Post-Hoc Interpretation of Transformer Hyperparameters with Explainable Boosting Machines

Kiron Deb* Xuan Zhang* Kevin Duh
Johns Hopkins University
{kdeb1, xuanzhang}@jhu.edu, kevinduh@cs.jhu.edu

Abstract

Hyperparameter tuning is important for achieving high accuracy in deep learning models, yet little interpretability work has focused on hyperparameters. We propose to use the Explainable Boosting Machine (EBM), a glassbox method, as a post-hoc analysis tool for understanding how hyperparameters influence model accuracy. We present a case study on Transformer models in machine translation to illustrate the kinds of insights that may be gleaned, and perform extensive analysis to test the robustness of EBM under different data conditions.

1 Introduction

Deep neural networks have revolutionized the field of AI, bringing about impressive improvements in accuracy at various tasks. There is now a growing interest in interpreting what the model is doing that leads to these high accuracies (Bastings et al., 2021). A better understanding is useful in many ways: it can provide researchers a more in-depth view of the problem, assist developers to debug the model, or give users a way to act on the model result.

Our goal is to improve our understanding of neural network hyperparameters. While there are many research efforts on explaining a model’s prediction or interpreting a model’s parameters, there has been little work on hyperparameters. Hyperparameters like number of layers and learning rate are important factors that impact model performance. In practice, many engineering hours are spent on tuning hyperparameters. We believe methods and tools for interpreting hyperparameters are needed to help practitioners tune more effectively; there are also applications in the growing field of AutoML (Hutter et al., 2019), where our understanding of hyperparameters can help guide researchers design more effective search spaces.

* These authors contributed equally to this work.

In this paper, we advocate a post-hoc interpretation framework for hyperparameters. This framework requires that a set of neural network models with different hyperparameters are trained, and that their resulting accuracy metrics are recorded. Then, a glassbox model is fit on this data to reveal trends in hyperparameters. We use Explainable Boosting Machines (EBM, Lou et al. (2013)) as the glassbox model; it is a Generalized Additive Model similar to Boosted Trees, except that its additive feature function is visualizable in 1-D or 2-D plots, making it well-suited for understanding hyperparameters.

In the following, we first develop further the idea of post-hoc interpretation of hyperparameters and contrast it with other types of interpretability research (Section 3). Then we briefly describe the EBM, which is the glassbox model used in our interpretability framework (Section 2). Section 4 present a case study on Transformers in machine translation tasks, to illustrate how our framework can be used to understand which hyperparameters are important, how its influence changes according to different hyperparameter values, and whether pairwise interactions are present. Finally, Section 5 analyzes the robustness of EBM: it helps characterize under what conditions are the interpretability results valid.

The contribution of this paper is two-fold: First,
we advocate a framework for understanding hyperparameters with EBM's and present a case study on machine translation transformers to illustrate its usefulness. Second, we perform extensive experiments on EBM's to characterize the conditions where interpretability results are robust.

2 Explainable Boosting Machine

Let’s define input \(x \) as a feature vector representing the hyperparameter setting model \(M_\lambda \), and \(y \) as the scalar output response variable \(s(M_\lambda) \). We use EBM as introduced in (Lou et al., 2012, 2013; Caruana et al., 2015) and implemented in Nori et al. (2019). EBM is a generalized additive model with the form:

\[
g(y) = \beta_0 + \sum_j f_j(x_j) + \sum_{ij} f_{ij}(x_i, x_j),
\]

where \(g \) is a link function that transforms the model to either a regression or classification setting (identity or logit, respectively), \(f_j \) is a feature function for feature \(x_j \) that is learnt through bagging and gradient boosting. Each \(f_j \) is trained separately at a time in round-robin fashion. Additionally, EBM also includes pairwise terms \(f_{ij} \) to increase accuracy and enable analysis of pairwise interactions between features. In our experiments, we focus on 6 Transformer hyperparameters, so \(x \) is a vector of dimension 6 and the EBM model \(F(\cdot) \) is a sum of 6 single-hyperparameter functions \(f_j \), up to \((6 \times 5)/2 = 15\) pairwise functions \(f_{ij} \), and a bias term \(\beta_0 \).

