
AutoML for
Neural Machine Translation

Kevin Duh and Xuan Zhang
Johns Hopkins University

It's important to tune hyperparameters!

Histogram of BLEU scores for
700+ Swahili-English Neural
Machine Translation (NMT)
models

Note the large variance!

2

Hyperparameters

• Hyperparameters = Configurations of a
model that are not updated in training
• Architectural hyperparameters:
• # of layers
• # of hidden units in feed-forward layer
• # attention heads
• Word embedding dimension

• Training pipeline hyperparameters:
• # of subword units

• Optimizer hyperparameters:
• Initial learning rate for ADAM, etc.

3

AutoML: Automated Machine Learning –
what it might mean to different people
• For consumers: Democratization of ML
• Upload own data, get ML model that can be plugged in application

• For developers: Reduce effort
• Automate part of model building pipeline, more time for other priorities
• Especially useful for optimizing models with speed-accuracy tradeoff

• For NMT researchers: Obtain state-of-the-art results
• Fair comparison of methods

• For (some) ML researchers: Discover the next "Transformer"

4

AutoML: Automated Machine Learning –
what it might mean to different people
• For consumers: Democratization of ML
• Upload own data, get ML model that can be plugged in application

• For developers: Reduce effort
• Automate part of model building pipeline, more time for other priorities
• Especially useful for optimizing models with speed-accuracy tradeoff

• For NMT researchers: Obtain state-of-the-art results
• Fair comparison of methods

• For (some) ML researchers: Discover the next "Transformer"

5

Focus of
this talk

AutoML as an umbrella term

• Topics that might appear at an AutoML conference
• Hyperparameter Optimization (HPO)
• Neural Architecture Search (NAS)
• Meta-Learning
• Automated Reinforcement Learning (AutoRL)
• Algorithm Selection
• Systems for Machine Learning (SysML)

6

Goal of this tutorial

• Motivate the importance of proper hyperparameter tuning or
architecture search
• Explain a few popular methods in HPO and NAS (focus in-depth on a

few illustrative methods, then describe general categorizations)
• Case study in NMT: describe our experiences in applying AutoML,

hope it serves as a reference for you
• We hope AutoML will someday be a useful part of your toolbox!

7

Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)

8

9

Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)

• Problem Formulation
• Representative methods:

• Bayesian Optimization
• Grid/Random Search
• Evolutionary strategies
• Population-Based Training (PBT)
• Hyperband

• Generalizations
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)

10

*Clipart by Lea Duh 11

12

Acquisition
Function

Surrogate
Model

evaluate

fit

samplex! x"

x#x$

(x!, $f x!)
(x", $f x")

(x$, $f x$)
(x#, $f x#)

(x%, 𝑓
x%)

x%

𝒇 𝐱

Sequential Model-Based Optimization (SMBO)

Expected
Improvement

Guassian
Process

evaluate

fit

samplex! x"

x#x$

(x!, $f x!)
(x", $f x")

(x$, $f x$)
(x#, $f x#)

(x%, 𝑓
x%)

x%

𝒇 𝐱

Bayesian Optimization

Bayesian Optimization

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

f(x) objective function
Gaussian Process Prediction
Samples
Expected Improvement
Next Sampling Location

Gaussian Process:
fit with uncertainty

Expected Improvement:
exploitation vs. exploration

Gaussian Process Regression

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

f(x) objective function
Gaussian Process Prediction
Samples

• Nonparametric / kernel methods

• fGP(x1:n) is jointly Gaussian; i.e. GP fits each
fGP(x) w/ a Gaussian distribution.

• To predict xnew, GP compares how "similar" it
is to x1:n, which is measured by kernel.

• µ(xnew) depends on the prior µ0(xnew) & f(x1:n)

Expected Improvement

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Expected Improvement
Next Sampling LocationDefinition:

Expected Improvement

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Expected Improvement
Next Sampling LocationDefinition:

where are the PDF, CDF of standard normal distribution.

