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It's important to tune hyperparameters!

Histogram of BLEU scores for 
700+ Swahili-English Neural 
Machine Translation (NMT) 
models

Note the large variance!
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Hyperparameters

• Hyperparameters = Configurations of a 
model that are not updated in training
• Architectural hyperparameters:
• # of layers
• # of hidden units in feed-forward layer
• # attention heads
• Word embedding dimension

• Training pipeline hyperparameters:
• # of subword units

• Optimizer hyperparameters:
• Initial learning rate for ADAM, etc.
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AutoML: Automated Machine Learning –
what it might mean to different people
• For consumers: Democratization of ML
• Upload own data, get ML model that can be plugged in application

• For developers: Reduce effort
• Automate part of model building pipeline, more time for other priorities
• Especially useful for optimizing models with speed-accuracy tradeoff

• For NMT researchers: Obtain state-of-the-art results
• Fair comparison of methods

• For (some) ML researchers: Discover the next "Transformer"
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Focus of 
this talk



AutoML as an umbrella term

• Topics that might appear at an AutoML conference
• Hyperparameter Optimization (HPO)
• Neural Architecture Search (NAS)
• Meta-Learning
• Automated Reinforcement Learning (AutoRL)
• Algorithm Selection
• Systems for Machine Learning (SysML)
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Goal of this tutorial

• Motivate the importance of proper hyperparameter tuning or 
architecture search
• Explain a few popular methods in HPO and NAS (focus in-depth on a 

few illustrative methods, then describe general categorizations)
• Case study in NMT: describe our experiences in applying AutoML, 

hope it serves as a reference for you
• We hope AutoML will someday be a useful part of your toolbox!
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Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)
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Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)

• Problem Formulation
• Representative methods:

• Bayesian Optimization
• Grid/Random Search
• Evolutionary strategies
• Population-Based Training (PBT)
• Hyperband

• Generalizations
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)
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Bayesian Optimization

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

f(x) objective function
Gaussian Process Prediction
Samples
Expected Improvement
Next Sampling Location

Gaussian Process:
fit with uncertainty

Expected Improvement:
exploitation vs. exploration



Gaussian Process Regression

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

f(x) objective function
Gaussian Process Prediction
Samples

• Nonparametric / kernel methods

• fGP(x1:n) is jointly Gaussian; i.e. GP fits each 
fGP(x) w/ a Gaussian distribution.

• To predict xnew, GP compares how "similar" it 
is to x1:n, which is measured by kernel.

• µ(xnew) depends on the prior µ0(xnew) & f(x1:n)



Expected Improvement

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Expected Improvement
Next Sampling LocationDefinition:



Expected Improvement

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Expected Improvement
Next Sampling LocationDefinition:

where are the PDF, CDF of standard normal distribution.

Expected quality Expected uncertainty



Bayesian Optimization

19From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Iteration 1 Iteration 2

f(x) objective function
Gaussian Process Prediction
Samples
Expected Improvement
Next Sampling Location



Bayesian Optimization

20From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Iteration 3 Iteration 8

f(x) objective function
Gaussian Process Prediction
Samples
Expected Improvement
Next Sampling Location

Iteration 2



Random / Grid Search SMBO
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Random / Grid Search SMBO
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Better accuracy
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Population Based Training (PBT)

28
From : Population Based Training of Neural Networks, Jaderberg et al. 2017



Population Based Training (PBT)

29From : Population Based Training of Neural Networks, Jaderberg et al. 2017

Figure. The objective function value of each worker over time.



Go Beyond Blackbox HPO

30

• No need to train to completion every time.

• Performance early in training is highly correlated with performance 

late in training. (Dodge, et al. 2020. )

• Multi-fidelity Optimization:

Use cheap approximations of the blackbox.

e.g. fewer training steps.



