Bias -Variance \& Linear Regression
I. Empirical Risk Minimization (ERM)
II. Bias - Variance decomposition
III. Linear Regression
VI. MLE \& MAP

IERM

Empirical Risk Minimization
Population Risk / Expected Risk

$$
R(f)=\mathbb{E}_{x y}[\operatorname{loss}(Y, f(X))]
$$

Bayes Optimal Rule

$$
f^{*}=\underset{f}{\operatorname{argmin}} R(f)
$$

Empirical Risk

$$
R(f, D)=\frac{1}{N} \sum_{n=1}^{N} \operatorname{loss}\left(y_{n}, f\left(x_{n}\right)\right)
$$

Empirical Risk Minimization

$$
\hat{f}_{E R M}=\operatorname{argmin}_{f} R(f, D)
$$

Why does this approximation work?

Law of large numbers: sample average converges to the expected value as sample size approaches ∞.

$$
\bar{X}_{N} \rightarrow \mu \text { as } N \rightarrow \infty .
$$

$$
\begin{aligned}
\frac{1}{n} \sum_{n=1}^{N} \operatorname{loss}\left(y_{n}, f\left(x_{n}\right)\right) \xrightarrow[\text { Lumbers }]{\text { Law of large }} & \mathbb{E}_{x y}[\operatorname{loss}(Y, f(x))] \\
& =\int \operatorname{loss}(Y, f(x)) p(x, y) d x, y
\end{aligned}
$$

Excess Error Decomposition
H : our hypothesis space $R(f)$ expepulation risk/ risk $R(f, D)$: empirical risk
$f^{* *}=\underset{f}{\operatorname{argmin}} R(f)$: the function that achieves the minimal possible pppultron risk
$f^{*}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} R(f): \begin{aligned} & \text { the function that achieves the minimal possible ppplutron risk } \\ & \text { in our hypothesis space. }\end{aligned}$
$f_{H}^{*}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} R(f, D)$: the function that a achieves the minimal empirical risk in our hypothesis space.
excess error:

$$
\mathbb{E}\left[R\left(f_{N}^{*}\right)-R\left(f^{* *}\right)\right]=\frac{\operatorname{Eapproximation~error~}}{\left.\underset{\text { apt }}{ }\left(f^{*}\right)-R\left(f^{* *}\right)\right]}+\frac{\mathbb{E}\left[R\left(f_{N}^{*}\right)-R\left(f^{*}\right)\right]}{\substack{\text { estimation erration error } \\ \text { gen }}}
$$

Excess Error Decomposition

$$
\mathbb{E}\left[R\left(f_{N}^{*}\right)-R\left(f^{* *}\right)\right]=\frac{\mathbb{E}\left[R\left(f^{*}\right)-R\left(f^{* *}\right)\right]}{\text { approximation error }}+\frac{\underset{\text { estimation error }}{\text { generation error }}}{\mathbb{E}\left[R\left(f^{*}\right)-R\left(f^{*}\right)\right]}
$$

approximation error. (determined by the capacity of H) measures how closely our hypothesis space H can model the true optimal function ft*.
generation error: (determined by N \& the capacity of H) measures the difference in estimated risk due to having a finite training set.

II Bias - Variance
Decomposition

Expected Squared Loss Decomposition
Within a hypothesis space H, egg. the space of regression functions,
$f(x)=$ prediction function
y : provided label cnoisy)
$h(x)$: true prediction function, true label $\quad h(x)=\mathbb{E}[y \mid x]=\int y p(y \mid x) d y$
expected squared loss:

$$
\mathbb{E}[L]=\mathbb{E}\left[(f(x)-y)^{2}\right]
$$

error from	model
$=$	data
depends on the choice for $f(x)$. we want to find a $f(x)$ to minimize this term.	arises from the intrinsic noise on the data
no $\left.[(x)-h(x))^{2}\right]$	

Expected Squared Loss Decomposition

$$
\begin{aligned}
\mathbb{E}[L]= & \mathbb{E}\left[(f(x)-y)^{2}\right] \\
= & \mathbb{E}\left[(f(x)-h(x)+h(x)-y)^{2}\right] \\
= & \mathbb{E}\left[(f(x)-h(x))^{2}\right]+\mathbb{E}\left[(h(x)-y)^{2}\right] \\
& +2 \mathbb{E}[(f(x)-h(x))(h(x)-y)]
\end{aligned}
$$

