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Abstract

Hyperparameter tuning is important for achiev-
ing high accuracy in deep learning models, yet
little interpretability work has focused on hyper-
parameters. We propose to use the Explainable
Boosting Machine (EBM), a glassbox method,
as a post-hoc analysis tool for understanding
how hyperparameters influence model accuracy.
We present a case study on Transformer models
in machine translation to illustrate the kinds of
insights that may be gleaned, and perform ex-
tensive analysis to test the robustness of EBM
under different data conditions.

1 Introduction

Deep neural networks have revolutionized the field
of AI, bringing about impressive improvements in
accuracy at various tasks. There is now a growing
interest in interpreting what the model is doing
that leads to these high accuracies (Bastings et al.,
2021). A better understanding is useful in many
ways: it can provide researchers a more in-depth
view of the problem, assist developers to debug
the model, or give users a way to act on the model
result.

Our goal is to improve our understanding of
neural network hyperparameters. While there are
many research efforts on explaining a model’s pre-
diction or interpreting a model’s parameters, there
has been little work on hyperparameters. Hyperpa-
rameters like number of layers and learning rate are
important factors that impact model performance.
In practice, many engineering hours are spent on
tuning hyperparameters. We believe methods and
tools for interpreting hyperparameters are needed
to help practitioners tune more effectively; there are
also applications in the growing field of AutoML
(Hutter et al., 2019), where our understanding of
hyperparameters can help guide researchers design
more effective search spaces.

* These authors contributed equally to this work.

Figure 1: Proposed framework for post-hoc intepreta-
tion of hyperparameters with EBM.

In this paper, we advocate a post-hoc interpreta-
tion framework for hyperparameters. This frame-
work requires that a set of neural network models
with different hyperparameters are trained, and that
their resulting accuracy metrics are recorded. Then,
a glassbox model is fit on this data to reveal trends
in hyperparameters. We use Explainable Boosting
Machines (EBM, Lou et al. (2013)) as the glassbox
model; it is a Generalized Additive Model similar
to Boosted Trees, except that its additive feature
function is visualizable in 1-D or 2-D plots, making
it well-suited for understanding hyperparameters.

In the following, we first develop further the idea
of post-hoc interpretation of hyperparameters and
contrast it with other types of interpretability re-
search (Section 3). Then we briefly describe the
EBM, which is the glassbox model used in our
interpretability framework (Section 2). Section 4
present a case study on Transformers in machine
translation tasks, to illustrate how our framework
can be used to understand which hyperparameters
are important, how its influence changes according
to different hyperparameter values, and whether
pairwise interactions are present. Finally, Section
5 analyzes the robustness of EBM: it helps charac-
terize under what conditions are the interpretability
results valid.

The contribution of this paper is two-fold: First,



we advocate a framework for understanding hyper-
parameters with EBMs and present a case study
on machine translation transformers to illustrate
its usefulness. Second, we perform extensive ex-
periments on EBMs to characterize the conditions
where interpretability results are robust.

2 Explainable Boosting Machine

Let’s define input x as a feature vector representing
the hyperparameter setting model Mλ, and y as
the scalar output response variable s(Mλ). We
use EBM as introduced in (Lou et al., 2012, 2013;
Caruana et al., 2015) and implemented in Nori et al.
(2019). EBM is a generalized additive model with
the form:

g(y) = β0 +
∑
j

fj(xj) +
∑
ij

fij(xi, xj), (1)

where g is a link function that transforms the model
to either a regression or classification setting (iden-
tity or logit, respectively). fj is a feature function
for feature xj that is learnt through bagging and
gradient boosting. Each fj is trained separately at
a time in round-robin fashion. Additionally, EBM
also includes pairwise terms fij to increase accu-
racy and enable analysis of pairwise interactions
between features. In our experiments, we focus
on 6 Transformer hyperparameters, so x is a vec-
tor of dimension 6 and the EBM model F (·) is a
sum of 6 single-hyperparameter functions fj , up to
(6× 5)/2 = 15 pairwise functions fij , and a bias
term β0.

