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AutoML: Automated Mac

nine Learning —

what it might mean to different people

* For consumers: Democratization of ML

* Upload own data, get ML model that can
* For developers: Reduce effort

be plugged in application

* Automate part of model building pipeline, more time for other priorities
* Especially useful for optimizing models with speed-accuracy tradeoff

e For NMT researchers: Obtain state-of-the-art results

* Fair comparison of methods

* For (some) ML researchers: Discover the next "Transformer"
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AutoML as an umbrella term

* Topics that might appear at an AutoML conference
* Hyperparameter Optimization (HPO)
* Neural Architecture Search (NAS)
* Meta-Learning
* Automated Reinforcement Learning (AutoRL)
* Algorithm Selection
» Systems for Machine Learning (SysML)



Goal of this tutorial

* Motivate the importance of proper hyperparameter tuning or
architecture search

* Explain a few popular methods in HPO and NAS (focus in-depth on a
few illustrative methods, then describe general categorizations)

e Case study in NMT: describe our experiences in applying AutoML,
hope it serves as a reference for you

* We hope AutoML will someday be a useful part of your toolbox!
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Roadmap

1. Motivation for AutoML

2. Hyperparameter Optimization (HPO)
* Problem Formulation
e Representative methods:
* Bayesian Optimization
e Grid/Random Search
* Evolutionary strategies
* Population-Based Training (PBT)
e Hyperband
* Generalizations

Neural Architecture Search (NAS)
Extension to Multiple Objectives

Evaluation
Application to Neural Machine Translation (MT)
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Problem Definition:
Hyperparameter Optimization (HPO)

f(.)

Hyperparameter setting

encoded as vector in R¢ .
Train Model on

EREY layers X » dataset, then - y—f(X)
200 |~ # units/layer run diagnostics

Accuracy (e.g. BLEU)
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_0.2 ] 2 learning rate SV I

Find x* = argmax, f(x) with
few function evaluations
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Sequential Model-Based Optimization (SMBO)
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Bayesian Optimization

i Expected
X3 X; Improvement L
evaluate

fx)

(Xl, ?(Xl)’\) J
. (x2, f(x2)) : \
(X3, f(x3)) Guassian : @Q,f\"?\

(x;, F(x)) Process B




Bayesian Optimization
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(Gaussian Process Regression

* Nonparametric / kernel methods

f(x) objective function

—— @Gaussian Process Prediction

8 Samples

* fer(x1n) is jointly Gaussian; i.e. GP fits each

fee(x) w/ a Gaussian distribution. 2

* To predict Xnew, GP compares how "similar" it 0 |
is to xun, Which is measured by kernel. /F\\‘
-7 :

* U(xnew) depends on the prior po(Xnew) & f(x1:n) 10 -05 00

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/
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Expected Improvement

—— Expected Improvement
---- Next Sampling Location

Definition:

EL(z) = Bn [[f(z) - £;]] D
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Expected Improvement

Definition: - Next sampling cocation
EL.(z) := En [[f(z) — fa]"] ™ RN
. L\
Expected quality  Expected uncertainty 021
eI <[ e +ep T e

where ¢, @ are the PDF, CDF of standard normal distribution.

From: Martin Krasser. http://krasserm.github.io/2018/03/21/bayesian-optimization/
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Bayesian Optimization
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Random / Grid Search
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Random / Grid Search

easy to get parallelized
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Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES)

e Search ™\ Sample X
. 3
Distribution . X, X,
Normal Distribution: x xN
°* mean terat 2
i eratie
e covariance
N /

Update |
distribution

N. Hansen, S. D. Muller, and P. Koumoutsakos, “Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES),”
Evolutionary Computation, vol. 11, no. 1, pp. 1-18, 2003.

N

Evaluate f(x) UH
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Evolutionary Strategy for HPO

1. Start with a population of
X x6 “individuals”, each representing
5 a hyperparameter setting
2. The “fittest” ones (high f(x))

Generation 0 survive and produce offspring
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Evolutionary Strategy for HPO

x5 1. Start with a population of
“individuals”, each representing
a hyperparameter setting
2. The “fittest” ones (high f(x))

Generation 1 survive and produce offspring
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Evolutionary Strategy for HPO

X

1. Start with a population of
“individuals”, each representing
a hyperparameter setting

2. The “fittest” ones (high f(x))

Generation 2 survive and produce offspring
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Estimating the search distribution

f = arg mgx/f(a:)N(a:W)da:

é]E[;(;)w]
(/1’07 Z0)
Vector from previous mean to x,
Mean update: l
,u‘n u’n 1+€uzwyk wk_,u'n 1)
Mean of k=1 Y\Welght for individual (x,, y,=f(x,)),

previous generation Better accuracy -2 higher weight
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Population Based Training (PBT)

(a) Sequential Optimisation
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From : Population Based Training of Neural Networks, Jaderberg et al. 2017
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Population Based Training (PBT)

Grid Search

e
Q)

Step Step

Figure. The objective function value of each worker over time.

From : Population Based Training of Neural Networks, Jaderberg et al. 2017
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Go Beyond Blackbox HPO

* No need to train to completion every time.
e Performance early in training is highly correlated with performance
late in training. (Dodge, et al. 2020. )
* Multi-fidelity Optimization:
Use cheap approximations of the blackbox.

e.g. fewer training steps.