Expected quality Expected uncertainty

Bayesian Optimization

19From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Iteration 1 Iteration 2

f(x) objective function
Gaussian Process Prediction
Samples
Expected Improvement
Next Sampling Location

Bayesian Optimization

20From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/

Iteration 3 Iteration 8

f(x) objective function
Gaussian Process Prediction
Samples
Expected Improvement
Next Sampling Location

Iteration 2

Random / Grid Search SMBO

21

VS.

collect

evaluate

Randomly
sample

(x%, 𝑓 x%)

x%

𝒇 𝐱

x2
x3

x1 x5
xi

xn

x7

x6

(x1, f(x1))
(x4, f(x4))

(xi, f(xi))
(x3, f(x3))

(x2, f(x2))

evaluate

Acquisition
Function

Surrogate
Model

samplex!x#

(x#, $f x#) (x%, 𝑓
x%)

x%

𝒇 𝐱

fit

(x!, $f x!)

Random / Grid Search SMBO

22

VS.

collect

evaluate

Randomly
sample

(x%, 𝑓 x%)

x%

𝒇 𝐱

x2
x3

x1 x5
xi

xn

x7

x6

(x1, f(x1))
(x4, f(x4))

(xi, f(xi))
(x3, f(x3))

(x2, f(x2))

evaluate

Acquisition
Function

Surrogate
Model

samplex!x#

(x#, $f x#) (x%, 𝑓
x%)

x%

𝒇 𝐱

fit

(x!, $f x!)

easy to get parallelized

23

24

25

26

Better accuracy
27

Population Based Training (PBT)

28
From : Population Based Training of Neural Networks, Jaderberg et al. 2017

Population Based Training (PBT)

29From : Population Based Training of Neural Networks, Jaderberg et al. 2017

Figure. The objective function value of each worker over time.

Go Beyond Blackbox HPO

30

• No need to train to completion every time.

• Performance early in training is highly correlated with performance

late in training. (Dodge, et al. 2020.)

• Multi-fidelity Optimization:

Use cheap approximations of the blackbox.

e.g. fewer training steps.

Successive Halving (SHA)

31From : automl.org

-- multi-armed bandit algorithm to perform early stopping

Successive Halving (SHA)

32

Two inputs:
Budget B, #configs N

B/n: resources allocated on average across the configurations

• Large N: small B/N, not enough training time
• Small N: large B/N, not enough configurations are evaluated

HyperBand

33

-- addresses the "n vs. B/n" problem by calling SHA multiple times
with different n

N=81 N=27 N=9 N=6 N=5
rung n r n r n r n r n r

0

1

2

3

4

81 1

27 3

9 9

3 27

1 81

27 3

9 9

3 27

1 81

9 9

3 27

1 81

6 27

2 81

5 81

HyperBand

34From : automl.org

Generalizations

• There are many HPO methods, but they can be categorized along
various aspects
• Parallel vs Sequential
• Search Algorithm vs Scheduler
• Blackbox, Graybox, multi-fidelity

35

Generalization: Parallel vs Sequential

• Parallel vs Sequential:
• Parallel: Evolutionary strategies, Population-based training
• Sequential: Bayesian Optimization
• What's best may depend on your compute setup & requirements

• All methods are iterative
• All methods are about building on past experience in a HPO run
• New research area: Meta-learning or transfer learning for HPO

• Building on past experience from HPO runs on other problems

36

Generalization: Search Algorithm vs Scheduler

• Search algorithm: what to sample next (e.g. Bayes Opt vs CMA-ES)
• Scheduler: when to train a model, when to stop training (Hyperband)
• So these can be mixed and match!
• HyberBand = Early stopping scheduler + Random Search
• BOHB = Early stopping scheduler + Bayes Optimization

37

Generalization: Blackbox, Graybox, Multi-fidelity

• Blackbox methods don't look inside the model training process
• Graybox methods like Hyperband can improve HPO runtime
• Generally, multi-fidelity methods exploit approximations
• Limit training time (analogous to Hyperband)
• Training blackbox on smaller subset of data
• Noisy measurements
--> assume precise accuracy isn't needed