An attractive aspect of EBM is that fj(xj) is
based on a single feature, and can be of arbitrary
shape. See examples of fj in Figure 3: on the left,
we see that fj=1(x1) decreases in score as the learn-
ing rate hyperparameter increases; on the right, we
see a different fj=2(x2) increase in score slightly
as BPE hyperparameter from 10k to 30k, then drop
sharply when BPE increases to 50k. Since the fj(·)
are summed linearly to predict the response vari-
able (accuracy or BLEU score), we can obtain an
intuitive understanding of how each hyperparame-
ter impacts the final accuracy. In other words, since
EBM is an additive model, it is straightforward to
infer the contribution of each feature function; at
the same time, the ability to learn arbitrary shapes
for the feature function allows for enhanced inter-
pretability. Refer to the aforementioned papers for
details of how the EBM is trained.

3 Interpreting Hyperparameters

Proposed framework: Our goal is to gain in-
sights about hyperparameters for a class of deep
neural networks. We require the existence of a set
of models with different hyperparameter settings
trained on the same dataset. For example, assume
a set of Transformer (Vaswani et al., 2017) models
{Mλ}, λ ∈ Λ where Λ represents the hyperparame-
ter space, Mλ represents a model with a specific hy-
perparameter setting (e.g. 6-layer encoder, 2-layer
decoder, 8 heads, 256 word embedding size); each
model has an accuracy metric s(Mλ), and a glass-
box model is fit on pairs P ≜ {(Mλ, s(Mλ))}. As-
sume there is a person building the models (model
builder) and a person analyzing the models after
the fact (model analyzer); they may or may not be
the same person. Our framework consists of three
steps:

1. On a dataset D, the model builder trains N
models {Mλ} and record their accuracy met-
ric s(Mλ). The metric can be any scalar in R;
for this paper, we focus on machine transla-
tion and use the development set BLEU score.

2. The model analyzer fits an EBM on P ≜
{(Mλ, s(Mλ))}. The EBM is a function
F (·) that maps from hyperparameter space
to BLEU score, F : Λ → R. In practice,
a small subset of P is held-out to measure
EBM’s generalization, and we would proceed
only if we trust that the EBM has not over-fit
or under-fit.

3. The model analyzer visualizes the internal fea-
tures of EBM to glean insights about hyperpa-
rameters.

The overall framework is shown in Figure 1.
Step 1 is critical because it provides the data for
EBM fitting. How large must N be, and are there
requirements for the samples from Λ to be indepen-
dent, identically distributed (i.i.d.)? Neural models
can be expensive to train, so we assume that Step 1
is the result of whatever hyperparameter search was
performed by the model builder. Thus, the model
analyzer may not have full control over the models
available for analysis. Section 5 characterizes un-
der what conditions is EBM robust over different
sizes and distributions of P .

Step 2 is the core component of our framework.
Different glassbox regression models are possible,



Type Goal Example Result
Prescriptive Model build-

ing
Given past experience, we recommend setting embedding size to 256
and attention head to 8 on dataset D.

Descriptive
(this work)

Post-hoc un-
derstanding

Given N models that are trained on dataset D, we find that embedding
size influences BLEU more than attention heads.

Table 1: Two kinds of goals for Interpretability Research on hyperparameters.

but we choose EBM due to its excellent visualiza-
tion ability. Note that while there is a considerable
amount of work on interpreting a Transformer’s
parameters such as attention weights (Kobayashi
et al., 2020; Abnar and Zuidema, 2020; Tay et al.,
2021; Lim et al., 2018), these methods are not read-
ily applicable due to the non-differentiability and
heterogeneity of hyperparameters. Thus, an exter-
nal model F : Λ → R that treats hyperparameters
as input features is more amenable. This external
model is essentially finding hyperparameter "fea-
tures" that are predictive of accuracy. As long as
this model is glassbox in the sense that it’s inter-
nals are viewable, then we are able to interpret the
results in Step 3.