Successive Halving (SHA)

-- multi-armed bandit algorithm to perform early stopping

A

loss

0% budget 100 %

31
From : automl.org



Successive Halving (SHA)

Two inputs:
Budget B, #configs N

B/n: resources allocated on average across the configurations

* Large N: small B/N, not enough training time
* Small N: large B/N, not enough configurations are evaluated



HyperBand

-- addresses the "n vs. B/n" problem by calling SHA multiple times
with different n

-mmm

rung n
0 81 1 27 3 9 9 6 27 5 81
1 27 3 9 9 3 27 2 81
2 9 9 3 27 1 81
3 3 27 1 81

4 1 81



HyperBand
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Generalizations

* There are many HPO methods, but they can be categorized along
various aspects
 Parallel vs Sequential
» Search Algorithm vs Scheduler
* Blackbox, Graybox, multi-fidelity



Generalization: Parallel vs Sequential

* Parallel vs Sequential:
* Parallel: Evolutionary strategies, Population-based training
* Sequential: Bayesian Optimization
 What's best may depend on your compute setup & requirements

* All methods are iterative
* All methods are about building on past experience in a HPO run

* New research area: Meta-learning or transfer learning for HPO
e Building on past experience from HPO runs on other problems



Generalization: Search Algorithm vs Scheduler

 Search algorithm: what to sample next (e.g. Bayes Opt vs CMA-ES)
e Scheduler: when to train a model, when to stop training (Hyperband)

* So these can be mixed and match!
* HyberBand = Early stopping scheduler + Random Search
 BOHB = Early stopping scheduler + Bayes Optimization



Generalization: Blackbox, Graybox, Multi-fidelity

e Blackbox methods don't look inside the model training process
* Graybox methods like Hyperband can improve HPO runtime

* Generally, multi-fidelity methods exploit approximations
 Limit training time (analogous to Hyperband) f( )

* Training blackbox on smaller subset of data
Train Model on

* Noisy measurements X » dataset, then » y=f(x)

--> assume precise accuracy isn't needed run diagnostics
Accuracy (e.g. BLEU)




Section Summary

 Problem Formulation of HPO

* Representative methods:
Black-Box

Grid Search

Random Search

Multi- Fidelity

Populatlon Based Training Successwe Halving
CMA ES HyperBand /

Search Scheduler

Sequential Bayesian Optlmlzatlon

Parallel
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Roadmap

1. Motivation for AutoML
2. Hyperparameter Optimization (HPO)

3. Neural Architecture Search (NAS)

* NAS vs HPO
* Designing the NAS Search Space
* NAS Search Strategy + Performance Estimation

* Methods similar to HPO
* One-shot NAS methods

4. Extension to Multiple Objectives

5. Evaluation
6. Application to Neural Machine Translation (MT)
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Hyperparameter Optimization (HPO) vs
Neural Architecture Search (NAS)

_ Hyperparameter Optimization (HPO) Neural Architecture Search (NAS)

Machine learning Neural Network, Random Forests, Support Neural Network
model Vector Machines, etc.
Hyperparameters Architectural: Architectural
- #layer for neural net - #layer, #dim
- tree depth for random forests - "Novel" non-standard architectures

- kernel for support vector machine
Training Pipeline:

- Preprocessing, Data selection
Optimization:

- ADAM vs AdaGrad, Learning rate

Example of a 4-layer encoder, 3-layer decoder, each with 4-layer encoder: layer 1 has 512 dim, layer 2 has 1024
discovered model FFN of 512 dimensions dim, layer 3 uses 12 heads rather than 8, etc.
Summary General technique, course-grained but Focused technique on neural nets, fine-

diverse hyperparameters grained architectural space
42



Example of model
discovered by NAS

from:

D. So, C. Liang, Q. Le.
The Evolved
Transformer (2019)

Transformer Encoder Block

+

| Conv 1x1:512 |

| Conv 1x1 : 2048 |
)
[ Layer Norm ]

+

| 8 Head Self Attention : 512 |
/)
[ Layer Norm ]

+

| Conv 1x1:512 |

| Conv 1x1 : 2048 |

[}
[ Layer Norm ]

+

| 8 Head Self Attention : 512 |

)
[ Layer Norm ]

A

Evolved Transformer Encoder Block

| Conv 1x1:512 |

| Conv 1x1 : 2048 |

[ Layer Norm ]

[ 8 Head Self Attention : 512 ]

)
[ Layer Norm ]

[ Sep Conv 9x1 : 256 ]

)
[ Layer Norm ]
()

| Conv 1x1:2048 | ( Conv 3x1: 256 |

— ———

[ Layer Norm ]

[ Gated Linear Unit : 512 ]
A

[ Layer Norm ]

A

O Activation

O Normalization

O Wide Convolution
O Attention

O Non-spatial Layer

43




Three components to an NAS method

architecture
Aec A
Search Space N N PE?rjgprmtafnce
Search Strategy stimation
A N~ Strategy
performance

estimate of A

Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019



Three components to an NAS method

We'll discuss:

_ Methods similar to HPO Full train from scratch vs
Sequential vs. Cell-based + Gradient-based architecture  Weight share, One-shot, etc.
Ae A
Search Space _—— | Performance
—1 Search Strategy Estimation
A N Strategy
performance

estimate of A

Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019 »



Search Space defined by sequential decisions

e Suppose we want feed-forward network with convolution layers
e Use a "controller" to predict hyperparameters in sequence

Number ‘ Filter Filter Stride Stride Number Filter
“ |of Filters|, | Height [, | Width [+ | Height [*| Width [. |of Filters|. | Height [

N N O N O

| A L A L A L A L A LA | A | A
Layer N-1 Layer N Layer N+1

From: Zoph & Le. Neural Architecture Search with Reinforcement Learning, ICLR2017



Cell-based Search Space

* Focus search on smaller cells, which are stacked

* Example:
* V nodes per cell (e.g. Max |V]| =7)

* Each node takes one of L operations: 3x3 convolution, 1x1
convolution, 3x3 max-pool

e Edges connect nodes, form Directed Acyclic Graph (DAG)
starting from "in" to "out" node. (e.g. 21 edges max)

* Encoding: 7x7 upper-triangular matrix + list of 5
operations. 2221 x 325 = 510M unique cells