38

Section Summary

• Problem Formulation of HPO
• Representative methods:

39

Grid Search
Random Search

Bayesian Optimization

Population Based Training
CMA-ES

Successive Halving
HyperBand

Black-Box

Multi-Fidelity
Sequential

Parallel

Search Scheduler

40

Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)

• NAS vs HPO
• Designing the NAS Search Space
• NAS Search Strategy + Performance Estimation

• Methods similar to HPO
• One-shot NAS methods

4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)

41

Hyperparameter Optimization (HPO) vs
Neural Architecture Search (NAS)

Hyperparameter Optimization (HPO) Neural Architecture Search (NAS)

Machine learning
model

Neural Network, Random Forests, Support
Vector Machines, etc.

Neural Network

Hyperparameters Architectural:
- #layer for neural net
- tree depth for random forests
- kernel for support vector machine
Training Pipeline:
- Preprocessing, Data selection
Optimization:
- ADAM vs AdaGrad, Learning rate

Architectural
- #layer, #dim
- "Novel" non-standard architectures

Example of a
discovered model

4-layer encoder, 3-layer decoder, each with
FFN of 512 dimensions

4-layer encoder: layer 1 has 512 dim, layer 2 has 1024
dim, layer 3 uses 12 heads rather than 8, etc.

Summary General technique, course-grained but
diverse hyperparameters

Focused technique on neural nets, fine-
grained architectural space

42

Example of model
discovered by NAS

from:
D. So, C. Liang, Q. Le.
The Evolved
Transformer (2019)

43

Three components to an NAS method

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019 44

Three components to an NAS method

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Sequential vs. Cell-based

We'll discuss:
Methods similar to HPO
+ Gradient-based

Full train from scratch vs
Weight share, One-shot, etc.

45

Search Space defined by sequential decisions

• Suppose we want feed-forward network with convolution layers
• Use a "controller" to predict hyperparameters in sequence

From: Zoph & Le. Neural Architecture Search with Reinforcement Learning, ICLR2017 46

Cell-based Search Space

• Focus search on smaller cells, which are stacked
• Example:
• V nodes per cell (e.g. Max |V| = 7)
• Each node takes one of L operations: 3x3 convolution, 1x1

convolution, 3x3 max-pool
• Edges connect nodes, form Directed Acyclic Graph (DAG)

starting from "in" to "out" node. (e.g. 21 edges max)
• Encoding: 7x7 upper-triangular matrix + list of 5

operations. 2^21 x 3^5 = 510M unique cells

From: Ying et. Al. NAS-Bench-101: Toward Reproducible NAS 47

Cell-based Search Space (exercise)

From: Ying et. Al. NAS-Bench-101: Toward Reproducible NAS 48

Three components to an NAS method

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Sequential vs. Cell-based

We'll discuss:
Methods similar to HPO
+ Gradient-based

Full train from scratch vs
Weight share, One-shot, etc.

49

Search Strategy Options: HPO methods

• Sample x from NAS search space
• The rest we can use any HPO

method:
• Random search
• Bayes Optimization
• Evolutionary Strategy
• Population-based Training
• Hyperband

• Again we treat problem as a
black box optimization

50

Search Strategy Options: Reinforcement
Learning
• View exploration/exploitation in search space as a sequence of

decisions

51

Search Strategy Options: Gradient-based

• DARTS: Differentiable Architecture Search (Liu, Simonyan, Yang; 2019)
• addresses scalability issue in search + performance estimation by relaxing

search space to be continuous

52

DARTS

• Let O be set of candidate operations (e.g. convolution, max-pool, zero)
• For each edge (i,j), we have a distribution

fix alpha, standard training of parameters
learn alpha on validation set

pick argmax edges, retrain final model

53

Another one-shot NAS method: Once-for-All

• A single "supernet" is trained once
• Subnets x are sampled from supernet, and f(x) is measured without

retraining x from scratch
• Progressive shrinking technique:
• Potentially more representative subnets in supernet

