601.466/666 - Final Project

The final project in this class provides an opportunity for you to apply the informa-
tion retrieval and classification techniques you have learned in this class to an interesting
application of your choice.

Students have wide flexibility in selecting a project description, and many of you have
already chosen projects in consultation with the instructor.

For those of you still looking for project options, below are several possible project
descriptions that will give you an idea of the focus, scope and complexity expected of
final projects. However, because of their primarily sample nature, you are very strongly
encouraged to do a project on a topic other than Option 1-3, and you must obtain specific
approval in advance to do options 1-3.

Option 1: FriendFinder - a web Robot/Agent (Example only)

Johns Hopkins can be a lonely place. But there are potentially hundreds of students here
and at other area universities that share many of your same interests. Build a web robot
to find them by locating and analyzing all personal home pages at JHU.

The intuition behind this assignment is that if you take a collection of personal home
pages of yourself, your friends and others who share your interests, convert them to a
vector representation (as in HW2 and 3), and compute a centroid or profile vp, and then
take a collection of home pages of people who do not seem to share your interests and
compute their vector centroid vy, new home pages can be classified simplying by finding
the maximum cosine similarity with the two centroids/profiles. You can also use a Bayesian
classification model if you prefer.

(a) Begin with an existing web robot of your choice from the robots subdirectory of the
class directory on hops. The advantages and disadvantages of each will be discussed
in class.

(b) Add a function to the robot’s code to determine if the WWW page currently being
visited by the robot is a personal home page. There is no one definitive way of doing
this, but options including searching for simple Perl string patterns in the URL’s or
titles. For example, students.html, users.html and grad_students.html are titles of the
directories under which JHU CS and ECE student home pages are stored. Many
people’s home pages have Homepage or Home Page in their <TITLE>, and/or have
URL’s of the form http://.../.../ name. You may also consider building a simple
vector model of homepages and non-homepages as in part (e) of this assignment
option, but this is not necessary.

(c) Collect a set of homepages of your friends and other people with whom you share
interests (H Pr). Do the same for people you dislike or people who seem have different
interests from you (HPyp). For the purposes of this assignment, you may wish to
consider a homepage to also include all of its .html subdirectories, where things like
interest, hobbies, activities and pet peeves may be listed (just concatenate all of these
together in a single long text file).



(d) Create vectors from these collections of home pages (and compute their centroids) as
in HW 2 and 3.

(e) To classify new home pages detected in Part (b) as more likely to share your interests
or not, create a term vector from the home page, compare with the two centroids
created in Part (c) and use that with minimum distance (sorting by a relative distance
measure like cos_sim(v;, vp) — cos_sim(v;, vy F) for a total ordering of all home pages
encountered). Ideally, this should be done as a Perl function embedded in the robot,
but if you are having trouble doing this you can use the robot to write the detected
home pages to disk, and then treat these pages as static documents to be classified
just like in HW 2 and 3.

Issues:

One additional issue to consider is the stopword list - it may be larger than that used in
ACM abstract retrieval, and should probably include HTML markup. The second is what
to use for IDF in term weighting. Unless you pursue the second option in Part (e) and
write all the detected home pages to disk before classifying them, you won’t have an initial
collection on which to compute IDF (to downplay terms that permeate all or most home
pages). Thus if you pursue the first option in Part (e) - embedded real time classification
of home pages, you should run a pass first where you download a large set of home pages
to disk, compute document frequency (DF;) for all terms in this set using the make hist
program from HW2, and then use this histogram in computing IDF for terms in all home
pages, even those not used to originally compute the DF; histogram. Also, if you use the
embedded code approach you do not need to do stemming (as this code isn’t in Perl and
may be hard to call from within the robot).

Finally, you are not restricted to the vector classification model. If you would prefer to
use a decision tree or Bayesian approach, please feel free to do so.

Evaluation:

You should provide a simple quantitative evaluation of your system. To do this, collect a
set webpages that were mot used in your training data and label these as not_homepage,
homepage_friend and homepage_notfriend. Run your classifier on these web pages and com-
pute the % accuracy of your system in distinguishing between homepages/not_homepages
and likely friend/not_friend (based on your own subjective judgements, of course). You
should do this tagging before you apply your robot to the page; don’t do a posthoc grading
of its performance - this can lead to bias in favor of your system.

Option 2: A mail/news filter/classifier

Overview: The major goal of Option 2 is to write a program that filters and routes/classifies
your email into one of several topic areas or “bins” that you have defined in advance. One
of these bins should be the class junk mail or discard. If you do not have a saved archive of



your email (or if you do not have enough incoming mail to save everything you receive in
the next few weeks), you could also apply this program to filtering/routing netnews (which
is stored on /var/spool/mail. If you do this, you may wish to restrict yourself to a subset
of the newsgroups. The core approach could proceed in a manner similar to the following:

(a)

(b)

Select K = 5 to 10 bins or topic areas that you would like your email (or news) sorted
into. One should be labelled junk. Collect examples of messages that belong in each
(as many as you can).