From: Ying et. Al. NAS-Bench-101: Toward Reproducible NAS

)

dense

global avg pool

stack 3

downsample |,-’

stack 2

downsample |

stack 1

conv stem

1

G
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Cell-based Search Space (exercise)

# Adjacency matrix of the module

matrix=[[0, 1,
[0,
[0,
[0,
[0,
[0,
[0,

I

I

I

I

I

O O OO OO

I

1,
I
I
I
I

I

O O OO0

I

I

I

I

I

I

O O OO0 O Bk

I

9,

I

I

I

I

I

O O P OO

I

9,

0],
11,
11,
0],
11,
L[,
011,

H OH OH OH O H K

# Operations at the vertices of the
ops=[INPUT, CONV1X1, CONV3X3, CONV3X3, CONV3X3, MAXPOOL3X3, OUTPUT])

From: Ying et. Al. NAS-Bench-101: Toward Reproducible NAS

input layer

1x1
3x3
o9X5
oX5
3x3

conv
conv

conv (replaced by two 3x3's)
conv (replaced by two 3x3's)
max—pool

output layer
module, matches order of matrix
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Three components to an NAS method

We'll discuss:
Methods similar to HPO Full train from scratch vs
Sequential vs. Cell-based + Gradient-based architecture  Weight share, One-shot, etc.
Aec A
Search Space —— | Performance
| Search Strategy Estimation
A N~ Strategy
performance
estimate of A
Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019

selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.
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Search Strategy Options: HPO methods

e Sample x from NAS search space f(.)

* The rest we can use any HPO
method:
 Random search
* Bayes Optimization
e Evolutionary Strategy
* Population-based Training
* Hyperband

Train Model on

X # dataset, then

run diagnostics

mp y=f(x)

Accuracy (e.g. BLEU)

* Again we treat problem as a
black box optimization




Search Strategy Options: Reinforcement
Learning

* View exploration/exploitation in search space as a sequence of
decisions

Number Filter Filter Stride Stride Number Filter
. |of Filters|, | Height [+ | Width [\ | Height [+ | Width [. |of Filters|. | Height [

N N N
Fir i if i tF i3

‘.? '? '? '? "‘ '? '? )"
Y R S R R B BN

Ce ) ( - ) ) ) ( - e
Layer N-1 Layer N Layer N+1




Search Strategy Options: Gradient-based

* DARTS: Differentiable Architecture Search (Liu, Simonyan, Yang; 2019)

* addresses scalability issue in search + performance estimation by relaxing

search space to be continuous

0

/

1

(d) 52



DARTS

* Let O be set of candidate operations (e.g. convolution, max-pool, zero)

* For each edge (i,j), we have a distribution 69 (@) — 3 exp(as ™)) o)
0c® 20/ cO exp(a((f,’J))

Algorithm 1: DARTS - Differentiable Architecture Search

Create a mixed operation 6(*7) parametrized by %) for each edge (i, ;)
while not converged do
1. Update architecture o by descending Vo Lyqi1(w — €V Lirain(w, ), @)
(¢ = 0 if using first-order approximation) # learn alpha on validation set
2. Update weights w by descending V., Lir-qin (W, ) # fix alpha, standard training of parameters

Derive the final architecture based on the learned «.. # pick argmax edges, retrain final model

53



Another one-shot NAS method: Once-for-All

* Asingle "supernet"” is trained once

e Subnets x are sampled from supernet, and f(x) is measured without
retraining x from scratch

* Progressive shrinking technique:

* Potentially more representative subnets in supernet
Network Pruning

Train the Shrink the model Fine-tune , single pruned
full model (only width) the small net network

r\/

Progressive Shrinking

. . Fine-tune
full model | — | (4 dimensions) | — | Dothlargeand | —— CTeelonal
small sub-nets etwo
\_/
From: Cai et. al. Once-for-all: Train one network and specialize it for efficient deployment. ICLR2020




From: Wang, et. al. HAT: Hardware-aware Transformers for Efficient NLP. ACL2020

Once-for-All applied to Transformers

—————— — . - gr————— @EvolutlonarySearch
Encoder Layer m — Decoder Layer n $ubTransformer
-------------------------------- ' _Aychitecture - :
Elastic Layer T T Elastic Laye i Evolutionary Search /
Num in Encoder: ) : Numin Decgder Val Loss Engine .I.Il.
""""""""""""""""""" 1 J oo PEEEEEEEEEoae : ~ A
Encoder Layer 2 — Elagtic Hidden : SubTransformer :
TTTmmmmmmmmmmm s Dim in FFN S - Architecture Latency
. < | | | Vg 6 ........................................ -\(- .............................................................
-~ ( ) - Y s T 2 (%\ ( a
5 Elastic Hiddgn | Elastic Head Num 1 Latency Layer Num
§ | Dimin FFN . concat | (En-Decodér Attention) | g Predictor o %‘ Latency
. S ! \ Q
S| ; ; ; Arbitrary . , N | 3 . _ J
S Elastic Head Num Encoder- Elastic Head Num = ® Train a Latency Predictor
Lﬁ (Self At?:ention). A t?égaaS Decoder (Self At:tention) ) I?éga.ds for each Hardware
N S J Attention L " ) - r — )
---------------------- s = = -
Elastig Embedding Dim Elastic Embedding} Dim a'.))) - ﬁ = l@ O —
. R éuperTransformer r ) \ loT CPU  GPU )

® Train a SuperTransformer by uniformly sampling SubTransformers with weight sharing @ Collect Hardware Latency Datasets



Pros & Cons of One-Shot NAS

* Pros:
* Much faster than black-box search + performance estimation
* Explore much larger achitectural space

* Cons:
 Difficult to know if the assumption of weight sharing is valid
* Empirical results are mixed and unstable (some researchers may disagree)
* Supernet needs to fit in memory

* NAS (one-shot & in general) is a very active research area — stay tuned!