Successive Halving (SHA)

31From : automl.org

-- multi-armed bandit algorithm to perform early stopping



Successive Halving (SHA)
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Two inputs:
Budget B, #configs N

B/n: resources allocated on average across the configurations

• Large N: small B/N, not enough training time
• Small N: large B/N, not enough configurations are evaluated



HyperBand
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-- addresses the "n vs. B/n" problem by calling SHA multiple times 
with different n

N=81 N=27 N=9 N=6 N=5
rung n r n r n r n r n r
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HyperBand

34From : automl.org



Generalizations

• There are many HPO methods, but they can be categorized along 
various aspects
• Parallel vs Sequential
• Search Algorithm vs Scheduler
• Blackbox, Graybox, multi-fidelity
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Generalization: Parallel vs Sequential

• Parallel vs Sequential:
• Parallel: Evolutionary strategies, Population-based training
• Sequential: Bayesian Optimization
• What's best may depend on your compute setup & requirements

• All methods are iterative
• All methods are about building on past experience in a HPO run
• New research area: Meta-learning or transfer learning for HPO

• Building on past experience from HPO runs on other problems
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Generalization: Search Algorithm vs Scheduler

• Search algorithm: what to sample next (e.g. Bayes Opt vs CMA-ES)
• Scheduler: when to train a model, when to stop training (Hyperband)
• So these can be mixed and match!
• HyberBand = Early stopping scheduler + Random Search
• BOHB = Early stopping scheduler + Bayes Optimization
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Generalization: Blackbox, Graybox, Multi-fidelity

• Blackbox methods don't look inside the model training process
• Graybox methods like Hyperband can improve HPO runtime
• Generally, multi-fidelity methods exploit approximations
• Limit training time (analogous to Hyperband)
• Training blackbox on smaller subset of data
• Noisy measurements
--> assume precise accuracy isn't needed
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Section Summary 

• Problem Formulation of HPO
• Representative methods:

39
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Random Search

Bayesian Optimization
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Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)

• NAS vs HPO
• Designing the NAS Search Space
• NAS Search Strategy + Performance Estimation

• Methods similar to HPO
• One-shot NAS methods

4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)
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Hyperparameter Optimization (HPO) vs 
Neural Architecture Search (NAS)

Hyperparameter Optimization (HPO) Neural Architecture Search (NAS)

Machine learning 
model

Neural Network, Random Forests, Support 
Vector Machines, etc.

Neural Network

Hyperparameters Architectural:
- #layer for neural net
- tree depth for random forests
- kernel for support vector machine
Training Pipeline:
- Preprocessing, Data selection
Optimization:
- ADAM vs AdaGrad, Learning rate

Architectural
- #layer, #dim
- "Novel" non-standard architectures

Example of a 
discovered model

4-layer encoder, 3-layer decoder, each with 
FFN of 512 dimensions

4-layer encoder: layer 1 has 512 dim, layer 2 has 1024 
dim, layer 3 uses 12 heads rather than 8, etc.

Summary General technique, course-grained but 
diverse hyperparameters

Focused technique on neural nets, fine-
grained architectural space
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Example of model 
discovered by NAS

from:
D. So, C. Liang, Q. Le. 
The Evolved 
Transformer (2019)

43



Three components to an NAS method

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019 44



Three components to an NAS method

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Sequential vs. Cell-based

We'll discuss:
Methods similar to HPO
+ Gradient-based

Full train from scratch vs
Weight share, One-shot, etc.
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Search Space defined by sequential decisions

• Suppose we want feed-forward network with convolution layers
• Use a "controller" to predict hyperparameters in sequence

From: Zoph & Le. Neural Architecture Search with Reinforcement Learning, ICLR2017 46



Cell-based Search Space

• Focus search on smaller cells, which are stacked
• Example:
• V nodes per cell (e.g. Max |V| = 7)
• Each node takes one of L operations: 3x3 convolution, 1x1 

convolution, 3x3 max-pool
• Edges connect nodes, form Directed Acyclic Graph (DAG) 

starting from "in" to "out" node. (e.g. 21 edges max)
• Encoding: 7x7 upper-triangular matrix + list of 5 

operations. 2^21 x 3^5 = 510M unique cells

From: Ying et. Al. NAS-Bench-101: Toward Reproducible NAS 47



Cell-based Search Space (exercise)

From: Ying et. Al. NAS-Bench-101: Toward Reproducible NAS 48



Three components to an NAS method

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Sequential vs. Cell-based

We'll discuss:
Methods similar to HPO
+ Gradient-based

Full train from scratch vs
Weight share, One-shot, etc.
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Search Strategy Options: HPO methods