Process the training messages (and those incoming messages in Part (d)) through the
segment labeller you wrote in HW 1, discarding some regions (such as graphics) and
making note of others (with embedded region tags like in the CACM collection) that
you can use for later region weighting. Also run the messages through the tokenizer in
HW 1 and create a vector corpus. You should use stopwords and TF-IDF weighting
as appropriate, with optional region weighting given to certain fields in the header,
section header segments, and other more or less significant regions of the text.

Compute vector centroids of the messages in each of your training classes.

Take new messages (not in your training set) and segment label and tokenize them
as in part (b), creating a (weighted) term vector from each.

For each new email message vector, compute cosine similarity with each of the topic
centroids and return that classification/bin with the minimum distance. It would
useful to print out a list of the top 2-3 bin labels and the cosine similarity with each
(along with the sender/subject of the email or news story) so that the user can have
more feedback.

It is not adequate to simply have the project be a simple bag-of-words vector compari-
son with centroids. You should extend this basic model as much as possible. Consider
a Bayesian model or decision tree as a second classification strategy. Consider ways to
improve on the region weighting and identification of salient terms and classification
evidence, such as sender, time-of-day, length, and other such predictive features for
certain types of classification (e.g. work project vs. an extra-curricular activity).

Evaluation:

You should provide a quantitative evaluation of your system. To do this, collect a set
of mail messages/news postings that were not used in your training data and label them
with your target classes or bins. Run your classifier /router on these messages and compute
the % accuracy of your system. You should do tagging of messages before you apply your
classifier; don’t do a posthoc grading of its performance - this can lead to bias in favor of

your system.



Option 3: A ResumeFinder Robot

As discussed in class, build a robot that finds resumes on the web (restricted to the JHU
domain), and then uses text classification techniques to both segment and classify the
resume sections (e.g. education vs. computer languages), and also extract key information
from them into a structured database format (e.g. known computer languages, degrees
earned, address, etc.). You are encouraged to use the text classification techniques explored
in homeworks 1 and 3 to aid in this.

Option 4a: Shopping Agent

Web robots can be used to do “intelligent” things for us both extracting information from
the internet and in providing a value added service. One useful thing we could do with a
web agent would be to create a Shopping Agent.

Imagine that you want a new book. You could give the shopping agent the name of
the book, and it would search through the major online book stores (amazon.com, barne-
sandnoble.com, etc.), find the best deal, and then order it for you. By understanding the
forms interface for each shopping service and sending a POST command with the appro-
priate fields to each store, we can create a single interface that would work for any of the
book stores. This way, you only need to enter your name, phone number, shipping address,
etc., one time to the Web Agent, and it takes care of the rest of the work, filling in this
information whenever necessary.

Starting with the basic web robot, add in:

(a) the ability to read key fields out of a data file in the format of your choice, including
name, phone number, shipping address, etc.

(b) visit the book sellers that you want to support, and download their ordering pages.
You can look at the HTML code to find out what the field names you will need to
post to are, and what the results will be. The Web Agents book shows you how to
make a HTTP::Request that supports sending information as a POST to the server
to get back dynamic content.

Evaluation:

Test your robot by having go partway through the process of locating and ordering differnt
books. Under no circumstances should you give credit card numbers of any type or
proceed to the payment phase. Please test your system very sparingly to avoid complaints
from vendors. Compare your results to a manual use of the system.

Option 4b: MetaShopper

Another useful thing that Web Agents can do is extract information from multiple sources
and condense it into a useful format. Examples of this would be MetaCrawler (http://www.metacrawler.com )
that searches a number of search engines, re-weights the results and returns you the answer,



BottomDollar (http://www.bottomdollar.com) that searches through many shopping sites
and returns you the best prices for the product(s) that you searched for.

Implementing something like BottomDollar isn’t very difficult. First visit all of the
shopping sites that you wish to support, download their pages, and look at the HTML
forms. Then you can find the fields that you will need to add to the HT'TP::Request when
doing a POST to get the search results back.

Take the basic web robot and add:

(a) A configuration file with the URLs and fields that you need to post to for each store.
(b) Add an interface where the user can type in the queries that they want.

(c¢) For each query, visit all the services in your configuration file, and get the resulting
page.

(d) For each resulting page, use the Text Extraction methods from assignment #1 and
assignment #3 to pull out the information that you need to display the user (product
name, link to see the product, price) so that you have a common format for all services.

(e) Display the information to the user ranked by price.

Evaluation:

You can test the program by entering queries and then visiting the services that your web
robot is visiting and compare the results. Make sure that your Text Extraction methods
aren’t missing anything, and that your ranking of results is working properly. If you want,
you can also add some more advanced ranking by the search term vs. what was returned,
instead of just by price.