An attractive aspect of EBM is that \(f_j(x_j) \) is based on a single feature, and can be of arbitrary shape. See examples of \(f_j \) in Figure 3: on the left, we see that \(f_{j=1}(x_1) \) decreases in score as the learning rate hyperparameter increases; on the right, we see a different \(f_{j=2}(x_2) \) increase in score slightly as BPE hyperparameter from 10k to 30k, then drop sharply when BPE increases to 50k. Since the \(f_j(\cdot) \) are summed linearly to predict the response variable (accuracy or BLEU score), we can obtain an intuitive understanding of how each hyperparameter impacts the final accuracy. In other words, since EBM is an additive model, it is straightforward to infer the contribution of each feature function; at the same time, the ability to learn arbitrary shapes for the feature function allows for enhanced interpretability. Refer to the aforementioned papers for details of how the EBM is trained.

3 Interpreting Hyperparameters

Proposed framework: Our goal is to gain insights about hyperparameters for a class of deep neural networks. We require the existence of a set of models with different hyperparameter settings trained on the same dataset. For example, assume a set of Transformer (Vaswani et al., 2017) models \(\{M_\lambda\}, \lambda \in \Lambda \) where \(\Lambda \) represents the hyperparameter space, \(M_\lambda \) represents a model with a specific hyperparameter setting (e.g. 6-layer encoder, 2-layer decoder, 8 heads, 256 word embedding size); each model has an accuracy metric \(s(M_\lambda) \), and a glass-box model is fit on pairs \(P \triangleq \{(M_\lambda, s(M_\lambda))\} \). Assume there is a person building the models (model builder) and a person analyzing the models after the fact (model analyzer); they may or may not be the same person. Our framework consists of three steps:

1. On a dataset \(D \), the model builder trains \(N \) models \(\{M_\lambda\} \) and record their accuracy metric \(s(M_\lambda) \). The metric can be any scalar in \(\mathbb{R} \); for this paper, we focus on machine translation and use the development set BLEU score.

2. The model analyzer fits an EBM on \(P \triangleq \{(M_\lambda, s(M_\lambda))\} \). The EBM is a function \(F(\cdot) \) that maps from hyperparameter space to BLEU score, \(F : \Lambda \rightarrow \mathbb{R} \). In practice, a small subset of \(P \) is held-out to measure EBM’s generalization, and we would proceed only if we trust that the EBM has not over-fit or under-fit.

3. The model analyzer visualizes the internal features of EBM to glean insights about hyperparameters.

The overall framework is shown in Figure 1. Step 1 is critical because it provides the data for EBM fitting. How large must \(N \) be, and are there requirements for the samples from \(\Lambda \) to be independent, identically distributed (i.i.d.)? Neural models can be expensive to train, so we assume that Step 1 is the result of whatever hyperparameter search was performed by the model builder. Thus, the model analyzer may not have full control over the models available for analysis. Section 5 characterizes under what conditions is EBM robust over different sizes and distributions of \(P \).

Step 2 is the core component of our framework. Different glassbox regression models are possible,
but we choose EBM due to its excellent visualization ability. Note that while there is a considerable amount of work on interpreting a Transformer’s parameters such as attention weights (Kobayashi et al., 2020; Abnar and Zuidema, 2020; Tay et al., 2021; Lim et al., 2018), these methods are not readily applicable due to the non-differentiability and heterogeneity of hyperparameters. Thus, an external model $F : \Lambda \rightarrow \mathbb{R}$ that treats hyperparameters as input features is more amenable. This external model is essentially finding hyperparameter "features" that are predictive of accuracy. As long as this model is glassbox in the sense that its internals are viewable, then we are able to interpret the results in Step 3.

Broader context: We would like to provide context on what our framework does and does not do. In the Explainable AI literature, one way to characterize explainability/interpretability research is to ask where the method sits on the local vs. global and self-explaining vs post-hoc continuum (Danilevsky et al., 2020). Local methods explain the model’s behavior on a specific input, whereas global methods inspects the model generally. Our framework is global in the sense that it identifies hyperparameter trends based on accuracy on a batch of inputs. Self-explaining methods generate explanations as part of the model’s prediction process, whereas post-hoc method builds an external model after the predictions have been made. Our framework sits squarely in the post-hoc camp because we work on top of trained Transformers, but it is interesting to note that the glassbox EBM employed can be called a self-explaining method.

In terms of research on hyperparameters, there is a branch of work (Bahar et al., 2017; Britz et al., 2017; Araabi and Monz, 2020) aiming at finding the optimal choices of hyperparameter values. In those work, hyperparameters are usually manually tuned based on experience and massive experiments are conducted to gather results. Those work would make recommendations on which hyperparameter combinations to use in general. We call this approach prescriptive; they are useful to inform the building of specific models.