• Sample x from NAS search space
• The rest we can use any HPO 

method:
• Random search
• Bayes Optimization
• Evolutionary Strategy
• Population-based Training
• Hyperband

• Again we treat problem as a 
black box optimization
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Search Strategy Options: Reinforcement 
Learning
• View exploration/exploitation in search space as a sequence of 

decisions
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Search Strategy Options: Gradient-based

• DARTS: Differentiable Architecture Search (Liu, Simonyan, Yang; 2019)
• addresses scalability issue in search + performance estimation by relaxing 

search space to be continuous
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DARTS

• Let O be set of candidate operations (e.g. convolution, max-pool, zero)
• For each edge (i,j), we have a distribution

# fix alpha, standard training of parameters
# learn alpha on validation set

# pick argmax edges, retrain final model
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Another one-shot NAS method: Once-for-All

• A single "supernet" is trained once
• Subnets x are sampled from supernet, and f(x) is measured without 

retraining x from scratch
• Progressive shrinking technique: 
• Potentially more representative subnets in supernet

From: Cai et. al. Once-for-all: Train one network and specialize it for efficient deployment. ICLR2020 54



Once-for-All applied to Transformers

From: Wang, et. al. HAT: Hardware-aware Transformers for Efficient NLP. ACL2020
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Pros & Cons of One-Shot NAS

• Pros:
• Much faster than black-box search + performance estimation
• Explore much larger achitectural space

• Cons:
• Difficult to know if the assumption of weight sharing is valid
• Empirical results are mixed and unstable (some researchers may disagree)
• Supernet needs to fit in memory

• NAS (one-shot & in general) is a very active research area – stay tuned!
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Section Summary

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Sequential vs. Cell-based

We discussed:
Methods similar to HPO
+ Gradient-based

Full train from scratch vs
Weight share, One-shot, etc.
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Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
• Why it's important
• Pareto optimality
• Example Multi-objective HPO/NAS methods

5. Evaluation
6. Application to Neural Machine Translation (MT)
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When deploying models, we care about 
multiple objectives. But it's complex.
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Quiz: How do these hyperparameters 
impact accuracy and speed?
• Architectural hyperparameters:
• # of layers
• # of hidden units in feed-forward layer
• # attention heads
• Word embedding dimension

• Training pipeline hyperparameters:
• # of subword units

• Optimizer hyperparameters:
• Initial learning rate for ADAM, etc.
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Objectives one may care about

• Accuracy
• BLEU, COMET, Human evaluation

• Inference speed
• On GPU, on CPU, in batch or not
• Throughput vs Latency

• Deployment resource consumption
• Memory, disk, energy

• Training resource consumption
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Motivation for Multiple Objectives

• IMHO, this is the strongest motivation for AutoML in deployment
• While an engineer/researcher may develop good heuristics for tuning 

hyperparameters for accuracy alone, it is very difficult to reason through 
multiple interacting objectives

• Ideal future, where AutoML is part of everyone's toolkit
• import AutoMLtool
• A=search_space()
• O=[accuracy(), speed(), memory()]
• models = multi_objective_NAS(A, O)
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Computing Pareto

• Pseudo-code:
• Set N=[] 
• For p in ListOfSamples:

• Set d = 0
• For q in ListOfSamples:

• For k in ListOfObjective, see if Fk(q) > Fk(p). If yes, d+=1
• If d=0, add p to N

• Return N
• Basic implementation is O(KN^2)

• K = #objectives, N= #samples
• O(K NlogN) is possible in two-objective case

• Generally, #pareto increases with K
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Example MT results from CMA-ES

From: Qin, Shinozaki, Duh. Evolutionary strategy based automatic tuning of NMT systems, IWSLT 2017 75



Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement
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Pareto Frontier



Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement
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Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement
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Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

79

r

f(x1)

Expected Hypervolume Improvement:

Objective function can be modeled 
as a multivariate Gaussian Process.