(1)
$=\mathbb{E}_{x y}[(f(x)-\mathbb{E}[y \mid x])(\mathbb{E}[y \mid x]-y)]$

$$
=\mathbb{E}_{x}\left[(f(x)-\mathbb{E}[y \mid x]) \mathbb{E}_{\gamma_{1 x}}[\mathbb{E}[y \mid x]-y]_{(2)}\right]
$$

$$
=\mathbb{E}_{Y \mid X}[y \mid x]-\mathbb{E}_{Y \mid X}[y]=0
$$

$$
\int y p(y \mid x) d y \xlongequal{\text { sane }}=\int y p(y) x d y
$$

Bias - Variance Decomposition
expected squared loss:

$$
\mathbb{E}[L]=\mathbb{E}\left[(f(x)-y)^{2}\right]
$$

error from model

$$
\begin{array}{ll}
= & \mathbb{E}\left[(f(x)-h(x))^{2}\right]+ \\
& \mathbb{E}\left[(h(x)-y)^{2}\right] \\
& \text { depends on the choice for fix). } \\
\text { we want to find a foes from the intrinsic } \\
\text { to minimize this term. } & \\
\text { noise on the data }
\end{array}
$$

first item depends on dataset D :

$$
\begin{aligned}
& \mathbb{E}_{D}\left[(f(x ; D)-h(x))^{2}\right]=\underset{\text { model risk }}{\left(\mathbb{E}_{D}[f(x ; D)]-h(x)\right)^{2}+}+\frac{\mathbb{E}_{D}\left[\left(f(x ; D)-\mathbb{E}_{D}[f(x ; D)]\right)^{2}\right]}{\text { variance }} \\
& \text { expected squared loss }=\frac{(\text { bias })^{2}+\text { variance }}{\text { model risk }}+\text { noise }
\end{aligned}
$$

Bias - Variance Decomposition model risk

$$
\mathbb{E}_{D}\left[(f(x ; D)-h(x))^{2}\right]
$$

(Derivation)
subtract and add $\mathbb{E}_{D}[f(x, D)]$

$$
\begin{aligned}
= & \mathbb{E}_{D}\left[\left(f(x ; D)-\mathbb{E}_{D}[f(x ; D)]+\mathbb{E}_{D}[f(x, D)]-h(x)\right)^{2}\right] \\
= & \left.\mathbb{E}_{D}\left[\left(f(x ; D)-\mathbb{E}_{D}[f(x ; D)]\right)^{2}\right]+\mathbb{E}_{D}\left[\mathbb{E}_{D}[f(x ; D)]-h(x)\right)^{2}\right] \\
& +2 \mathbb{E}_{D}\left[\left\{f(x ; D)-\mathbb{E}_{D}[f(x ; D)]\right\}\left\{\mathbb{E}_{D}[f(x ; D)]-h(x)\right\}\right] \\
= & \left(\mathbb{E}_{D}[f(x ; D)]-h(x)\right)^{2}
\end{aligned}
$$

Bias - Variance Tradeoff

$$
\frac{\mathbb{E}_{D}\left[(f(x ; D)-h(x))^{2}\right]}{\text { model risk }}=\frac{\left(\mathbb{E}_{D}[f(x ; D)]-h(x)\right)^{2}}{(\text { bias })^{2}}+\frac{\mathbb{E}_{D}\left[\left(f(x ; D)-\mathbb{E}_{D}[f(x ; D)]\right)^{2}\right]}{\text { variance }}
$$

bias: represents the extent to which the average prediction over all data sets differs from the best prediction function.
variance: measures the extent to which the solutions for individual data sets vary around the average.
i.e. measures the extent to which the function $f(x ; D)$ is sensitive to the particular choice of data set.

* Skate is the only animal that has been confirmed to see only in black and white.
* That turtle is purely made up.

Bias - Variance Tradeoff

II. Linear Regression

Linear Regression

$$
p(y \mid x, \theta)=N\left(y \mid w^{\top} x, \sigma^{2}\right)
$$

$$
\begin{aligned}
& x_{i} \in \mathbb{R}^{0} \\
& y \in \mathbb{R}^{N} \\
& \omega \in \mathbb{R}^{0}
\end{aligned}
$$

Likelihood $\prod_{i=1}^{N} N\left(y_{i} \mid w^{\top} x_{i}, \sigma^{2}\right)$
\log likelihood $\sum_{i=1}^{N} \log \left[\left(\frac{1}{2 \pi 6^{2}}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{26^{2}}\left(y_{i}-\omega^{\top} x_{i}\right)^{2}\right)\right]$

$$
=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y_{i}-w^{\top} x_{i}\right)^{2}-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)
$$

maximize \log likelihood $\Leftrightarrow \operatorname{minimize} \frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-w^{\top} x_{i}\right)^{2}$