Section Summary

We discussed:

_ Methods similar to HPO Full train from scratch vs
Sequential vs. Cell-based + Gradient-based architecture  Weight share, One-shot, etc.
Ae A
Search Space _—— | Performance
—1 Search Strategy Estimation
A N Strategy
performance

estimate of A

Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019 >
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Roadmap

Motivation for AutoML
Hyperparameter Optimization (HPO)
Neural Architecture Search (NAS)

al RN A

Extension to Multiple Objectives

* Why it's important

* Pareto optimality

e Example Multi-objective HPO/NAS methods

5. Evaluation
6. Application to Neural Machine Translation (MT)



When deploying models, we care about
multiple objectives. But it's complex.

©n
o 16
-
— 14-
GEJ 12- : BLEU vs Time Scatterplot
S 10 3 LD, for 700+ Swahili-English
o 8 KSR L NMT models: unclear
- XYY "‘.:&"s‘ how to get best tradeoff
@) L,
@) 4 ¥
Q
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Quiz: How do these hyperparameters

Impact accuracy and speed?

* Architectural hyperparameters:
* # of layers
e # of hidden units in feed-forward layer
 # attention heads
* Word embedding dimension

* Training pipeline hyperparameters:
* # of subword units

e Optimizer hyperparameters:
* Initial learning rate for ADAM, etc.

Output
Probabilities

t

| Softmax |

| Linear |

A

f
| Add & Norm J<~

Feed
Forward

L
r ~ [ Add & Norm Je~
> Add & Norm J Multi-Head
Feed Attention
Forward T 7 7 N x
A
| Add & Norm Je=
~—>| Add & Norm ] T
Multi-Head Multi-Head
Attention Attention
1t L
\_ J \_ o
Positional @_@ & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)



Objectives one may care about

* Accuracy
 BLEU, COMET, Human evaluation

* Inference speed
* On GPU, on CPU, in batch or not
* Throughput vs Latency

* Deployment resource consumption
* Memory, disk, energy

* Training resource consumption



Motivation for Multiple Objectives

* IMHO, this is the strongest motivation for AutoML in deployment

* While an engineer/researcher may develop good heuristics for tuning
hyperparameters for accuracy alone, it is very difficult to reason through
multiple interacting objectives

* |deal future, where AutoML is part of everyone's toolkit
* import AutoMLtool
* A=search_space()
e O=[accuracy(), speed(), memory()]
 models = multi_objective _NAS(A, O)



How to define optimality for multi-objective?
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Definition: A point p is weakly pareto-optimal iff there does not exist
another point g such that F (q) > F,(p) for all k
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Definition: A point p is weakly pareto-optimal iff there does not exist
another point g such that F (q) > F,(p) for all k
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Definition: A point p is weakly pareto-optimal iff there does not exist
another point g such that F (q) > F,(p) for all k
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Definition: A point p is pareto-optimal iff there does not exist a q such
that F (g) >= F,(p) for all k and F(q) > F,(p) for at least one k
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Given a set of points, the subset of pareto-optimal
points form the Pareto Frontier

Objective 2
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Computing Pareto

* Pseudo-code:

e Set N=[]

e For p in ListOfSamples:
e Setd=0
* For gin ListOfSamples:

* For kin ListOfObjective, see if F.(q) > F.(p). If yes, d+=1

e |fd=0,addptoN

* Return N

* Basic implementation is O(KN"2)
e K =#objectives, N= #samples
* O(K NlogN) is possible in two-objective case

* Generally, #pareto increases with K



Points can be ranked by successively peeling off
the Pareto Frontier and recomputing

A /
‘ ‘ | ‘ // |
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S END N
- % S~ 2"d Best Rank
o |
& 3rf Best/ Rank |
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0.1 0.2 0.3 04 0.5
Objective 1
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Aside: Alternative to Pareto Optimality

 Combine multiple objectives into one

max(£,(x), £, (%);-..» fos (¥)

M
Scalarization: max[z o f(x)] a, = O,Eam =1
¥ m m=1



Scalarization misses Pareto points that are not
on Convex Hull

0<a, <05 |
{RFAN
N |
il
£ o
| _05=<a =<1
S / f o 1
. | a =1
2 @ | ‘
— N

0.1 0.2 0.3 04 05

Objective 1
For more info, see tutorial: https://www.cs.jhu.edu/~kevinduh/notes/duh11multiobj-handout.pdf 73




Incorporating Pareto into CMA-ES

= argmg,x/f(x)./\/'(xlﬁ)dx

J

éIE[J?(rfv)lé’]
(/1’07 20)
Vector from previous mean to x,
Mean update: l
fin = .U'n 1+€uzw Yi)(Tk — fin—1)
Mean of k=1 Weight for individual (x,, y,=f(x,)),

previous generation Better Pareto rank = higher weight
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Example MT results from CMA-ES

N
o0
-

o N +gen0
£ 260 egenl
- + ¢ |

.g 540 *. . N Agen?
© :. *xgen3
O ¢ A 7S

= 220 mgend
Q °, :

500 egen

16 16.5 17 17.5 138 18.5

From: Qin, Shinozaki, Duh. Evolutionary strategy based automatic tuning of NMT systems, IWSLT 2017 "



Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

>

® | | Pareto Frontier
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Objective 2
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Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

Hypervolume
Indicator
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Objective 2
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Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

(1) Hypervolume

Improvement
(HVI)

Objective 2
04 05

0.2 0.3

0.1

0.1 0.2 0.3 04 05
Objective 1
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Multi-Objective Bayesian Optimization
with Expected Hypervolume Improvement

Objective function can be modeled
as a multivariate Gaussian Process.