Section Summary

From: Wang, et. al. HAT: Hardware-aware Transformers for Efficient NLP. ACL2020

• Pareto Optimality and multi-objective HPO/NAS
• Multi-objective is one of the strongest selling points of AutoML
• Suppose Transformer-Big/Base doesn't fit your deployment scenario:
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Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
• Brief literature survey
• Challenge of rigorous evaluation
• Carbon footprint and broader issues

6. Application to Neural Machine Translation (MT)
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Which HPO/NAS method is best?

• This question is difficult to answer, perhaps even ill-defined.
• Depends on budget, evaluation metric, task

• We'll survey 4 papers that compare HPO & NAS on non-MT tasks, just 
to get a sense of the landscape
• We'll then describe competition result of the AutoML'22 MT 

benchmark.
• The message:
• Evaluation of HPO/NAS methods is difficult due to computational constraints
• The "best" solution for your problem will depend not just on the HPO/NAS 

method, but also on "best practices" for implementation (discussed later).
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HPO comparison 1: Falkner, et. Al. BOHB: Robust and 
Efficient Hyperparameter Optimization at Scale. ICML2018

• "Best" method 
depends on 
your budget
• Compare 

methods by 
fixing budget, 
or "anytime" 
performance

Kohavi96 Adult dataset: predict whether a person 
makes over 50k per year (features from Census)
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HPO comparison 2: Zoller & Huber, Benchmark and Survey of 
Automated Machine Learning Frameworks, JAIR 2021

For datasets here, it seems:
- Some trends, e.g. Random Search is competitive, Grid search isn't
- But generally ranking is not consistent across datasets, variance is high

SMAC: SMBO with random forest
BOHB: Hyberband + Bayesian Optimization (TPE)
Optunity: Particle Swarm Optimization
Hyperopt: SMBO with Tree-structured Parzen Estimator (TPE)
RoBO: SMBO with Gaussian Process
BTB: Bandit Learning + Gaussian Process

Accuracy 
85



NAS Comparison 1: Yang et. al. NAS Evaluation is 
Frustratingly Hard, ICLR 2020
Object/scene classification data:

FLOWERS102

MIT67 (indoor scene)

CIFAR10 & CIFAR100, 60k 32x32 images

SPORT8
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From: Yang et. al. NAS Evaluation
is Frustratingly Hard, ICLR 2020

• Compare NAS with 
random sampling in 
same space (not random 
search)
• Improvements not 

large/consistent...
• Paper argues training 

protocol more important 87



NAS comparison 2: He, et. Al. AutoML: A Survey of the State-of-the-Art, 2021

CIFAR-10: 32x32 pixel image, 10 classes, 60k samples ImageNet (subset): 224x224 pixel image, 1000 
classes, 1million samples

Evolutionary

Reinforcement 
Learning

Gradient

SMBO, e.g.
Bayesian

Random Search

Many results! Different budgets...
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Evaluation in HPO/NAS is extremely hard!

• Note previous papers focused on mostly on smaller datasets
• Evaluation is hard due to computational constraint:
• Suppose it takes 1 week to train one model
• Each HPO algorithm samples and trains 100 models at best

• Cannot do head-to-head comparison, repeated trials don’t know if an 
algorithm really works!
• Li & Talwalkar (2019) Random search & Reproducibility for Neural 

Architecture Search: “Of the 12 papers published since 2018 at NeurIPS, ICML, 
and ICLR that introduce novel NAS methods, none are exactly reproducible.”
• Also: Lindauer & Hutter. Best Practices for Scientific Research on Neural 

Architecture Search, JMLR 2021. https://www.jmlr.org/papers/volume21/20-
056/20-056.pdf

89
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(Crazy) Solution: Tabular Benchmarks

• One-time fixed cost:
• Run grid/random search, training MANY 

models on some dataset
• Publish all {x,f(x)} pairs in a table

• HPO algorithm developers:
• Experiment with HPO on finite universe
• Can run repeated trials quickly

90



Tabular Benchmark for NMT 
(Zhang & Duh, TACL2020)
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Diversity in dataset

For each dataset, we order 
hyperparameter configurations by 
BLEU, then compare these rankings 
across datasets