Broader context: We would like to provide con-
text on what our framework does and does not
do. In the Explainable AI literature, one way to
characterize explainablity/interpretability research
is to ask where the method sits on the local vs.
global and self-explaining vs post-hoc continuum
(Danilevsky et al., 2020). Local methods explain
the model’s behavior on a specific input, whereas
global methods inspects the model generally. Our
framework is global in the sense that it identifies hy-
perparameter trends based on accuracy on a batch
of inputs. Self-explaining methods generate expla-
nations as part of the model’s prediction process,
whereas post-hoc method builds an external model
after the predictions have been made. Our frame-
work sits squarely in the post-hoc camp because
we work on top of trained Transformers, but it is in-
teresting to note that the glassbox EBM employed
can be called a self-explaining method.

In terms of research on hyperparameters, there
is a branch of work (Bahar et al., 2017; Britz et al.,
2017; Araabi and Monz, 2020) aiming at finding
the optimal choices of hyperparameter values. In
those work, hyperparameters are usually manu-
ally tuned based on experience and massive ex-
periments are conducted to gather results. Those
work would make recommendations on which hy-
perparameter combinations to use in general. We

call this approach prescriptive; they are useful to
inform the building of specific models.

In contrast, our framework is descriptive: mod-
els have already been trained, and we are interested
in understanding the relationship between hyperpa-
rameters and accuracy. In other words, rather than
predicting whether to set embedding size to 256 or
512, we are more interested in seeing how accu-
racy changes according to various embedding sizes
and understanding whether other hyperparameters
like number of layers would interact. This is an
example of post-hoc analysis, which is also used in
medicine (TDI, 2022; Srinivas et al., 2015) – after
the effectiveness of a new treatment is tested, post-
hoc analysis on both the failed and successful trials
are conducted. It is not the intent of the original
study, but it is the support for further trials. The
distinctions between the two kinds of interpretation
work are summarized in Table 1.

Post-hoc interpretation on hyperparameters is
well-suit to the following two scenario: (a) Sup-
pose a practitioner has already performed exten-
sive hyperparameter tuning, and has deployed the
best model. It would be a waste to throw away all
the data pairs P . Running post-hoc interpretation
allows us to extract more knowledge out of the
data. Knowledge about which hyperparameters are
important, for example, may inform future hyper-
parameter tuning experiments; it may also assist
AutoML researchers to design more efficient search
spaces for hyperparameter optimization and neu-
ral architecture search. (b) Suppose a researcher
proposes a new neural network model. Provid-
ing a post-hoc analysis of hyperparameters is akin
to showing feature ablation experiments. In sum,
our work can be considered as an effort to unpack
“blackbox" deep learning models at the level of
hyperparameters.

4 Case Study: Post-hoc Interpretation

We now provide a case study on Transformer hy-
perparameters for machine translation to illustrate
the kinds of insight we can learn from the proposed



Figure 2: Hyperparameter contribution rank on ru-en (left) and zh-en (right). Hyperparameters are ordered by
importance score – for ru-en, #embed x lr is the most important, while attn is the least important. Hyperparameters
that are not included in the plots are in lower ranks than shown ones.

post-hoc interpretation framework.

4.1 Dataset and Setup
Machine Translation (MT) Datasets Our experi-
ments are conducted on a tabular dataset published
by Zhang and Duh (2020), which contains 1,983
pairs of hyperparameter configurations and BLEU
scores in total. To obtain those pairs, they trained
all the Transformers to convergence on 6 MT cor-
pora. Those 6 MT datasets are distinct on sizes
– ranging from 24K training samples to 4M; do-
mains – either in a single domain like TED Talks
or in mixed-domain; language pairs – including
Chinese-English (zh-en), Russian-English (ru-en),
Japanese-English (ja-en), English-Japanese (en-ja),
Swahili-English (sw-en) and Somali-English (so-
en). The large size of the tabular dataset enables
efficient post-hoc investigation. Its diversity also
allows further study on the generalization of the
observations.

Following Zhang and Duh (2020), we will be fo-
cusing on the effect of 6 different hyperparameters.

• Preprocessing configurations: number of
BPE symbols (bpe).

• Training settings: initial learning rate (lr) for
the Adam optimizer.

• Architecture designs: number of layers (lay-
ers), embedding size (#embed), number of
hidden units in each layer (#hidden), number
of heads in self-attention (attn).