Objective 2
04 05

0.3

Expected Hypervolume Improvement:

o gavi(Xeand) = ]E[HVI(.f(Xcand))]

0.2

0.1

0.1 0.2 0.3 04 05
Objective 1
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Section Summary

* Pareto Optimality and multi-objective HPO/NAS

* Multi-objective is one of the strongest selling points of AutoML
* Suppose Transformer-Big/Base doesn't fit your deployment scenario:

O HAT (Ours) Layer Number Scaling of Transformer (Vaswani et al.) {0 Dimension Scaling of Transformer (Vaswani et al.)
29 29 29 Transf Bi
ranstormer-6ig
) ggi gastﬁr _______ 4 e - \F’
28 | fx omarel..--- : 28 + o L. /28t 2
g---""" Transformer-Big < rr -~ Transformer-Big
< ’ 2.0x Faster ™/ '\ 2.7x Faster
S 27 | / \ 27 t : 27 t :
w Transformer-Base ' Transformer-Base Transformer-Base |!
D '
w 26 r 26 ¢ 26 | !
—l '
m . . Dimension scaling h
25  Heni 25 Hin 25 o can hardly reduce latency/,
K q on Nvidia GPU |:'|
o4 - WMT 14 En-De o4 - WMT "14 En-De o4 - WMT 14 En-De
3 7 12 16 21 100 234 368 501 635 50 101 153 204 255
Raspberry Pi ARM CPU latency (s) Intel CPU latency (ms) Nvidia GPU latency (ms)

From: Wang, et. al. HAT: Hardware-aware Transformers for Efficient NLP. ACL2020
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Roadmap

Motivation for AutoML
Hyperparameter Optimization (HPO)
Neural Architecture Search (NAS)
Extension to Multiple Objectives

s w hbe

Evaluation

* Brief literature survey

* Challenge of rigorous evaluation

e Carbon footprint and broader issues

6.

Application to Neural Machine Translation (MT)



Which HPO/NAS method is best?

* This question is difficult to answer, perhaps even ill-defined.
* Depends on budget, evaluation metric, task

* We'll survey 4 papers that compare HPO & NAS on non-MT tasks, just
to get a sense of the landscape

 We'll then describe competition result of the AutoML'22 MT
benchmark.

* The message:
 Evaluation of HPO/NAS methods is difficult due to computational constraints

* The "best" solution for your problem will depend not just on the HPO/NAS
method, but also on "best practices" for implementation (discussed later).
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HPO comparison 1: Falkner, et. Al. BOHB: Robust and
Efficient Hyperparameter Optimization at Scale. ICML2018

) 18 e e S ) S S R
1] 1] [ B
* "Best” method o —»— Random Search Tl
d 555232 Oent I 20 speed up - Bayesian Optimization T
Y 8 | Hyperband |
* Compare = -o- BOHB
methods by = —2 |
- o 1077
fixing budget, L i
or "anytime" il
performance i
| 55X speed up
-3 U N EEE NIRRT | 1] L1 L] |1l
10 1 2 3 4 5 6
10 10 10 10 10 10

wall clock time |s]

Kohavi96 Adult dataset: predict whether a person 84
makes over 50k per yvear (features from Census)



HPO comparison 2: Zoller & Huber, Benchmark and Survey of
Automated Machine Learning Frameworks, JAIR 2021

ilpd
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Accuracy

¢ Grid Search ¢ SMAC ¢ Optunity RoBO
Random Search ¢ BOHB ¢ hyperopt ¢ BTB

SMAC: SMBO with random forest

BOHB: Hyberband + Bayesian Optimization (TPE)

Optunity: Particle Swarm Optimization

Hyperopt: SMBO with Tree-structured Parzen Estimator (TPE)
RoBO: SMBO with Gaussian Process

BTB: Bandit Learning + Gaussian Process

For datasets here, it seems:
- Some trends, e.g. Random Search is competitive, Grid search isn't
- But generally ranking is not consistent across datasets, variance is high



NAS Comparison 1: Yang et. al. NAS Evaluation is
Frustratingly Hard, ICLR 2020

CIFAR10 & CIFAR100, 60k 32x32 images
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CIFAR-10: 32x32 pixel image, 10 classes, 60k samples