Option 5: Multilingual Web Page Extraction and Language Identification
Discussed in Class.

Option 6: Cross-Lingual Information Retrieval

Discussed in Class.

Option 7: Topic Detection and Tracking; New Event Detection

Discussed in Class.

Option 8: Information Extraction of Rolodex Data from Web Pages

Discussed in Class.

Option 9: IR on Different Source Modalities (e.g. Speech)

Discussed in Class.



Option 10: One of the other potential projects discussed in class
Option 11: Another project of your choice

You are not restricted to the options listed above for your final project. You are free to
pursue any application that is both of interest to you and relevant to the material covered in
this course. Broad areas of relevance include core information retrieval and search engine
implementation, routing and filtering, information extraction and web robot design, or
ideally some combination of these areas. You will be graded both on the creativity and
the challenge of the ideas you propose, as well as in the quality with which you accomplish
these goals.

What to Turn in:

You are encouraged to submit an optional brief (1-2 page) project overview at some point
before the project due date and /or meet with the instructor regarding the project in person
to discuss any questions or concerns. Your optional preliminary project overview should
include the names of the group members working on the project, and a brief summary of
the work to be done. You may email PDF to yarowsky@jhu.edu with a subject line that
must read “601.466: Final Project Preliminary”. Preliminary project overviews should ad-
dress your basic design decisions, what you expect that your system will accomplish, and
anything that you have questions about. You should state specifically how your project
will be evaluated empirically, (e.g. using what measures — such as precision and recall of
retrieved documents, and/or percentage accuracy in classification — and also using what
standard of “truth”, such as posthoc correction or comparison with some preexisting data
set). In some projects, such as building a document visualization tool, there is no natu-
ral quantitative evaluation metric, and you should simply state this and suggest another
appropriate standard under which the functional success of your project can be evaluated.

If you propose to have 3 members working on the project, you should justify why the
scope of the project requires this additional person, and what the approximate breakdown
of responsibility will be.

Finally, it is émperative that no web robot used for this class be unleased outside the
Johns Hopkins domain without stating this intent explicitly and with an assessment of risk
and the willingness of the websites you crawl to have robot visitors. You should be very
clear on precisely which segments of the web will be visited, and what steps will be taken
to ensure good robot “citizenship”.

The final submission of the final project should be submitted electronically on a timetable
discussed in class, using gradescope as in previous assignments.

Your electronic submission should include a PDF project writeup, as detailed below,
and submission of code and data that you used/crawled. The PDF writeup should include
whatever description you feel is useful or appropriate to communicate the strengths of your
accomplishments on the project. In particular, in your writeup:



(1) On your cover page, please include (a) the names of your team members, (b) the
section each is enrolled in (466/666), (c) your email addresses, (d) a 1-3 line summary
of your project focus, (e¢) a URL where an on-line project interface is located if you
have one (which is not necessary), and (f) a URL link to any external repositories of
project components or data too large to submit via gradescope.

(2) Please provide a brief guide describing in sufficient detail how a user could run your
code and/or use your provided web interface, especially if using a non-standard plat-
form or interface.

(3) Give an itemized list of your project’s particular achievements, strengths and selling
points, especially things that may not be obvious upon inspection of your code or
output, as well your personal assessment of their complexity, scope and success.

(4) Give a brief itemization of your project’s limitations and list suggested possibilities
for improvement or worthwhile extension with additional time.

(5) To both document your projects achievements, as well as the methods of use and
expected output(s), please also include a range of samples/screenshots of your project
output on a range of project functionalities and input conditions or search queries.

(6) In the spirit of all assignments in the class, empirical evaluation appropriate for the
nature of the project should also be included.

(7) If your code submission includes components that were (a) written by people not
on your team or (b) written by yourself for another course, for prior research and/or
employment, please very clearly explain/document which components were done else-
where. Such outside borrowing is permitted if clearly documented, and you are per-
mitted to build upon prior accomplishment, just like you may utilize software libraries
from elsewhere, but your project will be evaluated on the original work done for this
course.

Please submit your writeup as a single separate PDF file including all team member
names in the filename format specified below (e.g. john doe_adam smith.pdf).

You are also required to submit a complete archive of all your code developed for the
project, and data files generated or used in the project, ideally in a single compressed nested
directory (zip or tgz). Your directory should be named as follows to make it easier for me
to identify when I uploaded it:
yourgivenname_yoursurname if done individually (e.g. john_doe.zip)
or
partnerlgivenname_partnerlsurname_partner2givenname_partner2surname
(e.g. john doe_adam smith.zip)

In most cases data/code submission can be accomplished using the normal homework
submission procedures via gradescope, but if the combined project directory size is very



large it may be necessary to upload from your jhu public_html directory or other hosting
service (please provide the URL on the cover page).

Demos may be scheduled with the instructor if you feel that your project is not self
explanatory and could benefit from an interactive presentation.