These hyperparameters appear frequently in MT
literature as a part of the description of experiment
setups. Practitioners aiming at a better model
spend a large amount of time tuning them manually.
We are interested in examining whether they are

really equally important and deserve the efforts.
We will answer these questions in the following
section.

EBM Setup We adopt the implementation
of EBM from Nori et al. (2019). To be specific, we
train a EBM regressor on each of the language pair,
which results in 6 models. Due to space limitation,
we will only show results on selected language
pairs, the rest can be found in Appendix.

4.2 Findings

In this section, we show how EBM can be used to
interpret Transformer hyperparameters and report
three types of findings.

4.2.1 Hyperparameter Importance
EBM learns an importance score for each feature,
which indicates how much the model performance
would change with varying feature values. It is
computed as the absolute expected value of fj over
the dataset. Figure 2 plots the hyperparameter im-
portance ranking on ru-en and zh-en. As shown in
the figure, hyperparameters are not equally impor-
tant and there is a large discrepancy between fea-
tures. On ru-en, #embed and lr are the most critical
hyperparameters in determining Transformer’s per-
formance followed by bpe; while adjusting #layers,
attn and #hidden (not shown in the figure) would
only slightly affect the results. On zh-en, lr and
#embed are also at the top of the listing, but the
overall ranking is different from ru-en. Some im-
portant hyperparameters for ru-en, e.g. bpe, rank
low on zh-en. Some insignificant hyperparame-
ters for ru-en, e.g. #hidden, are elevated to higher
positions on zh-en.

https://github.com/interpretml/interpret



In summary, there are only a limited number of
critical hyperparameters for Transformers, and it
would be more efficient to focus more on tuning
them when developing a model. Across 6 language
pairs, #attn is always ranked low and can be proba-
bly dropped from future hyperparameter search.

4.2.2 Single Hyperparameter Analysis
Besides the macro view of contributions of all the
hyperparameters, EBM also provides a micro view
studying how the segments within each hyperpa-
rameter relate. Figure 3 depicts the single feature
function extracted from the trained EBM model
on en-ja. As lr increases from 0.0003 to 0.001,
BLEU score decreases significantly. While it is not
the case for bpe, where the BLEU score does not
change monotonically – it rises a little when bpe in-
creases from 10k to 30k, then drops notably when
bpe becomes 50k. This finding tell us both 10k and
30k are positively correlated with BLEU and the
difference is not so distinct, but 50k is definitely
not desirable.

4.2.3 Pairwise Interactions
EBM can automatically detect and include pairwise
interaction terms in its modeling. Figure 4 shows
an example of how two hyperparameters interact
to determine Transformer’s performance. On en-ja,
#embed with size of 1024 and lr with the size of
0.0003 produce the highest BLEU score among all
the combinations. On the contrary, #embed 1024
and lr 0.001 output the worst Transformer. This is
consistent with Figure 3 Left – larger lr worsens
the performance.

However, this does not hold true for #embed
256 and 512: given these values, there is not so
strong of a (negative) correlation between lr and
BLEU score. This seems to imply that while lr is
sensitive for a large #embed 1024, it is less sensitive
when #embed is small. We do have to interpret this
result carefully because there may be confounding
factors from the individual feature functions fj that
are added, but this is illustrative of the potential
insights we may gain from this case study.

Theoretically, the EBM formulation can allow
for higher-order interactions (e.g. three-way). This
may be a promising direction for future work.

5 Analysis of EBM Robustness

To ensure the validity of our post-hoc interpreta-
tion framework, we need to analyze the robust-
ness of EBM to different kinds of data sizes and

distributions. Specifically, one important require-
ment for our framework is the availability of P ≜
{(Mλ, s(Mλ))}; one might not be able to fully
control how this data is acquired. It may be a by-
product of an extensive grid search, a manual and
focused hyperparameter tuning guided by an engi-
neer’s intuition, or an AutoML experiment. This
implies the that hyperparameters may not be sam-
pled uniformly from the space Λ, and the number
of samples for EBM fitting may not be very large.