From: Cai et. al. Once-for-all: Train one network and specialize it for efficient deployment. ICLR2020 54

Once-for-All applied to Transformers

From: Wang, et. al. HAT: Hardware-aware Transformers for Efficient NLP. ACL2020

55

Pros & Cons of One-Shot NAS

• Pros:
• Much faster than black-box search + performance estimation
• Explore much larger achitectural space

• Cons:
• Difficult to know if the assumption of weight sharing is valid
• Empirical results are mixed and unstable (some researchers may disagree)
• Supernet needs to fit in memory

• NAS (one-shot & in general) is a very active research area – stay tuned!

56

Section Summary

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Sequential vs. Cell-based

We discussed:
Methods similar to HPO
+ Gradient-based

Full train from scratch vs
Weight share, One-shot, etc.

57

58

Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
• Why it's important
• Pareto optimality
• Example Multi-objective HPO/NAS methods

5. Evaluation
6. Application to Neural Machine Translation (MT)

59

When deploying models, we care about
multiple objectives. But it's complex.

60

Quiz: How do these hyperparameters
impact accuracy and speed?
• Architectural hyperparameters:
• # of layers
• # of hidden units in feed-forward layer
• # attention heads
• Word embedding dimension

• Training pipeline hyperparameters:
• # of subword units

• Optimizer hyperparameters:
• Initial learning rate for ADAM, etc.

61

Objectives one may care about

• Accuracy
• BLEU, COMET, Human evaluation

• Inference speed
• On GPU, on CPU, in batch or not
• Throughput vs Latency

• Deployment resource consumption
• Memory, disk, energy

• Training resource consumption

62

Motivation for Multiple Objectives

• IMHO, this is the strongest motivation for AutoML in deployment
• While an engineer/researcher may develop good heuristics for tuning

hyperparameters for accuracy alone, it is very difficult to reason through
multiple interacting objectives

• Ideal future, where AutoML is part of everyone's toolkit
• import AutoMLtool
• A=search_space()
• O=[accuracy(), speed(), memory()]
• models = multi_objective_NAS(A, O)

63

64

65

66

67

68

69

Computing Pareto

• Pseudo-code:
• Set N=[]
• For p in ListOfSamples:

• Set d = 0
• For q in ListOfSamples:

• For k in ListOfObjective, see if Fk(q) > Fk(p). If yes, d+=1
• If d=0, add p to N

• Return N
• Basic implementation is O(KN^2)

• K = #objectives, N= #samples
• O(K NlogN) is possible in two-objective case

• Generally, #pareto increases with K

70

71

72

73

74

Example MT results from CMA-ES

From: Qin, Shinozaki, Duh. Evolutionary strategy based automatic tuning of NMT systems, IWSLT 2017 75

Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

76

Pareto Frontier

Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

77

r

Hypervolume
Indicator

Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

78

r

Hypervolume
Improvement
(HVI)

f(x1)

Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

79

r

f(x1)

Expected Hypervolume Improvement:

Objective function can be modeled
as a multivariate Gaussian Process.

Section Summary

From: Wang, et. al. HAT: Hardware-aware Transformers for Efficient NLP. ACL2020

• Pareto Optimality and multi-objective HPO/NAS
• Multi-objective is one of the strongest selling points of AutoML
• Suppose Transformer-Big/Base doesn't fit your deployment scenario:

80

81

Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
• Brief literature survey
• Challenge of rigorous evaluation
• Carbon footprint and broader issues

6. Application to Neural Machine Translation (MT)

82

Which HPO/NAS method is best?

• This question is difficult to answer, perhaps even ill-defined.
• Depends on budget, evaluation metric, task

• We'll survey 4 papers that compare HPO & NAS on non-MT tasks, just
to get a sense of the landscape
• We'll then describe competition result of the AutoML'22 MT

benchmark.
• The message:
• Evaluation of HPO/NAS methods is difficult due to computational constraints
• The "best" solution for your problem will depend not just on the HPO/NAS

method, but also on "best practices" for implementation (discussed later).