Low Spearman’s correlation imply no 
single best set of Transformer model 
across datasets
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Evaluation philosophy: Find HPO methods that are robust over multiple datasets before 
applying to target real-world data 94
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AutoML 2022 Competition https://automl.cc
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Top performers in AutoML'22 Competition

• ESI Algiers and LAMIH/CNRS France – Evolutionary approach
• Latin Hypercube Sampling for initial population
• XGBRank for fitting x --> f(x), then creating “surrogate function”
• Find next generation by optimizing NSGA-II on surrogate function

• AutoML@Freiburg – Bayes Opt. approach, with transfer learning
• Tree-structured Parzen Estimator (TPE) for Bayes Optimization
• Transfer learning from multiple MT datasets
• Define task similarity by how often similar hyperparameters perform well
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Beyond tabular benchmarks? 

• Surrogate benchmark: 
• Use external ML model to estimate f(x)
• These can create infinitely many new "rows" in table

• Open questions:
• How many {x, f(x)} pairs are needed to train an accurate surrogate?
• Will the surrogate model introduce bias?
• IMHO, I'm not convinced we can do this for complex and large tasks like 

Transformer hyperparameters for NMT.
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Surrogate benchmark

• Zela, et. Al. Surrogate NAS Benchmarks, ICLR2022
• Argues that ranking of NAS methods are similar when comparing true 

benchmark to surrogate benchmarks (on different external models)
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Discussion: CO2e footprint and energy cost

• AutoML is basically trading human effort with computer time
• What is the cost of compute?
• We may enjoy the convenience of AutoML, but we should be aware of the 

cost and potentially inefficiencies
• To put things in perspective, let's discuss how different HPO/NAS compare in 

terms of CO2 footprint and energy cost
• AutoML has the potential to have both positive and negative impact!
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Estimating CO2e footprint

102

Strubell et. al., Energy and Policy 
Considerations for Deep Learning in NLP, 
ACL2019



Estimating CO2e footprint

103

Strubell et. al., Energy and Policy 
Considerations for Deep Learning in NLP, 
ACL2019

Power consumption (kWh) 
from training a model

Avg power draw (watts) 
from CPU, RAM, #g GPUs

Power Usage Effectiveness (PUE) -
energy for infrastructure (cooling)

EPA's estimate of avg CO2 (in lb per kWh) based on U.S. 
non-renewable vs renewable sources

CO2e: CO2 equivalent emission
(includes other greenhouse gases)



Estimating CO2e footprint

104

Strubell et. al., Energy and Policy 
Considerations for Deep Learning in NLP, 
ACL2019



AutoML can have both positive and negative 
impact on carbon footprint

105Cai et. Al. Enable Deep Learning on Mobile Devices: Methods, Sytems, and Applications, 
ACM Trans. Design Automation of Electronic Systems, 2022

To be fair, these NAS methods aren't optimizing for 
training cost, but the difference with those that do 
can be large. Also, see next slide for revised estimate

Carbon footprint (lbs)



Estimating carbon footprint, revisited

• Recommended reading if interested: 
Patterson, et. al. Carbon Emissions 
and Large Neural Network Training
• It's challenging to estimate CO2e 

retrospectively; ideal for each paper 
author to measure it
• Specific data center & time matters
• Inference may take more energy in the 

aggregate than training/AutoML
• Note CO2e for Evolved Transformer is 

very different from previous papers!

106

3.2x2200 = 
7040 lbs



Section Summary

• Evaluation of HPO/NAS is non-trivial in two aspects
• First, what do you want to look at?
• Fixed budget, or anytime performance
• What metric? What datasets?

• Second, can you even run the evaluation in a rigorous fashion?
• Tabular & Surrogate benchmark
• NMT example

• Awareness of CO2e footprint discussions, potential of AutoML for 
positive and negative impact
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Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)
• Hyperparameters that matter: Literature survey
• Implementing AutoML in practice: case study

109



Hyperparameters

• Architectural hyperparameters:
• # of layers
• # of hidden units in feed-forward layer
• # attention heads
• Word embedding dimension

• Training pipeline hyperparameters:
• # of subword units

• Optimizer hyperparameters:
• Initial learning rate for ADAM, etc.
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Optimizer and learning rate

111

Bahar et. Al. Empirical Investigation of 
Optimization Algorithms in Neural 
Machine Translation, Prague Bulletin of 
Mathematical Lingustics, 2017

Denkowski & Neubig. Stronger Baselines for Trustable 
Results in Neural Machine Translation, WNMT2017



Subword units 

112

BLEU score of Transformer models with different BPE units, and delta 
between best and worst models (IWSLT2015) --> don't use defaults!