Published

#Params

Top-1

GPU

Reference in (Millions) | Acc(%) | Days #GPUs AO
ResNet-110 [2] ECCV16 1.7 93.57 - - Manually
PyramidNet [207] CVPRI17 26 96.69 - - designed
DenseNet [127] CVPR17 25.6 96.54 - -
GeNet#2 (G-50) [30] ICCV17 N 92.9 7 -
Large-scale ensemble [25] ICML17 40.4 95.6 2,500 250
Hierarchical-EAS [19] ICLR18 15.7 96.25 300 200
CGP-ResSet [28] LJCAIS 6.4 94.02 | 274 2
AmoebaNet-B (N=6, F=128)+c/o [26] | AAAII9 34.9 97.87 | 3,150 | 450 K40 EA
AmoebaNet-B (N=6, F=36)+c/o [26] AAAT1I9 2.8 97.45 3,150 450 K40
Lemonade [27] ICLR19 34 97.6 56 8 Titan 1
EENA [149] ICCV19 8.47 97.44 0.65 | 1 Titan Xp EVOI Ut 10Na ry
EENA (more channels)[149] ICCV19 54.14 97.79 0.65 | 1 Titan Xp
NASv3[12] ICLR17 7.1 95.53 22,400 800 K40
NASv3+more filters [12] ICLR17 37.4 96.35 22,400 800 K40
MetaQNN [23] ICLR17 - 93.08 100 10
NASNet-A (7 @ 2304)+c/o [15] CVPRI18 87.6 97.60 2,000 500 P100
NASNet-A (6 @ 768)-+c/o [15] CVPRI18 3.3 97.35 | 2,000 | 500 P100
Block-QNN-Connection more filter [16] | CVPR18 33.3 97.65 96 32 1080Ti
Block-QNN-Depthwise, N=3 [16] CVPRI18 3.3 97.42 96 32 1080Ti RL
ENAS+macro [13 ICML18 38.0 96.13 0.32 1 1
ENAS+micro+[c/(]) [13] ICML18 4.6 97.11 | 045 1 Reinforcement
Path-level EAS [139] ICML18 5.7 97.01 200 - .
Path-level EAS+c/o [139] ICML18 5.7 97.51 | 200 - Learnin g
ProxylessNAS-RL-+c/o[132] ICLR19 5.8 97.70 § -
FPNAS|[208] ICCV19 5.76 96.99 - -
DARTS(first order)-+c/o[17] ICLR19 3.3 97.00 1.5 4 1080Ti
DARTS (second order)+c/o[17] ICLR19 3.3 97.23 4 41080Ti
sharpDARTS [178] ArXiv19 3.6 98.07 0.8 1 2080Ti
P-DARTS+c/o[128] ICCV19 3.4 97.50 | 0.3 -
P-DARTS(large)+c/o[128] ICCV19 105 97.75 03 .
SETN|[209] ICCV19 4.6 97.31 1.8 - aD
GDAS-+c/o [154] CVPR19 25 97.18 | 0.17 1
SNAS+moderate constraint+c/o [155] ICLR19 2.8 97.15 1.5 1
BayesNAS|[210] ICML19 34 97.59 0.1 1
ProxylessNAS-GD+c/0[132] ICLR19 5.7 97.92 - - .
PC-DARTS+c/o [211] CVPR20 3.6 ora3 | o1 | 11080t | Gradient
MiLeNAS[153] CVPR20 3.87 97.66 0.3 -
SGAS[212] CVPR20 3.8 97.61 0.25 1 1080T1i
GDAS-NSAS|[213] CVPR20 3.54 97.27 0.4 -
NASBOT|160] NeurIPS18 - 91.31 1.7 -
PNAS [18] ECCV18 3.2 9659 | 225 . SMBO SMBO , €.8.
EPNASJ[166] BMVC18 6.6 96.29 1.8 1 .
GHN([214] ICLR19 5.7 97.16 | 0.84 - Bayes 1an
NAO+random+c/0[169] NeurIPS18 10.6 97.52 200 200 V100
SMASH [14] ICLR18 16 95.97 1.5 -
Hierarchical-random [19] ICLR18 15.7 96.09 8 200 RS
RandomNAS [180] UAI19 4.3 97.15 2.7 -
DARTS - random-+c/o [17] ICLR19 32 9671 | 4 1 Random Search
RandomNAS-NSAS|[213] CVPR20 3.08 97.36 0.7 -
NAO-+weight sharing+c/o [169] NeurIPS18 2.5 97.07 0.3 1 V100 GD+SMBO
RENASNet+c/o[42] CVPR19 3.5 91.12 15 4 EA+RL
CARS|40] CVPR20 3.6 97.38 0.4 EA+GD

NAS comparison 2: He, et. Al. AutoML A Survey of the State-of-the-Art, 2021

ImageNet (subset): 224x224 pixel image, 1000

classes, Imillion samples

Published | #Params Top-1/5 GPU

Reference in (Millions) Acc(‘7/o) Days | #GFPUs | AO
ResNet-152 [2] CVPRI16 230 70.62/95.51 | - N
PyramidNet [207] CVPR17 116.4 70.8/95.3 - -
SENet-154 [126] CVPR17 - 71.32/95.53 - - Manually
DenseNet-201 [127] CVPR17 76.35 78.54/94.46 - - designed
MobileNetV2 [215] CVPRI18 6.9 74.7/- - -
GeNet#2[30] ICCV17 - 72.13/90.26 | 17 -
AmoebaNet-C(N=4,F=50)[26] AAATI9 6.4 75.7/92.4 | 3,150 | 450 K40
Hierarchical-EAS[19] ICLR18 - 79.7/94.8 300 200 EA
AmoebaNet-C(N=6,F=228)[26] AAATI9 155.3 83.1/96.3 3,150 | 450 K40
GreedyNAS [216] CVPR20 6.5 77.1/93.3 1 -
NASNet-A(4@1056) ICLR17 5.3 74.0/91.6 2,000 | 500 P100
NASNet-A(6@4032) ICLR17 88.9 82.7/96.2 2,000 | 500 P100
Block-QNN|16] CVPR18 91 81.0/95.42 96 32 1080Ti
Path-level EAS[139] ICML18 - 74.6/91.9 8.3 -
ProxylessNAS(GPU) [132] ICLR19 - 75.1/92.5 8.3 - RL
ProxylessNAS-RL(mobile) [132] ICLR19 - 74.6/92.2 8.3 -
MnasNet[130] CVPR19 5.2 76.7/93.3 1,666 -
EfficientNet-B0[142] ICML19 5.3 77.3/93.5 - -
EfficientNet-B7[142] ICML19 66 84.4/97.1 - -
FPNAS|208] ICCV19 3.41 73.3/- 0.8 -
DARTS (searched on CIFAR-10)[17] | ICLR19 47 73.3/31.3 4 -
sharpDARTS[178] Arxiv19 4.9 74.9/92.2 0.8 -
P-DARTS[128] ICCV19 4.9 75.6/92.6 0.3 -
SETN[209] ICCV19 5.4 74.3/92.0 1.8 -
GDAS [154] CVPR19 4.4 72.5/90.9 0.17 1
SNAS[155] ICLR19 4.3 72.7/90.8 1.5 -
ProxylessNAS-G[132] ICLR19 - 74.2/91.7 - -
BayesNAS[210] ICML19 3.9 735/91.1 | 02 1
FBNet[131] CVPR19 5.5 74.9/- 216 -
OFA[217] ICLR20 7.7 77.3/- : . GD
AtomNAS[218] ICLR20 5.9 77.6/93.6 - -
MiLeNAS|[153] CVPR20 4.9 75.3/92.4 0.3 -
DSNAS|219] CVPR20 - 74.4/91.54 17.5 | 4 Titan X
SGAS[212] CVPR20 5.4 75.9/92.7 | 0.25 | 11080Ti
PC-DARTS [211] CVPR20 5.3 75.8/92.7 3.8 8 V100
DenseNAS[220] CVPR20 - 75.3/- 2.7 -
FBNetV2-L1[221] CVPR20 - 77.2/- 25 8 V100
PNAS-5(N=3,F=54)[18] ECCVI8 5.1 742/91.9 | 225 N
PNAS-5(N=4,F=216)[18] ECCV18 86.1 82.9/96.2 | 225 - SMBO
GHN[214] ICLR19 6.1 73.0/91.3 0.84 -
SemiNAS[202] CVPR20 6.32 76.5/93.2 4 -
Hierarchical-random[19] ICLR18 - 79.6/94.7 8.3 200 RS
OFA-random[217] CVPR20 7.7 73.8/- - -
RENASNet[42] CVPR19 5.36 75.7/92.6 - - EA+RL
Evo-NAS[41] Arxiv20 75.43/- | 740 - EA+RL
CARS[40] CVPR20 51 75.2/92.5 | 0.4 EA+GB