83

HPO comparison 1: Falkner, et. Al. BOHB: Robust and
Efficient Hyperparameter Optimization at Scale. ICML2018

• "Best" method
depends on
your budget
• Compare

methods by
fixing budget,
or "anytime"
performance

Kohavi96 Adult dataset: predict whether a person
makes over 50k per year (features from Census)

84

HPO comparison 2: Zoller & Huber, Benchmark and Survey of
Automated Machine Learning Frameworks, JAIR 2021

For datasets here, it seems:
- Some trends, e.g. Random Search is competitive, Grid search isn't
- But generally ranking is not consistent across datasets, variance is high

SMAC: SMBO with random forest
BOHB: Hyberband + Bayesian Optimization (TPE)
Optunity: Particle Swarm Optimization
Hyperopt: SMBO with Tree-structured Parzen Estimator (TPE)
RoBO: SMBO with Gaussian Process
BTB: Bandit Learning + Gaussian Process

Accuracy
85

NAS Comparison 1: Yang et. al. NAS Evaluation is
Frustratingly Hard, ICLR 2020
Object/scene classification data:

FLOWERS102

MIT67 (indoor scene)

CIFAR10 & CIFAR100, 60k 32x32 images

SPORT8

86

From: Yang et. al. NAS Evaluation
is Frustratingly Hard, ICLR 2020

• Compare NAS with
random sampling in
same space (not random
search)
• Improvements not

large/consistent...
• Paper argues training

protocol more important 87

NAS comparison 2: He, et. Al. AutoML: A Survey of the State-of-the-Art, 2021

CIFAR-10: 32x32 pixel image, 10 classes, 60k samples ImageNet (subset): 224x224 pixel image, 1000
classes, 1million samples

Evolutionary

Reinforcement
Learning

Gradient

SMBO, e.g.
Bayesian

Random Search

Many results! Different budgets...
88

Evaluation in HPO/NAS is extremely hard!

• Note previous papers focused on mostly on smaller datasets
• Evaluation is hard due to computational constraint:
• Suppose it takes 1 week to train one model
• Each HPO algorithm samples and trains 100 models at best

• Cannot do head-to-head comparison, repeated trials don’t know if an
algorithm really works!
• Li & Talwalkar (2019) Random search & Reproducibility for Neural

Architecture Search: “Of the 12 papers published since 2018 at NeurIPS, ICML,
and ICLR that introduce novel NAS methods, none are exactly reproducible.”
• Also: Lindauer & Hutter. Best Practices for Scientific Research on Neural

Architecture Search, JMLR 2021. https://www.jmlr.org/papers/volume21/20-
056/20-056.pdf

89

https://www.jmlr.org/papers/volume21/20-056/20-056.pdf

(Crazy) Solution: Tabular Benchmarks

• One-time fixed cost:
• Run grid/random search, training MANY

models on some dataset
• Publish all {x,f(x)} pairs in a table

• HPO algorithm developers:
• Experiment with HPO on finite universe
• Can run repeated trials quickly

90

Tabular Benchmark for NMT
(Zhang & Duh, TACL2020)

91

Diversity in dataset

For each dataset, we order
hyperparameter configurations by
BLEU, then compare these rankings
across datasets

Low Spearman’s correlation imply no
single best set of Transformer model
across datasets

92

93

Evaluation philosophy: Find HPO methods that are robust over multiple datasets before
applying to target real-world data 94

95

96

AutoML 2022 Competition https://automl.cc

97

Top performers in AutoML'22 Competition

• ESI Algiers and LAMIH/CNRS France – Evolutionary approach
• Latin Hypercube Sampling for initial population
• XGBRank for fitting x --> f(x), then creating “surrogate function”
• Find next generation by optimizing NSGA-II on surrogate function

• AutoML@Freiburg – Bayes Opt. approach, with transfer learning
• Tree-structured Parzen Estimator (TPE) for Bayes Optimization
• Transfer learning from multiple MT datasets
• Define task similarity by how often similar hyperparameters perform well

98

Beyond tabular benchmarks?