Variance from random restarts

Ding et. Al., A Call for Prudent Choice of Subword Merge 
Operations in Neural Machine Translation, MT Summit 2019



Subword/character interacts with #layer

113

Cherry, et al. Revisiting Character-Based Neural Machine 
Translation with Capacity and Compression. EMNLP 2018



Speed-accuracy tradeoff with Deep Encoder 
Shallow Decoder

114

Kasai, et. Al. Deep Encoder, Shallow 
Decoder: Re-evaluating Non-autoregressive 
MT, ICLR2021

Speedup



Pushing the limits with very deep layers

115

Liu, et. Al. Very Deep Transformers for Neural 
Machine Translation, 2020



Hyperparameter exploration, sequentially

116

Araabi & Monz, Optimizing Transformer for Low-
Resource Neural Machine Translation



Architecture hyperparameter and model size

• Sockeye v2 Transformer implementation
• Model size count: 

https://github.com/Este1le/nparam
• #BPE of source, target= sb, tb
• #layers = sn, tn
• #embed=e
• FF #hidden=f

• Total 
= tn*(8e*e+7e+2ef+f) 

+sn*(4e*e+5e+2ef+f) 
+4e+(sb*e+tb*(2e+1))

117

https://github.com/Este1le/nparam


Additional references on NMT hyperparameters

• Britz et. Al. Massive Exploration of Neural Machine 
Translation Architectures, EMNLP 2017
• Wang et. Al. Learning Deep Transformer Models for 

Machine Translation, ACL 2019
• Dewangan, et. Al. Experience of neural machine translation between 

Indian languages, Machine Translation (2021)
• Lankford, Afli, Way. Transformers for Low-Resource Languages: Is 

Feidir Linn!. MT Summit 2021
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Software Implementation of AutoML

• HPO/NAS algorithms are in general simple to implement.
• Challenge is the interface with the ML toolkit and the 

underlying computing infrastructure.
• Design considerations:

• Automatically submit jobs
• Automatically check job states
• Automatically evaluate and collect results
• Parallelization
•Maximize the GPU utilization
• Allow users to customize the AutoML runs by specifying arguments,

e.g. #GPU, #configuration, #epochs
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Existing AutoML Toolkits
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Google Vizier

From: Google Vizier: A Service for Black-Box Optimization, Golovin et al. 2017
https://docs.ray.io/en/latest/

Ray Tune



Use existing AutoML toolkits or Implement your own?

• Choice 2:
Already have a training pipeline, e.g. Amazon Sockeye for MT, add an AutoML 
wrapper on top of it.

It's worth implementing AutoML from scratch in this case.
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• Choice 1:
Take an existing AutoML toolkit, and reimplement your training pipeline.



Case Study: Amazon Sockeye with AutoML

• Amazon Sockeye:
An open-source sequence-to-sequence framework for NMT built on PyTorch.
https://github.com/awslabs/sockeye
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• Sockeye-recipes (Duh et al.):
Training scripts and recipes for the Sockeye toolkit.
https://github.com/kevinduh/sockeye-recipes3

• Sockeye-recipes with AutoML:
Automatic hyperparameter search with asynchronous successive halving 
on top of sockeye-recipes.
https://github.com/kevinduh/sockeye-recipes3/tree/automl

https://github.com/awslabs/sockeye
https://github.com/kevinduh/sockeye-recipes3
http://https:/github.com/kevinduh/sockeye-recipes3/tree/automl


Outline for Case Study

• Asynchronous Successive Halving (ASHA)
• Software design
• Use case
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Recall: Successive Halving (SHA)

124From : automl.org

-- multi-armed bandit algorithm to perform early stopping



Asynchronous Successive Halving (ASHA)