Many results! leferent budgets...



Evaluation in HPO/NAS is extremely hard!

* Note previous papers focused on mostly on smaller datasets

* Evaluation is hard due to computational constraint:

* Suppose it takes 1 week to train one model
* Each HPO algorithm samples and trains 100 models at best

e Cannot do head-to-head comparison, repeated trials don’t know if an

algorithm really works!

 Li & Talwalkar (2019) Random search & Reproducibility for Neural
Architecture Search: “Of the 12 papers published since 2018 at NeurlPS, ICML,

and ICLR that introduce novel NAS methods, none are exactly reproducible.”

» Also: Lindauer & Hutter. Best Practices for Scientific Research on Neural
Architecture Search, JMLR 2021. https://www.jmlr.org/papers/volume21/20-

056/20-056.pdf



https://www.jmlr.org/papers/volume21/20-056/20-056.pdf

(Crazy) Solution: Tabular Benchmarks

* One-time fixed cost:
* Run grid/random search, training MANY

models on some dataset Tabla f X
* Publish all {x,f(x)} pairs in a table X » - ( )

Accuracy

* HPO algorithm developers:
* Experiment with HPO on finite universe
e Can run repeated trials quickly




Tabular Benchmark for NMT
(Zhang & Duh, TACL2020)

Total: 2245 Transformer models,

Hyperparameter LIS LIEAEINEEE  trained on ~1550 GPU days;
Type record BLEU, train/test time, etc.

# BPE Subword 1k, 2k, 4k, 8k, https://github.com/Estelle/hpo nmt
Units 16k, 32k, 50k m
# Transformer Layers 1, 2,4, 6 zh-en

Word embedding 256, 512, 1024 ru-en TED 176

# Hidden Units 1024, 2048 ja-en WMT 150

# Attention Heads 8, 16 en-ja WMT 168

Initial Learning Rate 3x104, 6x1074, sw-en MATERIAL 767
for ADAM 10x10 so-en MATERIAL 605
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Diversity in dataset

For each dataset, we order
hyperparameter configurations by
BLEU, then compare these rankings
across datasets

Low Spearman’s correlation imply no
single best set of Transformer model
across datasets

zh-en-

(IE=1s 0.688]1.000

ja-en-MOA% 1.000
en-ja-..

Sw-en - (LAY .
so-en -[WKsE]l 0.359 0.084 0.123 ..

Zh =@Nn = en ja en en-Ja SW-en Sso-en

1.0

0.8

0.6

- 0.4

=02
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Diversity in dataset:

Hyperparameter importance by fANOVA, measuring BLEU
variance when changing a specific hyperparameter value“pairs

0.07
0.06 -
0.05 -
0.04 -
0.03 1
0.02 -

0.01 -

0.00 -

en-ja dataset

0.10 A

0.08 A

0.06 A

0.04 -

0.02 A

0.00 -

sw-en dataset
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Develop a robust
HPO algorithm

Evaluation philosophy: Find HPO methods that are robust over multiple datasets before
applying to target real-world data
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detailed run-time comparison #NMT models



Multi-objective evaluation metrics

Example results on sw-en data, 700+ models in tabular benchmark, 14 pareto points
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AutoML 2022 Competition https://automl.cc

Home Dates

2022

1st International Conference on

Automated Machine Learning

AutoML-Conf: embracing open source, collaboration & reproducibility

AutoML Conference 2022

Q@ Baltimore, US (co-located with ICML)

July 25, 2022 July 27, 2022

Calls v

Competitions v Venue Blog

Zero-Cost NAS
Competition

Multiobjective
Hyperparameter
Optimization for
Transformers

DAC4AutoML
Competition 2022

Meta-learning from
Learning Curves
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Top performers in AutoML'22 Competition

e ESI Algiers and LAMIH/CNRS France — Evolutionary approach
 Latin Hypercube Sampling for initial population
* XGBRank for fitting x --> f(x), then creating “surrogate function”
* Find next generation by optimizing NSGA-Il on surrogate function

* AutoML@Freiburg — Bayes Opt. approach, with transfer learning
e Tree-structured Parzen Estimator (TPE) for Bayes Optimization
* Transfer learning from multiple MT datasets
* Define task similarity by how often similar hyperparameters perform well



Beyond tabular benchmarks?

* Surrogate benchmark:
* Use external ML model to estimate f(x)
* These can create infinitely many new "rows" in table

* Open questions:
 How many {x, f(x)} pairs are needed to train an accurate surrogate?
* Will the surrogate model introduce bias?