• Surrogate benchmark:
• Use external ML model to estimate f(x)
• These can create infinitely many new "rows" in table

• Open questions:
• How many {x, f(x)} pairs are needed to train an accurate surrogate?
• Will the surrogate model introduce bias?
• IMHO, I'm not convinced we can do this for complex and large tasks like

Transformer hyperparameters for NMT.

99

Surrogate benchmark

• Zela, et. Al. Surrogate NAS Benchmarks, ICLR2022
• Argues that ranking of NAS methods are similar when comparing true

benchmark to surrogate benchmarks (on different external models)

100

Discussion: CO2e footprint and energy cost

• AutoML is basically trading human effort with computer time
• What is the cost of compute?
• We may enjoy the convenience of AutoML, but we should be aware of the

cost and potentially inefficiencies
• To put things in perspective, let's discuss how different HPO/NAS compare in

terms of CO2 footprint and energy cost
• AutoML has the potential to have both positive and negative impact!

101

Estimating CO2e footprint

102

Strubell et. al., Energy and Policy
Considerations for Deep Learning in NLP,
ACL2019

Estimating CO2e footprint

103

Strubell et. al., Energy and Policy
Considerations for Deep Learning in NLP,
ACL2019

Power consumption (kWh)
from training a model

Avg power draw (watts)
from CPU, RAM, #g GPUs

Power Usage Effectiveness (PUE) -
energy for infrastructure (cooling)

EPA's estimate of avg CO2 (in lb per kWh) based on U.S.
non-renewable vs renewable sources

CO2e: CO2 equivalent emission
(includes other greenhouse gases)

Estimating CO2e footprint

104

Strubell et. al., Energy and Policy
Considerations for Deep Learning in NLP,
ACL2019

AutoML can have both positive and negative
impact on carbon footprint

105Cai et. Al. Enable Deep Learning on Mobile Devices: Methods, Sytems, and Applications,
ACM Trans. Design Automation of Electronic Systems, 2022

To be fair, these NAS methods aren't optimizing for
training cost, but the difference with those that do
can be large. Also, see next slide for revised estimate

Carbon footprint (lbs)

Estimating carbon footprint, revisited

• Recommended reading if interested:
Patterson, et. al. Carbon Emissions
and Large Neural Network Training
• It's challenging to estimate CO2e

retrospectively; ideal for each paper
author to measure it
• Specific data center & time matters
• Inference may take more energy in the

aggregate than training/AutoML
• Note CO2e for Evolved Transformer is

very different from previous papers!

106

3.2x2200 =
7040 lbs

Section Summary

• Evaluation of HPO/NAS is non-trivial in two aspects
• First, what do you want to look at?
• Fixed budget, or anytime performance
• What metric? What datasets?

• Second, can you even run the evaluation in a rigorous fashion?
• Tabular & Surrogate benchmark
• NMT example

• Awareness of CO2e footprint discussions, potential of AutoML for
positive and negative impact

107

108

Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)
• Hyperparameters that matter: Literature survey
• Implementing AutoML in practice: case study

109

Hyperparameters

• Architectural hyperparameters:
• # of layers
• # of hidden units in feed-forward layer
• # attention heads
• Word embedding dimension

• Training pipeline hyperparameters:
• # of subword units

• Optimizer hyperparameters:
• Initial learning rate for ADAM, etc.

110

Optimizer and learning rate

111

Bahar et. Al. Empirical Investigation of
Optimization Algorithms in Neural
Machine Translation, Prague Bulletin of
Mathematical Lingustics, 2017

Denkowski & Neubig. Stronger Baselines for Trustable
Results in Neural Machine Translation, WNMT2017

Subword units

112

BLEU score of Transformer models with different BPE units, and delta
between best and worst models (IWSLT2015) --> don't use defaults!