• In the sequential SHA, the algorithm waits for all configurations in a 
rung to complete before promoting configurations to next rung.
• ASHA removes the bottleneck created by synchronous promotions.
• It would promote a configuration to next rung when

• There's an idle worker.
• There's a configuration that is secured a position in the top 1/p of this rung.
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• Parallelization with maximal GPU utilization
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Asynchronous Successive Halving (ASHA)

p: 2 (promote top ½ to next rung)

0 1 52 3 4 6 7 8 9

5.0 7.5 2.3 4.6 8.2 3.4BLEU

rung 0

rung 1 8

• ASHA promotes a configuration to next rung when there's a 
configuration that is secured a position in the top 1/p of this rung.

finishedrunningnot started

#configs: 5

#configs: 10
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Asynchronous Successive Halving (ASHA)

p: 2 (promote top ½ to next rung)

0 1 52 3 4 6 7 8 9

5.0 7.5 2.3 4.6 8.2 3.4BLEU

rung 0

rung 1 8

• ASHA promotes a configuration to next rung when there's a 
configuration that is secured a position in the top 1/p of this rung.

finishedrunningnot started

4.7

1

#configs: 10

#configs: 5
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Asynchronous Successive Halving (ASHA)

p: 2 (promote top ½ to next rung)

0 1 52 3 4 6 7 8 9

5.0 7.5 2.3 4.6 8.2 3.4BLEU

rung 0

rung 1 8

finishedrunningnot started

4.7

1

rung 2

0

3.26.2

4

11.3 8.5 10.0

8 #configs: 3

#configs: 5

#configs: 10

BLEU
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Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end
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Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

At each time step, we check the state of each config, 
and submit jobs to idle GPUs
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Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

We check the state of each configurations, 
and react accordingly to different states
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Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

Find config candidates and submit training jobs.
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Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

It is done by reading the train log.
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Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

State Reaction

RUNNING N/A

SUCCESS / 
CONVERGED

Submit valid job or
Collect evaluation results

GPU ERROR Submit again

MEM ERROR /
DIVERGED

Delete job and add it to blacklist
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Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

Get configs that are ready to move to next rung.
(ASHA: no need to wait till all the configs in 
current run to finish.)
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Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, r, u, R)

end
end

Pick one from all the candidates.
Random search or Bayesian Optimization.



137

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, r, u, R)

end
end

Submit a train job and let it run for 
min(r, u*rung, R)-min(r, u*(rung-1), R) checkpoints



Implementation Challenges

• How to get the job state?
We check the job log.
• How to automatically check the job state?

We set up a timer running in a background thread.
• How to interact with the grid / GPU cluster?

Besides job states, we also check GPU states.
We debug carefully with possible errors.
• How to deal with failed jobs?

We either resubmit it or delete it.
138
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Example Run

arguments

Pick up a candidate

Submit a train job
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Example Run

Check 
job state & 
GPU state

Finished jobs



Example Run
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ASHA finished 
successfully.
The best config is 6 with 
8.3 BLEU score.
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Review

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)
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It's important to tune hyperparameters!

Histogram of BLEU scores for 
700+ Swahili-English Neural 
Machine Translation (NMT) 
models

Note the large variance!
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Hyperparameter Optimization (HPO)
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Grid Search
Random Search

Bayesian Optimization

Population Based Training
CMA-ES

Successive Halving
HyperBand

Black-Box

Multi-Fidelity
Sequential

Parallel

Search Scheduler



Neural Architecture Search (NAS)

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Sequential vs. Cell-based

We discussed:
Methods similar to HPO
+ Gradient-based

Full train from scratch vs
Weight share, One-shot, etc.
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When deploying models, we care about 
multiple objectives. But it's complex.
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Evaluation is hard, so Tabular Benchmark for NMT 
(Zhang & Duh, TACL2020)
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Use existing AutoML toolkits or Implement your own?

• Choice 2:
Already have a training pipeline, e.g. Amazon Sockeye for MT, add an AutoML 
wrapper on top of it.

It's worth implementing AutoML from scratch in this case.
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• Choice 1:
Take an existing AutoML toolkit, and reimplement your training pipeline.



Questions or Comments?
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