In contrast, our framework is descriptive: models have already been trained, and we are interested in understanding the relationship between hyperparameters and accuracy. In other words, rather than predicting whether to set embedding size to 256 or 512, we are more interested in seeing how accuracy changes according to various embedding sizes and understanding whether other hyperparameters like number of layers would interact. This is an example of post-hoc analysis, which is also used in medicine (TDI, 2022; Srinivas et al., 2015) – after the effectiveness of a new treatment is tested, post-hoc analysis on both the failed and successful trials are conducted. It is not the intent of the original study, but it is the support for further trials. The distinctions between the two kinds of interpretation work are summarized in Table 1.

Post-hoc interpretation on hyperparameters is well-suit to the following two scenario: (a) Suppose a practitioner has already performed extensive hyperparameter tuning, and has deployed the best model. It would be a waste to throw away all the data pairs P. Running post-hoc interpretation allows us to extract more knowledge out of the data. Knowledge about which hyperparameters are important, for example, may inform future hyperparameter tuning experiments; it may also assist AutoML researchers to design more efficient search spaces for hyperparameter optimization and neural architecture search. (b) Suppose a researcher proposes a new neural network model. Providing a post-hoc analysis of hyperparameters is akin to showing feature ablation experiments. In sum, our work can be considered as an effort to unpack “blackbox” deep learning models at the level of hyperparameters.

4 Case Study: Post-hoc Interpretation

We now provide a case study on Transformer hyperparameters for machine translation to illustrate the kinds of insight we can learn from the proposed
post-hoc interpretation framework.

4.1 Dataset and Setup

Machine Translation (MT) Datasets Our experiments are conducted on a tabular dataset published by Zhang and Duh (2020), which contains 1,983 pairs of hyperparameter configurations and BLEU scores in total. To obtain those pairs, they trained all the Transformers to convergence on 6 MT corpora. Those 6 MT datasets are distinct on sizes – ranging from 24K training samples to 4M; domains – either in a single domain like TED Talks or in mixed-domain; language pairs – including Chinese-English (zh-en), Russian-English (ru-en), Japanese-English (ja-en), English-Japanese (en-ja), Swahili-English (sw-en) and Somali-English (so-en). The large size of the tabular dataset enables efficient post-hoc investigation. Its diversity also allows further study on the generalization of the observations.

Following Zhang and Duh (2020), we will be focusing on the effect of 6 different hyperparameters.

- **Preprocessing configurations:** number of BPE symbols (bpe).
- **Training settings:** initial learning rate (lr) for the Adam optimizer.
- **Architecture designs:** number of layers (#layers), embedding size (#embed), number of hidden units in each layer (#hidden), number of heads in self-attention (attn).

These hyperparameters appear frequently in MT literature as a part of the description of experiment setups. Practitioners aiming at a better model spend a large amount of time tuning them manually. We are interested in examining whether they are really equally important and deserve the efforts. We will answer these questions in the following section.

EBM Setup We adopt the implementation of EBM from Nori et al. (2019). To be specific, we train a EBM regressor on each of the language pair, which results in 6 models. Due to space limitation, we will only show results on selected language pairs, the rest can be found in Appendix.

4.2 Findings

In this section, we show how EBM can be used to interpret Transformer hyperparameters and report three types of findings.

4.2.1 Hyperparameter Importance

EBM learns an importance score for each feature, which indicates how much the model performance would change with varying feature values. It is computed as the absolute expected value of f_j over the dataset. Figure 2 plots the hyperparameter importance ranking on ru-en and zh-en. As shown in the figure, hyperparameters are not equally important and there is a large discrepancy between features. On ru-en, #embed and lr are the most important and there is a large discrepancy between features. On ru-en, #embed and lr are the most important and there is a large discrepancy between features. On ru-en, lr and #layers are also at the top of the listing, but the overall ranking is different from zh-en. Some important hyperparameters for ru-en, e.g. bpe, rank low on zh-en. Some insignificant hyperparameters for ru-en, e.g. #hidden, are elevated to higher positions on zh-en.

https://github.com/interpretml/interpret
In summary, there are only a limited number of critical hyperparameters for Transformers, and it would be more efficient to focus more on tuning them when developing a model. Across 6 language pairs, #attn is always ranked low and can be probably dropped from future hyperparameter search.