Least Squares Estimation
residual sum of squares (RSS).

$$
X \in \mathbb{R}^{N \times D}
$$

$$
\begin{aligned}
\operatorname{RSS}(w) & =\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-w^{\top} x_{i}\right)^{2} \\
& =\frac{1}{2}\left\|x_{w}-y\right\|_{2}^{2} \\
& =\frac{1}{2}\left(x_{w}-y\right)^{\top}\left(x_{w}-y\right)
\end{aligned}
$$

Recall 2-norm (Euclidean norm)
$\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ note that $\|x\|_{2}^{2}=x^{\top} x$
optimize:

$$
\begin{aligned}
& \nabla_{w} \operatorname{RSS}(w)=X^{\top} X_{w}-X^{\top} y=0 \\
& X^{\top} X_{w}=X^{\top} y
\end{aligned}
$$

Least squares solution: $w=\left(X^{\top} X\right)^{-1} X^{\top} y$

Least Squares Estimation (Derivation)

$$
\begin{aligned}
\operatorname{RSS}(w) & =\frac{1}{2}\left(X_{w}-y\right)^{\top}\left(X_{w}-y\right) \\
& =\frac{1}{2} w^{\top} X^{\top} X_{w}-\frac{1}{2} y^{\top} X_{w}-\frac{1}{2} w^{\top} X^{\top} y+\frac{1}{2} y^{\top} y \\
\nabla_{w} \operatorname{RSS}(w) & =\frac{1}{2} \frac{\partial w^{\top} X^{\top} X_{w}}{\partial w}-\frac{1}{2} \frac{\partial y^{\top} X_{w}}{\partial w}-\frac{1}{2} \frac{\partial w^{\top} X^{\top} y^{(0)}}{\partial w} \\
& =\frac{1}{2}\left(x^{\top} X+x^{\top} x\right) w-\frac{1}{2} x^{\top} y-\frac{1}{2} X^{\top} y \\
& =x^{\top} X_{w}-x^{\top} y
\end{aligned}
$$

Vector derivatives: $0 \frac{\partial x^{\top} A x}{\partial x}=\left(A+A^{\top}\right) x$ (2) $\frac{\partial a^{\top} x}{\partial x}=a$ (3) $\frac{\partial x^{\top} a}{\partial x}=a$

Geometric interpretation of least squares
\hat{y} hes in the linear subspace spanned by $X: \hat{y}=X_{\omega}$ we want to find

$$
\hat{y}^{*}=\underset{\hat{y} \in \operatorname{sgman}\left(x x_{i}, \cdots, x, d\right)}{\operatorname{argmin}}\|y-\hat{y}\|_{2} \quad x: d, \begin{aligned}
& d \text { th column } \\
& \text { of } x
\end{aligned}
$$

To minimize $\|y-\hat{y}\|_{2}$, we want $(y-\hat{y})$ to be orthogonal to every column of X :

$$
x^{\top}\left(y-x_{w}\right)=0 \Rightarrow w=\left(x^{\top} x\right)^{-1} x^{\top} y
$$

VI.MLE \& MAP

ML
maximum likelihood estimation (MLE):
Pick the parameters that assign the highest probability to data.

$$
\hat{\theta}_{\text {mile }} \triangleq \underset{\theta}{\operatorname{argmax}} p(D \mid \theta)
$$

Likelihood $p(D \mid \theta)=\prod_{i=1}^{N} p\left(y_{i} \mid x_{i}, \theta\right) \quad$ ied assumption
\log likelihood $L L(\theta) \triangleq \log p(D \mid \theta)=\sum_{i=1}^{N} \log p\left(y_{i} \mid x_{i}, \theta\right)$
negative \log likelihood $\operatorname{NLL}(\theta) \triangleq-\log p(D \mid \theta)=-\sum_{i=1}^{N} \log p\left(y_{i} \mid x_{i}, \theta\right)$

MAP
maximum a posterior estimation (MAP):

$$
\begin{aligned}
\hat{\theta}_{\text {MAP }} & =\underset{\theta}{\operatorname{argmax}} \log p(\theta \mid D) \\
& =\underset{\theta}{\arg } \max ^{\max }[\log p(D \mid \theta)+\underset{\text { prior. }}{\log p(\theta)}-\text { const }]
\end{aligned}
$$

* Will learn more about MAP when we learn Regularization.
$Q_{\text {uestions? }}$

