@ TACL 2020

Xuan Zhang

Kevin Duh

Department of Computer Science, Johns Hopkins University

Outline

- 1. Motivation
- 2. Introduction to Hyperparameter Optimization (HPO)
- 3. Contributions
 - a new HPO benchmark dataset (tabular dataset)
 - a new HPO algorithm (graph-based semi-supervised learning)
- 4. Summary

1. Motivation

Hyperparameter Search of NMT systems

Hyperparameters:

- preprocessing configurations: number of BPE symbols
- training settings: initial learning rate, warmup
- architecture designs: number of layers, embedding size, number of hidden units in each layer, number of self-attention heads

Objectives:

- training accuracy: BLEU, perplexity
- computational cost: decoding time, number of model parameters

Hyperparameter Search of NMT systems

--- Rewarded and Necessary

Challenges of HPO on NMT

Large search space & high computational costs for NMT training

If we have 6 hyperparameters to tune, where we want to try 3 candidate values for each hyperparameter, and it takes 1 day to 1 week to train a model, then how long will it take for a grid search?

HPO is expensive to run!

Challenges of HPO on NMT

- Large search space & high computational costs for NMT training
- Difficult to optimize multiple objectives

Pareto-optimal system (There does not exist a system that outperforms it on both objectives.)

Challenges of HPO on NMT

- Large search space & high computational costs for NMT training
- Difficult to optimize multiple objectives

HPO on NMT has been hardly studied.

It is prohibitively expensive to <u>compare</u> different HPO methods on NMT tasks in practice.

(This work) HPO Benchmark Dataset on NMT

Goal: enable reproducible HPO research on NMT tasks

Table-lookup benchmark procedure:

- 1. train an extremely large number of NMT systems with diverse hyperparameter settings and record their performance.
 - -> a table of (configuration, performance) pairs
- 2. constrain HPO methods to sample from this finite set of models.

2. Intro to HPO

HPO Problem Definition

Let

- $\mathbf{L}(\lambda, D_{train}, D_{valid})$ denote the loss of the ML algorithm, using hyperparameters λ trained on D_{train} and evaluated on D_{valid} .

The HPO problem is to find a configuration λ^* that minimizes this loss:

$$\lambda^* \in argmin_{\lambda \in \Lambda} L(\lambda, D_{train}, D_{valid})$$

HPO Methods

Model-Free Optimization Methods

- Grid Search
- Random Search
- Population-based methods
 e.g. genetic algorithms, evolutionary algorithms --- CMA-ES

Sequential Model-Based Optimization Methods (SMBO)

- Bayesian Optimization (BO)
- Tree Parzen Estimator (TPE)

Sequential Model-Based Optimization (SMBO)

Bayesian Optimization

3. Contributions

- a new HPO benchmark dataset (tabular dataset)
- a new HPO algorithm (graph-based semi-supervised learning)

HPO Method Selection

One pitfall in the evaluation of HPO methods:

The ranking between HPO methods varies between tasks.

(Klein et al., 2019)

Solution:

Select HPO method based on its performance on various MT corpora.

HPO Method Selection

Table-Lookup HPO Datasets

6 MT Corpora:

```
large resource (WMT2019 Robustness): ja-en, en-ja (4M lines) mid resource (TED Talks): zh-en, ru-en (170k lines) low resource: sw-en, so-en (24k lines)
```

Model: Transformers

Table-Lookup HPO Datasets

6 MT Corpora:

large resource (WMT2019 Robustness): ja-en, en-ja (4M lines)

mid resource (TED Talks): zh-en, ru-en (170k lines)

low resource: sw-en, so-en (24k lines)

Model: Transformers

Search Space: 2245 Transformers (1547 GPU days)

dataset	bpe (1k)	#layers	#embed	#hidden	#att_heads	init_lr (10 ⁻⁴)
zh, ru, ja, en	10, 30, 50	2, 4	256, 512, 1024	1024, 2048	8, 16	3, 6, 10
sw	1, 2, 4, 8, 16, 32	1, 2, 4, 6	256, 512, 1024	1024, 2048	8, 16	3, 6, 10
so	1, 2, 4, 8, 16, 32	1, 2, 4	256, 512, 1024	1024, 2048	8, 16	3, 6, 10

Objectives: BLEU & perplexity; decoding time, #updates, GPU memory, #model parameters

fix the target performance

Application II. Multiobjective Optimization

Application III. Hyperparameter Analyses

Hyperparameter Importance

top 1 vs. all NMT models

Application III. Hyperparameter Analyses

Hyperparameter Importance

en-ja vs. sw-en

Application III. Hyperparameter Analyses

Hyperparameter Ranking Correlation

3. Contributions

- a new HPO benchmark dataset (tabular dataset)
- a new HPO algorithm (graph-based semi-supervised learning)

Graph-Based SMBO

Graph-Based Regression (Surrogate Model)

Let

- $\bigcirc G = (V, E)$ be a graph with nodes V, and edges E.
- $v = L \cup U, L$ denote the labeled nodes, v = U the unlabeled.
- W be the edge weights.
- f be the soft labels of nodes.

Labels of U can be predicted by minimizing the energy function:

$$E(f) = \frac{1}{2} \sum_{i,j} w_{i,j} (f(i) - f(j))^{2},$$

with the constraint that f(i), $i \in L$ are true labels. (label propagation)

(this work) Expected Influence (Acquisition Function)

Idea:

To query a point such that, if its soft label f is observed, has the highest potential to change f(i) for all the node i as we re-run label propagation through the graph.

Results:

It outperforms *expected improvement* significantly when combined with *graph-based regression*.

(this work) Expected Influence (Acquisition Function)

- \bigcirc Scale f to be within [0, 1].
- \bigcirc If we were to query an unlabeled point k:
 - its label is 1, with prob f(k)
 - its label is 0, with prob 1 f(k)
- ullet Include k as a newly-added "labeled" point and re-run label propagation:
 - k is added with label 1, $f^{+(\lambda_k,1)}(i)$ are the new predictions for points i
 - k is added with label 0, $f^{+(\lambda_k,0)}(i)$ are the new predictions for points i
- If k is an influencer,
 - added with label 1, $f^{+(\lambda_k,1)}(i)$ will be large for i
 - added with label 0, $1 f^{+(\lambda_k,0)}(i)$ will be large for i

(this work) Expected Influence (Acquisition Function)

We want to seek a point that maximizes the expected influence score defined as the following:

$$a_{EIF}(\lambda_k) = (1 - f(k)) \sum_{i=1}^{n} (1 - f^{+(\lambda_k, 0)}(i))$$
$$+ f(k) \sum_{i=1}^{n} f^{+(\lambda_k, 1)}(i)$$

4. Summary

Summary

Li and Talwalkar (2019): "Of the 12 papers published since 2018 at NeurIPS, ICML, and ICLR that introduce novel Neural Architecture Search methods, none are exactly reproducible."

Our benchmarks are reproducible.

dataset: https://github.com/Este1le/hpo_nmt

code: https://github.com/Este1le/gbopt

Our benchmarks are efficient.

One can perform multiple random trials of the same algorithm to test robustness.

Our benchmarks are effective.

We cover various MT corpora and a reasonable search space.

We hope our dataset can facilitate reproducible research and rigorous evaluation of HPO for complex and expensive models.

Q & A