4.2.2 Single Hyperparameter Analysis
Besides the macro view of contributions of all the hyperparameters, EBM also provides a micro view studying how the segments within each hyperparameter relate. Figure 3 depicts the single feature function extracted from the trained EBM model on en-ja. As lr increases from 0.0003 to 0.001, BLEU score decreases significantly. While it is not the case for bpe, where the BLEU score does not change monotonically – it rises a little when bpe increases from 10k to 30k, then drops notably when bpe becomes 50k. This finding tell us both 10k and 30k are positively correlated with BLEU and the difference is not so distinct, but 50k is definitely not desirable.

4.2.3 Pairwise Interactions
EBM can automatically detect and include pairwise interaction terms in its modeling. Figure 4 shows an example of how two hyperparameters interact to determine Transformer’s performance. On en-ja, #embed with size of 1024 and lr with the size of 0.0003 produce the highest BLEU score among all the combinations. On the contrary, #embed 1024 and lr 0.001 output the worst Transformer. This is consistent with Figure 3 Left – larger lr worsens the performance.

However, this does not hold true for #embed 256 and 512: given these values, there is not so strong of a (negative) correlation between lr and BLEU score. This seems to imply that while lr is sensitive for a large #embed 1024, it is less sensitive when #embed is small. We do have to interpret this result carefully because there may be confounding factors from the individual feature functions f_j that are added, but this is illustrative of the potential insights we may gain from this case study.

Theoretically, the EBM formulation can allow for higher-order interactions (e.g. three-way). This may be a promising direction for future work.

5 Analysis of EBM Robustness
To ensure the validity of our post-hoc interpretation framework, we need to analyze the robustness of EBM to different kinds of data sizes and distributions. Specifically, one important requirement for our framework is the availability of $P \triangleq \{(M_\lambda, s(M_\lambda))\}$; one might not be able to fully control how this data is acquired. It may be a byproduct of an extensive grid search, a manual and focused hyperparameter tuning guided by an engineer’s intuition, or an AutoML experiment. This implies the that hyperparameters may not be sampled uniformly from the space Λ, and the number of samples for EBM fitting may not be very large.

In order to gain better understanding of EBM’s robustness under different conditions, we conduct four experiments. We first study how EBM’s fitting ability would be affected if the size or the distribution of training data changes. We then make connections to Hyperparameter Optimization (HPO), and examine EBM’s performance on data generated by sampling from two different HPO methods. Finally, we investigate the generalization ability of EBM. To be more specific, we test whether a EBM model trained on one dataset can perform well on another dataset.

The experiments following are all conducted on sw-en except for the one in Section 5.4. We split the sw-en dataset, the largest dataset among the six datasets provided by Zhang and Duh (2020) which contains 767 (configuration, BLEU score) pairs, into a train set with 614 samples and a test set with 153 samples. An EBM regressor is trained on a subset of the train set and its performance on the test set is reported. We repeat the process 5 times with different random seeds to generate 5 different train-test splits. Thus, results reported below are all averaged over 5 runs.

5.1 Varying Data Sizes
In practice, it is often infeasible to get a tabular dataset as large as the one in Zhang and Duh (2020), where around 2,000 Transformers are trained. This raises the question how EBM would perform with insufficient training data. In other words, it is in doubt if its interpretations on hyperparameters (e.g. observations shown in Section 4.2) are trustworthy when it is trained with less data.

In order to answer the questions above, we create datasets with different sizes by randomly sampling from the train set of sw-en. We experimented with subsets ranging from containing only 5% of the training samples, that is 31 samples, to the whole dataset here refers to the (hyperparameter configuration, BLEU score) pairs, instead of the sentence pairs that are used to train a MT Transformer.
train set, i.e. 614 samples.

We use the following metrics to measure EBM’s performance:

- **Mean Squared Error (MSE)** We calculate the average of the squared difference between the actual BLEU scores and EBM regressor’s predictions given hyperparameter configurations. As a widely used measure of an estimator’s quality, MSE is useful when compared between estimators. To be more specific, when there are multiple MSE scores, a lower one indicates a stronger estimator. While when there is only a single MSE score, it is hard to judge whether it is low enough to testify a good EBM model. Thus, we propose the following metrics as complements to MSE.

- **Spearman’s Rank Correlation Coefficient (SRC)** We measure SRC between the ranking of real BLEU scores and EBM’s predictions. For the purpose of interpreting hyperparameters, it is not necessary that EBM would predict the exact BLEU scores. Instead, it is more important that it recovers the ranking. For SRC, higher is better.