In order to gain better understanding of EBM’s
robustness under different conditions, we conduct
four experiments. We first study how EBM’s fitting
ability would be affected if the size or the distribu-
tion of training data changes. We then make con-
nections to Hyperparameter Optimization (HPO),
and examine EBM’s performance on data gener-
ated by sampling from two different HPO methods.
Finally, we investigate the generalization ability of
EBM. To be more specific, we test whether a EBM
model trained on one dataset can perform well on
another dataset.

The experiments following are all conducted on
sw-en except for the one in Section 5.4. We split
the sw-en dataset, the largest dataset among the six
datasets provided by Zhang and Duh (2020) which
contains 767 (configuration, BLEU score) pairs,
into a train set with 614 samples and a test set with
153 samples. An EBM regressor is trained on a
subset of the train set and its performance on the
test set is reported. We repeat the process 5 times
with different random seeds to generate 5 different
train-test splits. Thus, results reported below are
all averaged over 5 runs.

5.1 Varying Data Sizes

In practice, it is often infeasible to get a tabular
dataset as large as the one in Zhang and Duh (2020),
where around 2,000 Transformers are trained. This
raises the question how EBM would perform with
insufficient training data. In other words, it is in
doubt if its interpretations on hyperparameters (e.g.
observations shown in Section 4.2) are trustworthy
when it is trained with less data.

In order to answer the questions above, we create
datasets with different sizes by randomly sampling
from the train set of sw-en. We experimented with
subsets ranging from containing only 5% of the
training samples, that is 31 samples, to the whole

Data here refers to the (hyperparameter configuration,
BLEU score) pairs, instead of the sentence pairs that are used
to train a MT Transformer.



Figure 3: Single hyperparameter feature function on en-ja. Left: initial learning rate. Right: bpe symbols. Higher
score indicates a higher chance to get a high BLEU score. Density refers to the number of samples in the dataset.

Figure 4: Pairwise interaction between embedding size
and initial learning rate on en-ja. Higher score (yellow)
indicates higher odds to get higher BLEU scores.

Figure 5: EBM’s fitting ability with varying data sizes
of sw-en. Subsets are generated by randomly sampling
from the train set. Results are averaged over 5 runs with
different random seeds.

train set, i.e. 614 samples.
We use the following metrics to measure EBM’s

performance:

• Mean Squared Error (MSE) We calculate
the average of the squared difference between
the actual BLEU scores and EBM regressor’s
predictions given hyperparameter configura-
tions. As a widely used measure of an es-
timator’s quality, MSE is useful when com-
pared between estimators. To be more spe-
cific, when there are multiple MSE scores,
a lower one indicates a stronger estimator.
While when there is only a single MSE score,
it is hard to judge whether it is low enough
to testify a good EBM model. Thus, we pro-
pose the following metrics as complements to
MSE.

• Spearman’s Rank Correlation Coefficient
(SRC) We measure SRC between the ranking
of real BLEU scores and EBM’s predictions.
For the purpose of interpreting hyperparame-
ters, it is not necessary that EBM would pre-
dict the exact BLEU scores. Instead, it is
more important that it recovers the ranking.
For SRC, higher is better.

• Mean Reciprocal Rank (MRR) In some
cases, for example, in hyperparameter search,
one might be more interested in getting the
best configuration and would be less con-
cerned with the ranking of all the configu-
rations. Reciprocal rank is defined as 1

rank ,
where rank is the position of the best config-
uration predicted by EBM in the real ranking.
MRR, in our case, is the average over 5 runs.
It is better if MRR is closer to 1.



Size(%) 5 10 20 30 40 50 60 70 80 90 100
Mean 18.43 14.40 9.58 6.79 6.26 5.84 5.72 5.17 4.88 4.73 4.59
Std 3.51 1.56 0.84 0.54 0.41 0.57 0.32 0.16 0.31 0.13 0.10

Table 2: The mean and standard deviation of MSE on sw-en test set. EBM is trained on subsets of train set with
various sizes and data compositions. Each subset is sampled 5 times with different random seeds.