Variance from random restarts

Ding et. Al., A Call for Prudent Choice of Subword Merge
Operations in Neural Machine Translation, MT Summit 2019

Subword/character interacts with #layer

113

Cherry, et al. Revisiting Character-Based Neural Machine
Translation with Capacity and Compression. EMNLP 2018

Speed-accuracy tradeoff with Deep Encoder
Shallow Decoder

114

Kasai, et. Al. Deep Encoder, Shallow
Decoder: Re-evaluating Non-autoregressive
MT, ICLR2021

Speedup

Pushing the limits with very deep layers

115

Liu, et. Al. Very Deep Transformers for Neural
Machine Translation, 2020

Hyperparameter exploration, sequentially

116

Araabi & Monz, Optimizing Transformer for Low-
Resource Neural Machine Translation

Architecture hyperparameter and model size

• Sockeye v2 Transformer implementation
• Model size count:

https://github.com/Este1le/nparam
• #BPE of source, target= sb, tb
• #layers = sn, tn
• #embed=e
• FF #hidden=f

• Total
= tn*(8e*e+7e+2ef+f)

+sn*(4e*e+5e+2ef+f)
+4e+(sb*e+tb*(2e+1))

117

https://github.com/Este1le/nparam

Additional references on NMT hyperparameters

• Britz et. Al. Massive Exploration of Neural Machine
Translation Architectures, EMNLP 2017
• Wang et. Al. Learning Deep Transformer Models for

Machine Translation, ACL 2019
• Dewangan, et. Al. Experience of neural machine translation between

Indian languages, Machine Translation (2021)
• Lankford, Afli, Way. Transformers for Low-Resource Languages: Is

Feidir Linn!. MT Summit 2021

118

Software Implementation of AutoML

• HPO/NAS algorithms are in general simple to implement.
• Challenge is the interface with the ML toolkit and the

underlying computing infrastructure.
• Design considerations:

• Automatically submit jobs
• Automatically check job states
• Automatically evaluate and collect results
• Parallelization
•Maximize the GPU utilization
• Allow users to customize the AutoML runs by specifying arguments,

e.g. #GPU, #configuration, #epochs

119

Existing AutoML Toolkits

120

Google Vizier

From: Google Vizier: A Service for Black-Box Optimization, Golovin et al. 2017
https://docs.ray.io/en/latest/

Ray Tune

Use existing AutoML toolkits or Implement your own?

• Choice 2:
Already have a training pipeline, e.g. Amazon Sockeye for MT, add an AutoML
wrapper on top of it.

It's worth implementing AutoML from scratch in this case.

121

• Choice 1:
Take an existing AutoML toolkit, and reimplement your training pipeline.

Case Study: Amazon Sockeye with AutoML

• Amazon Sockeye:
An open-source sequence-to-sequence framework for NMT built on PyTorch.
https://github.com/awslabs/sockeye

122

• Sockeye-recipes (Duh et al.):
Training scripts and recipes for the Sockeye toolkit.
https://github.com/kevinduh/sockeye-recipes3

• Sockeye-recipes with AutoML:
Automatic hyperparameter search with asynchronous successive halving
on top of sockeye-recipes.
https://github.com/kevinduh/sockeye-recipes3/tree/automl

https://github.com/awslabs/sockeye
https://github.com/kevinduh/sockeye-recipes3
http://https:/github.com/kevinduh/sockeye-recipes3/tree/automl

Outline for Case Study

• Asynchronous Successive Halving (ASHA)
• Software design
• Use case

123

Recall: Successive Halving (SHA)

124From : automl.org

-- multi-armed bandit algorithm to perform early stopping

Asynchronous Successive Halving (ASHA)

• In the sequential SHA, the algorithm waits for all configurations in a
rung to complete before promoting configurations to next rung.
• ASHA removes the bottleneck created by synchronous promotions.
• It would promote a configuration to next rung when

• There's an idle worker.
• There's a configuration that is secured a position in the top 1/p of this rung.