- **Mean Reciprocal Rank (MRR)** In some cases, for example, in hyperparameter search, one might be more interested in getting the best configuration and would be less concerned with the ranking of all the configurations. Reciprocal rank is defined as \(\frac{1}{\text{rank}} \), where rank is the position of the best configuration predicted by EBM in the real ranking. MRR, in our case, is the average over 5 runs. It is better if MRR is closer to 1.
<table>
<thead>
<tr>
<th>Size(%)</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>18.43</td>
<td>14.40</td>
<td>9.58</td>
<td>6.79</td>
<td>6.26</td>
<td>5.84</td>
<td>5.72</td>
<td>5.17</td>
<td>4.88</td>
<td>4.73</td>
<td>4.59</td>
</tr>
<tr>
<td>Std</td>
<td>3.51</td>
<td>1.56</td>
<td>0.84</td>
<td>0.54</td>
<td>0.41</td>
<td>0.57</td>
<td>0.32</td>
<td>0.16</td>
<td>0.31</td>
<td>0.13</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table 2: The mean and standard deviation of MSE on sw-en test set. EBM is trained on subsets of train set with various sizes and data compositions. Each subset is sampled 5 times with different random seeds.

We plot EBM’s performance with varying data sizes in Figure 5. It can be observed that although MSE rises drastically when the data size shrinks from 30% to 5%, it remains roughly at the same level when the size is larger than 30%. This means that a relatively accurate EBM model can be obtained with only 185 samples, and data sizes smaller than that would worsen the model significantly.

Same trend is also shown in other metrics and 30% is the turning point for all the lines. SRC ends up getting close to 1 when the data size increases, suggesting EBM’s great ability to recover the ranking. MRR stops at $\frac{1}{3}$, that means EBM mistakes the third best configuration as the best one. However, the difference between the BLEU score of the top three and top one is small, which is only 0.41.

5.2 Varying Data Distributions

Section 5.1 shows that a comparably good EBM model can be obtained by training on as few as 185 samples. Would this stay true if those 185 samples are replaced with other 185 samples? In other words, would EBM be robust to varying data distributions?

We evaluate EBM models trained with different data compositions and data sizes. Results are summarized in Table 2. As the amount of training data increases, the standard deviation of MSE decreases gradually, i.e. the EBM model becomes more robust. When given limited data, EBM is more prone to underfitting and generalize poorly to the test set. It can be inferred that hyperparameter interpretations produced by EBM models trained with more samples are more trustworthy and accurate than those trained with limited data.

5.3 Connections to HPO

The goal of HPO is to find an optimal hyperparameter configuration with as few evaluations of the model as possible. Most of the HPO methods can be classified as sequential model-based optimization (SMBO). SMBO employs 1) a surrogate model to approximate the underlying function between hyperparameters and model performance, 2) an acquisition function to propose hyperparameter configurations to explore. SMBO works iteratively. Considering applying HPO to MT Transformer, at each iteration, the acquisition function selects configuration candidates to query the Transformer; after training and evaluation, a BLEU score is returned; the surrogate model then fits on the resulting pairs of configurations and BLEU scores and make predictions on unevaluated configurations, which are further used by the acquisition function as bases for making candidate suggestions. Thus, the fitting ability of the surrogate model is crucial to the success of the HPO method.

In this section, we focus on investigating how EBM would fit the sampling by HPO methods, where sampling refers to the candidates proposed by acquisition function along one complete run of HPO – this is related to Section 5.2, since HPO sampling generates another unique data distribution for EBM to train on.

We experiment with two HPO methods, Bayesian Optimization (BO) and a Graph-Based HPO method (GB, Zhang and Duh (2020)). For BO, we use Gaussian Processes as surrogate model and expected improvement as acquisition function.
For GB, we use Matérn52 kernel and expected influence. We run BO and GB separately on sw-en and record the sampling order of hyperparameter configurations. We then compare the performance of EBM models trained on the first $n\%$ data points in the sampling with those trained on randomly sampled data. Results are plotted in Figure 6.

BO and random show similar trends with MSE falling sharply when the training data increases from 5% to 30%. While GB drops at a slower pace with MSE always staying the highest among the three. The discrepancy between the curves testifies the discrepancy between the sampling of BO and GB. Compared to random and BO, the distribution of GB sampling is more skewed. At size 15%, BO surpasses random and maintains the lowest MSE till size 100%. This suggests that BO sampling makes EBM a better model than random sampling.