We plot EBM’s performance with varying data
sizes in Figure 5. It can be observed that al-
though MSE rises drastically when the data size
shrinks from 30% to 5%, it remains roughly at the
same level when the size is larger than 30%. This
means that a relatively accurate EBM model can
be obtained with only 185 samples, and data sizes
smaller than that would worsen the model signifi-
cantly.

Same trend is also shown in other metrics and
30% is the turning point for all the lines. SRC ends
up getting close to 1 when the data size increases,
suggesting EBM’s great ability to recover the rank-
ing. MRR stops at 1

3 , that means EBM mistakes the
third best configuration as the best one. However,
the difference between the BLEU score of the top
three and top one is small, which is only 0.41.

5.2 Varying Data Distributions

Section 5.1 shows that a comparably good EBM
model can be obtained by training on as few as
185 samples. Would this stay true if those 185
samples are replaced with other 185 samples? In
other words, would EBM be robust to varying data
distributions?

We evaluate EBM models trained with different
data compositions and data sizes. Results are sum-
marized in Table 2. As the amount of training data
increases, the standard deviation of MSE decreases
gradually, i.e. the EBM model becomes more ro-
bust. When given limited data, EBM is more prone
to underfitting and generalize poorly to the test set.
It can be inferred that hyperparameter interpreta-
tions produced by EBM models trained with more
samples are more trustworthy and accurate than
those trained with limited data.

5.3 Connections to HPO

The goal of HPO is to find an optimal hyperpa-
rameter configuration with as few evaluations of
the model as possible. Most of the HPO methods

100% refers to using all the samples in the train set, which
takes up 80% of the original sw-en dataset. MSE here is not
determined because we also randomly sampled train set from
the whole dataset multiple times.

Figure 6: The performance of EBM trained on sw-en
data sampled by BO, GB and randomly sampling. EBM
is evaluated on a held-out test set, which takes up 20%
of the sw-en data.

can be classified as sequential model-based opti-
mization (SMBO). SMBO employs 1) a surrogate
model to approximate the underlying function be-
tween hyperparameters and model performance, 2)
an acquisition function to propose hyperparameter
configurations to explore. SMBO works iteratively.
Considering applying HPO to MT Transformer,
at each iteration, the acquisition function selects
configuration candidates to query the Transformer;
after training and evaluation, a BLEU score is re-
turned; the surrogate model then fits on the result-
ing pairs of configurations and BLEU scores and
make predictions on unevaluated configurations,
which are further used by the acquisition function
as bases for making candidate suggestions. Thus,
the fitting ability of the surrogate model is crucial
to the success of the HPO method.

In this section, we focus on investigating how
EBM would fit the sampling by HPO methods,
where sampling refers to the candidates proposed
by acquisition function along one complete run
of HPO – this is related to Section 5.2, since HPO
sampling generates another unique data distribution
for EBM to train on.

We experiment with two HPO methods,
Bayesian Optimization (BO) and a Graph-Based
HPO method (GB, Zhang and Duh (2020)). For
BO, we use Gaussian Processes as surrogate model
and expected improvement as acquisition function.



For GB, we use Matérn52 kernel and expected in-
fluence. We run BO and GB separately on sw-en
and record the sampling order of hyperparameter
configurations. We then compare the performance
of EBM models trained on the first n% data points
in the sampling with those trained on randomly
sampled data. Results are plotted in Figure 6.

BO and random show similar trends with MSE
falling sharply when the training data increases
from 5% to 30%. While GB drops at a slower pace
with MSE always staying the highest among the
three. The discrepancy between the curves testifies
the discrepancy between the sampling of BO and
GB. Compared to random and BO, the distribution
of GB sampling is more skewed. At size 15%, BO
surpasses random and maintains the lowest MSE
till size 100%. This suggests that BO sampling
makes EBM a better model than random sampling.

EBM can be used in combination with HPO in
two ways: 1) During the run of HPO, EBM can be
adopted as an analysis tool. By fitting the HPO sam-
pling, it can provide insights on hyperparameter im-
portance (Section 4.2.1) and make suggestions on
hyperparameter values (Section 4.2.2). The HPO
algorithm can then adjust its search space accord-
ingly for later runs. But one should be cautious
when the HPO algorithm in employment gener-
ates poor sampling distribution like GB does. 2)
EBM can also be adopted as an alternative surro-
gate model considering its good fitting ability.

