601.466/666 (Spring 2024 )
Assignment 3: Text Classification

Due Date: March 28, 2024 11:59 PM

Introduction

The vector models implemented in Homework 2 are quite versatile and can be used for much more than
just retrieving documents. In this homework, you will adapt your models from Homework 2 to handle
several standard NLP tasks:

« Word Sense Disambiguation: given a word (e.g. “bank”), what sense of the word is it? (it is the slope
by a river, or the financial institution?)

« Named Entity Classification: is a given name a person or a place?

 Spam Detection: is a text spam or ham?

These are significant tasks in information extraction and text understanding, yet they are remarkably
similar and can borrow heavily from the vector models implemented in Assignment 2.

Data

You have been provided with several datasets in a tab-separated format, where the columns are id, label,
and text.

plant.tsv consists of example sentences of the word plant in context, where each instance is labelled as
(1) a living biological organism, or (2) a manufacturing facility or factory.

tank.tsv consists of example sentences of the word tank in context, each labelled as either (1) a military
vehicle, or (2) a container.

Both the plant and tank datasets are limited to just nouns (i.e. the verb forms to plant a tree or to
plant evidence are excluded. Part of speech taggers are much more appropriate for making plant/verb vs.
plant/noun distinctions than vector models are.

perplace.tsv consists of proper names such as Madison, Paris and Villahermosa labelled as either (1) a
person, or (2) a place. Distinguishing between these two possibilities is a subset of the larger named entity
classification task.

The text in these three datasets has already been tokenized. The target word is marked with a .X- to
distinguish it from the other words, e.g.



<S> If anything , he’s acting as a wimp , ’’ .X-Koch said today on ‘¢ CBS
This Morning . </s> </S>

smsspam.tsv consists of SMS text messages’, labelled as either (1) spam, or (2) not spam.

WSD and named entity classification are targeted tasks (i.e. you label a single word based on its con-
text). In contrast, in spam detection, your model labels the entire text as spam rather than just a single
word. The text in the SMS spam dataset has not been preprocessed. You may consider tokenizing as in
Assignment 2.

Part 1 - Vector Classification Model

First, please use the provided splitdata.py script to split the data into train and dev splits. You should
only train on the training data and test on the dev data (obviously).

You will implement a nearest centroid classifier (also called a Rocchio classifier) using a process similar to
what you already did in Assignment 2:

1. Initialize the “document” vectors, where each example sentence is its own document. The weighting
options will be discussed below. In addition, store the classification label for later use.

2. Using the vectors in the training set, create two profile vectors Vi, fite; and Viro fite,, Where Vi,o rise,
is the average (or centroid) of all of the training vectors labelled as sense ¢. The details of this process
will be discussed in class.

1
Uprofiles = —— v where Vi = {v : label(v) =1
profiley ||V1||U§‘;l 1 { () }

3. For each vector in the test set, compute its similarity to each profile vector:
siml = similarity(testvec[i], v_profilel)
sim2 = similarity(testvec[i], v_profile2)

If sim1 >= sim2, then label the vector as sense 1, otherwise sense 2. For ease of evaluation, you
may also wish to print sim1 — sim2 and sort by this value. Large positive numbers will indicate
examples that are strongly sense 1, large negative numbers will indicate examples that are strongly
sense 2, and values close to 0 are examples that are ambiguous.

4. In Step 3, keep a running count of the total number of the test examples that your program classifies

correctly and incorrectly. At the end, print out the percent correct (;5;— co::;gff;?;icfmmmct).

Part 2 — Variations on the Model

Implement and explore the following variations on this basic model:

1. Position weighting: The base model assumes that all words surrounding an ambiguous word like
tank contribute equal weight to its disambiguation, regardless of position. This is clearly not the
case. Implement a weighting function sensitive to distance from the ambiguous word (e.g. . X-tank)
when initializing the training vectors, much like you implemented region weighting in Assignment
2. Specifically, implement

'https://archive.ics.uci.edu/ml/datasets/sms+spam+collection



(a) smooth exponential distance decay, where a word’s weight is
1 / (distance of the word to the target word).