EBM can be used in combination with HPO in two ways: 1) During the run of HPO, EBM can be adopted as an analysis tool. By fitting the HPO sampling, it can provide insights on hyperparameter importance (Section 4.2.1) and make suggestions on hyperparameter values (Section 4.2.2). The HPO algorithm can then adjust its search space accordingly for later runs. But one should be cautious when the HPO algorithm in employment generates poor sampling distribution like GB does. 2) EBM can also be adopted as an alternative surrogate model considering its good fitting ability.

5.4 Transferability

So far, we have examined EBM’s behaviours on specific language pairs. We have trained isolated EBM models on 6 MT tasks. Next, we explore whether EBM can leverage knowledge learned from one task and transfer it to another. Specifically, we evaluate each trained model on the test set of each of the language pair respectively. Figure 7 summarizes the results.

EBM faces difficulty on some of the transfers, for example, from sw-en (y-axis) to so-en (x-axis) and from so-en to sw-en. Meanwhile, there are also some successful transfers, for example, from en-ja to ru-en and from ru-en to en-ja. Surprisingly, EBM trained on en-ja generalizes so well on ja-en and ru-en that MSE obtained on those two test sets is even lower than that obtained on en-ja’s test set. However, overall, there does not exist a single dataset that can produce a good EBM that can generalize well on all the other datasets.

An interesting future work is to implement interpretability tools to analyze when transfer works and when it does not.

6 Related Work

Previous work that explores the effect of choices of hyperparameters can be mainly divided into two categories: the prescriptive approach aims to offer advice on the configurations by large-scale experimental runs and those developing tools to improve the understanding of the hyperparameters, as cited in Section 3. Our work follows the descriptive approach, which seeks to interpret trends from a set of already-trained models. Related are some studies that measure hyperparameter importance: Hutter et al. (2014) and Sharma et al. (2019) applied a functional ANOVA framework to assess the importance, while Probst et al. (2019) adopted a variant term, hyperparameter tunability, conditioned on the difference on the performance of default and optimal settings of hyperparameters.

Exploration of the hyperparameter space also appears in research on HPO interpretability (Pfisterer et al., 2019; Freitas, 2019; Xanthopoulos et al., 2020). Moosbauer et al. (2021) attempted to interpret the HPO process with a variant of the partial dependence plot and showed what the surrogate model learned about the search space and how the final model is found.

7 Conclusions

In this work, we propose a framework for interpreting the hyperparameters of a set of Transformer models. Our framework work uses EBM as a post-hoc analysis tool, and we show that as a glassbox
model, EBM is effectively at interpreting hyperparameters. While the computational needs of generating training data for EBM may seem large at first glance, we emphasize that we advocate for post-hoc analysis. In other words, the analysis is performed on the results of whatever hyperparameter search the model builder needs to perform to deploy a model.

Our MT case study demonstrates the kinds of insights one can glean regarding the relationship between hyperparameter configurations and Transformer performance; for example, we discover that that not all hyperparameters are equally important, and some hyperparameters exhibit non-monotonic correlation with BLEU scores. Further, we conducted a series of analyses to test the robustness of EBM’s fitting ability under varying data sizes and distributions. We show that EBM fits well under limited data, yet struggles with transfer across different MT datasets. It should also be noted that the conclusions drawn from MT tasks might not be applicable to other Transformer-based tasks.

Hyperparameter tuning is often viewed as a critical yet un-intuitive part of the model building process. We hope that our proposal provides a first step in unveiling the mysterious masks of hard-to-interpret hyperparameters in deep learning models.

References

Jasmijn Basting, Yonatan Belinkov, Emmanuel Dupoux, Mario Giulianelli, Dieuwke Hupkes, Yuval Pinter, and Hassan Sajjad, editors. 2021. Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP. Association for Computational Linguistics, Punta Cana, Dominican Republic.

ALS TDI. 2022. What is post-hoc analysis in a clinical trial.

Figure 8: Hyperparameter contribution rank on so-en, en-ja, ja-en and sw-en.
B Single Hyperparameter Analysis

Figure 9: Single hyperparameter feature functions for en-ja. Higher score indicates a higher chance to get a high BLEU score. Density refers to the number of samples in the dataset.

C Pairwise Interactions

Figure 10: Pairwise interaction between features on en-ja. Higher score (yellow) indicates higher odds to get higher BLEU scores.