> How to combine these non-independent
sources of evidence?