5.4 Transferability

So far, we have examined EBM’s behaviours on
specific language pairs. We have trained isolated
EBM models on 6 MT tasks. Next, we explore
whether EBM can leverage knowledge learned
from one task and transfer it to another. Specif-
ically, we evaluate each trained model on the test
set of each of the language pair respectively. Figure
7 summarizes the results.

EBM faces difficulty on some of the transfers,
for example, from sw-en (y-axis) to so-en (x-axis)
and from so-en to sw-en. Meanwhile, there are
also some successful transfers, for example, from
en-ja to ru-en and from ru-en to en-ja. Surprisingly,
EBM trained on en-ja generalizes so well on ja-
en and ru-en that MSE obtained on those two test
sets is even lower than that obtained on en-ja’s
test set. However, overall, there does not exist a
single dataset that can produce a good EBM that
can generalize well on all the other datasets.

Figure 7: MSE of EBMs trained on one dataset (x-axis)
and tested on another (y-axis).

An interesting future work is to implement in-
terpretability tools to analyze when transfer works
and when it does not.

6 Related Work

Previous work that explores the effect of choices
of hyperparameters can be mainly divided into two
categories: the prescriptive approach aims to offer
advice on the configurations by large-scale experi-
mental runs and those developing tools to improve
the understanding of the hyperparameters, as cited
in Section 3. Our work follows the descriptive ap-
proach, which seeks to interpret trends from a set of
already-trained models. Related are some studies
that measure hyperparameter importance: Hutter
et al. (2014) and Sharma et al. (2019) applied a
functional ANOVA framework to assess the impor-
tance, while Probst et al. (2019) adopted a variant
term, hyperparameter tunability, conditioned on
the difference on the performance of default and
optimal settings of hyperparameters.

Exploration of the hyperparameter space also
appears in research on HPO interpretability (Pfis-
terer et al., 2019; Freitas, 2019; Xanthopoulos et al.,
2020). Moosbauer et al. (2021) attempted to inter-
pret the HPO process with a variant of the partial
dependence plot and showed what the surrogate
model learned about the search space and how the
final model is found.

7 Conclusions

In this work, we propose a framework for interpret-
ing the hyperparameters of a set of Transformer
models. Our framework work uses EBM as a post-
hoc analysis tool, and we show that as a glassbox



model, EBM is effectively at interpreting hyperpa-
rameters. While the computational needs of gen-
erating training data for EBM may seem large at
first glance, we emphasize that we advocate for
post-hoc analysis. In other words, the analysis is
performed on the results of whatever hyperparam-
eter search the model builder needs to perform to
deploy a model.

Our MT case study demonstrates the kinds of
insights one can glean regarding the relationship
between hyperparameter configurations and Trans-
former performance; for example, we discover that
that not all hyperparameters are equally important,
and some hyperparameters exhibit non-monotic
corelation with BLEU scores. Further, we con-
ducted a series of analyses to test the robustness
of EBM’s fitting ability under varying data sizes
and distributions. We show that EBM fits well un-
der limited data, yet struggles with transfer across
different MT datasets. It should also be noted that
the conclusions drawn from MT tasks might not be
applicable to other Transformer-based tasks.

Hyperparameter tuning is often viewed as a crit-
ical yet un-intuitive part of the model building pro-
cess. We hope that our proposal provides a first
step in unveiling the mysterious masks of hard-to-
interpret hyperparameters in deep learning models.
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A Hyperparameter Importance

Figure 8: Hyperparameter contribution rank on so-en,
en-ja, ja-en and sw-en.
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B Single Hyperparameter Analysis

Figure 9: Single hyperparameter feature functions for
en-ja. Higher score indicates a higher chance to get
a high BLEU score. Density refers to the number of
samples in the dataset.

C Pairwise Interactions

Figure 10: Pairwise interaction between features on en-
ja. Higher score (yellow) indicates higher odds to get
higher BLEU scores.