(b) stepped weighting, where adjacent words are given weight 6.0, words 2—-3 away are given
weight 3.0, and all other words are given weight 1.0.

(c) a weighting scheme of your own choice

An example of weights for each of these schemes is shown below:

| as a wimp > X-Koch said today on “ CBS
(a) exp 1/5 1/4 1/3 172 1 1 1/2 1/3 1/4 1/5
(bystep | 1 1 3 36 6 3 3 01 1

2. Special adjacent tokens: Regardless of the weighting scheme used, the basic vector approach
is still a bag of words model. The examples ... pesticide *plant™ ... and ... *plant™ pesticide ... will
be represented as the same vector. Options for capturing word sequence, at least locally, will be
discussed in class. The simplest case would be to treat the immediately adjacent words (to the left
and right) as special tokens:

1329 1 FACTORY statements by the L-pesticide #*plant* R-manager ...
1330 2 LIVING is a very effective L-tropical *plantx R-pesticide ...
1331 1 LIVING pesticide often found on L-the *plant*x R-roots and stems

This would allow pesticide to contribute to the collective sense profiles for plant in different counters,
depending on whether it occurred immediately to the left, right, or in another position. Alternately,
those who implementing a bigram model in Assignment 2 could modify this slightly to include only
bigrams adjacent to the target word. Details will be discussed in class.

Part 3 — Extensions to the Classification Model

For up to 30 points extra credit, students are very strongly encouraged to implement (and comparatively
evaluate) one or more of the 4 specified extensions to the vector model for sense disambiguation, including
a Naive Bayes classifier, k£ nearest neighbor classifier, EM classifier for person-place disambiguation, and/or
hierarchical clustering of the sense-ambiguity training examples. Details are provided in the hw3 class
subdirectory in the NOTES file. The total number of points of extra credit will be commensurate with
the substance and quality of the implementation. These optional extensions may be handed in up
until March 29th at 3:00 PM EST without penalty. The goal here is to encourage students to explore
interesting variations and novel techniques applied to the broad family of tasks and approaches taught here,
and learn what performs well or not based on empirical evaluation. Gaining insight is the key objective
and students have an additional 11 days to try out any such optional investigations that they wish.

Evaluation

In order to test the effectiveness of the two variations above, as well as the effectiveness of the use of
stemming in this case, you should test your system on the 6 different permutations of parameters, given
below. For each permutation, print the accuracy (i.e. % correct) of each permutation on each dataset as
shown. Note that the values given below are only samples, and should not be considered to be values that



your system should obtain. For consistency and ease of grading, please use the standard term frequency,
cosine similarity, and do not preprocess the text (besides splitting by spaces).

Then, experiment with your different model and preprocessing choices from Assignment 2 and present
your best model’s performance on these 6 permutations in rows 7-12 of the output table. Please describe the
details of these high performing models (term frequency, similarity, preprocessing, etc.) in your writeup.

Position Local Collocation ACCURACY
Stemming | Weighting Modelling tank | plant | perplace | smsspam
1 unstemmed | #0-uniform #1-bag-of-words .90 .84 .83 74
2 stemmed #1-expndecay | #1-bag-of-words .84 .80 .78 .67
3 unstemmed | #1-expndecay | #1-bag-of-words
4 unstemmed | #1-expndecay | #2-adjacent-separate-LR
5 unstemmed | #2-stepped #1 or #2 (specify)
6 unstemmed | #3-yours #1 or #2 (specify)
7-12 | Your best performance on permutations 1-6
13 Extra Credit: The results of your implemented extension
Writeup

In a writeup named results. txt or results.pdf, please include:

1. the results table as described above

2. a short description of your variations in Part 2, extensions in Part 3 (if any), and best models in the
Evaluation section

3. a short explanation of the differences of using vector models for targeted tasks (WSD, named entity
classification) compared to non-targeted (spam) tasks

4. a description of any non-standard approaches you used or questionable assumptions you made

Submission

Submiit a single compressed file via gradescope using the same procedure as on previous assignments.