125

• Parallelization with maximal GPU utilization

126

Asynchronous Successive Halving (ASHA)

p: 2 (promote top ½ to next rung)

0 1 52 3 4 6 7 8 9

5.0 7.5 2.3 4.6 8.2 3.4BLEU

rung 0

rung 1 8

• ASHA promotes a configuration to next rung when there's a
configuration that is secured a position in the top 1/p of this rung.

finishedrunningnot started

#configs: 5

#configs: 10

127

Asynchronous Successive Halving (ASHA)

p: 2 (promote top ½ to next rung)

0 1 52 3 4 6 7 8 9

5.0 7.5 2.3 4.6 8.2 3.4BLEU

rung 0

rung 1 8

• ASHA promotes a configuration to next rung when there's a
configuration that is secured a position in the top 1/p of this rung.

finishedrunningnot started

4.7

1

#configs: 10

#configs: 5

128

Asynchronous Successive Halving (ASHA)

p: 2 (promote top ½ to next rung)

0 1 52 3 4 6 7 8 9

5.0 7.5 2.3 4.6 8.2 3.4BLEU

rung 0

rung 1 8

finishedrunningnot started

4.7

1

rung 2

0

3.26.2

4

11.3 8.5 10.0

8 #configs: 3

#configs: 5

#configs: 10

BLEU

129

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

130

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

At each time step, we check the state of each config,
and submit jobs to idle GPUs

131

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

We check the state of each configurations,
and react accordingly to different states

132

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

Find config candidates and submit training jobs.

133

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

It is done by reading the train log.

134

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

State Reaction

RUNNING N/A

SUCCESS /
CONVERGED

Submit valid job or
Collect evaluation results

GPU ERROR Submit again

MEM ERROR /
DIVERGED

Delete job and add it to blacklist

135

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)

end
end

Get configs that are ready to move to next rung.
(ASHA: no need to wait till all the configs in
current run to finish.)

136

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, r, u, R)

end
end

Pick one from all the candidates.
Random search or Bayesian Optimization.

137

Pseudo-Code
Input: configurations configs, state checking time interval t,

minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)
react_to_state(config, state, r, R)

end
If ASHA is finished do

Return
end
For each idle GPU do

candidate = get_candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, r, u, R)

end
end

Submit a train job and let it run for
min(r, u*rung, R)-min(r, u*(rung-1), R) checkpoints

Implementation Challenges

• How to get the job state?
We check the job log.
• How to automatically check the job state?

We set up a timer running in a background thread.
• How to interact with the grid / GPU cluster?

Besides job states, we also check GPU states.
We debug carefully with possible errors.
• How to deal with failed jobs?

We either resubmit it or delete it.
138

139

Example Run

arguments

Pick up a candidate

Submit a train job

140

Example Run

Check
job state &
GPU state

Finished jobs

Example Run

141

ASHA finished
successfully.
The best config is 6 with
8.3 BLEU score.

142

Review

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)
3. Neural Architecture Search (NAS)
4. Extension to Multiple Objectives
5. Evaluation
6. Application to Neural Machine Translation (MT)

143

It's important to tune hyperparameters!

Histogram of BLEU scores for
700+ Swahili-English Neural
Machine Translation (NMT)
models

Note the large variance!

144

Hyperparameter Optimization (HPO)

145

Grid Search
Random Search

Bayesian Optimization

Population Based Training
CMA-ES

Successive Halving
HyperBand

Black-Box

Multi-Fidelity
Sequential

Parallel

Search Scheduler

Neural Architecture Search (NAS)

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

Sequential vs. Cell-based

We discussed:
Methods similar to HPO
+ Gradient-based

Full train from scratch vs
Weight share, One-shot, etc.

146

When deploying models, we care about
multiple objectives. But it's complex.

147

Evaluation is hard, so Tabular Benchmark for NMT
(Zhang & Duh, TACL2020)

148

Use existing AutoML toolkits or Implement your own?

• Choice 2:
Already have a training pipeline, e.g. Amazon Sockeye for MT, add an AutoML
wrapper on top of it.

It's worth implementing AutoML from scratch in this case.

149

• Choice 1:
Take an existing AutoML toolkit, and reimplement your training pipeline.

Questions or Comments?

150