* IMHO, I'm not convinced we can do this for complex and large tasks like
Transformer hyperparameters for NMT.



Surrogate benchmark

e Zela, et. Al. Surrogate NAS Benchmarks, ICLR2022

* Argues that ranking of NAS methods are similar when comparing true
benchmark to surrogate benchmarks (on different external models)

7 x 1072
6 x 1072
5x 1072

Best validation error achieved

10%

True Benchmark

DE
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TPE

= RS

| HEE

10° 10°
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BANANAS
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GIN Surrogate Benchmark
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Simulated Wallclock Time [s]

LGBoost 0.892
XGBoost 0.832
GIN 0.832
NGBoost 0.810
1#-SVR 0.709
MLP (Pathenc.) 0.704
RF 0.679
e-SVR 0.675

XGB Surrogate Benchmark
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Discussion: CO2e footprint and energy cost

* AutoML is basically trading human effort with computer time

* What is the cost of compute?

* We may enjoy the convenience of AutoML, but we should be aware of the
cost and potentially inefficiencies

* To put things in perspective, let's discuss how different HPO/NAS compare in
terms of CO2 footprint and energy cost

* AutoML has the potential to have both positive and negative impact!



Strubell et. al., Energy and Policy
Considerations for Deep Learning in NLP,
ACL2019

Estimating CO2e footprint

Consumption COse (Ibs)
Air travel, 1 person, NY<>SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experiments 78,468
Transformer (b1g) 192
w/ neural arch. search 626,155

Table 1: Estimated CO, emissions from training com-
mon NLP models, compared to familiar consumption.!



Strubell et. al., Energy and Policy
Considerations for Deep Learning in NLP,

ACL2019

Estimating CO2e footprint

Power Usage Effectiveness (PUE) - Avg power draw (watts)
energy for infrastructure (cooling) from CPU, RAM, #g GPUs

N e

Power consumption (kWh) . 158t(pc T Pr T gpg)
from training a model — Pt = 1000

CO2e: CO2 equivalent emission COQe = () 954pt

(includes other greenhouse gases) I

EPA's estimate of avg CO2 (in Ib per kWh) based on U.S.
non-renewable vs renewable sources



Strubell et. al., Energy and Policy
Considerations for Deep Learning in NLP,
ACL2019

Estimating CO2e footprint

Model Hardware = Power (W) Hours kWh-PUE COze Cloud compute cost

j 24 & - P100x8 1415.78 12 27 26 $41-$140

T2Ty;g P100x8 1515.43 84 201 192 $289-$981

ELMo P100x3 517.66 336 273 262 $433-$1472
BERTy,se V100x64 12,041.51 79 1507 1438 $3751-$12,571
BERTy,se TPUv2x16 — 96 — —  $2074-$6912

NAS P100x8 1515.43 274,120 656,347 626,155 $942,973-$3,201,722
NAS TPUv2x1 — 32,623 — —  $44,055-$146,848
GPT-2 TPUv3x32 — 168 — —  $12,902-$43,008

Table 3: Estimated cost of training a model in terms of CO5 emissions (Ibs) and cloud compute cost (USD).” Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.
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AutoML can have both positive and negative
impact on carbon footprint

To be fair, these NAS methods aren't optimizing for
training cost, but the difference with those that do
_can be large. Also, see next slide for revised estimate

Human Life (1 year)

American Life (1 year)
U.S. Car (lifetime)

MnasNet ’F 454,000
OFA |3 Computer Vision
Evolved Transformer 626,155
HAT |52 Natural Language Processing

OK 150K 300K 450K 600K 750K
Carbon footprint (lbs)

Cai et. Al. Enable Deep Learning on Mobile Devices: Methods, Sytems, and Applications,
ACM Trans. Design Automation of Electronic Systems, 2022
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Estimating carbon footprint, revisited

Number of Parameters (B) 0.064 per
model
Percent of model activated on every token 100%
 Recommended reading if interested: P2 —
. . - : oogle
Patterson, et. al. Carbon Emissions ~ [eeceneretenonaiexperment Georgia
1Nt VWhen model ran Dec 2018
an d La rge N €ura I N etWO rk Tra inin g Datacenter Gross CO,e/KWh (kg/KWh when it was run) 0.431
° ! 1 1 Datacenter Net CO2e/KWh (kg/KWh when it was run) 0.431
It S Cha I Ien.gl ng tO eStImate Coze Datacenter PUE (when it was run) 1.10
retrospectively; ideal for each paper Processor TPU v2
. Chip Thermal Design Power (TDP in Watts) 280
d Ut h or tO measure It Measured System Average Power per Accelerator, 208
‘L . including memory, network interface, fans, host CPU (W)

° SpeCIfI C d ata center & time matters Measured Performance (TFLOPS/s)'? 24.8
. Number of Chips 200
* Inference may ta ke_ more energy in the s —
agg r‘egate t h an traini ng/AutO M |_ Total Computation (floating point operations) 2.91E+21
. Energy Consumption (MWh) 7.5

* Note CO2e for Evolved Transformer is e of Google 2019 total energy consumption (122 TWh . 3.2x2200 =

d ff f . | = 12,200,000 MWh) [Goo20] ' 7040 |bs

ve ry I erent rom preV|OUS papers : Gross tCO,e for Model Training 7 2
Net tCO,e for Model Training 3.2
Fraction of NAS Estimate in [Str19] (284 tCO2e) 0.01

Fraction of equivalent jet plane CO,e round trip San

Francisco <> New York (~180 t; see Ap. A) 0.018/196




Section Summary

 Evaluation of HPO/NAS is non-trivial in two aspects

e First, what do you want to look at?

* Fixed budget, or anytime performance
* What metric? What datasets?

e Second, can you even run the evaluation in a rigorous fashion?
e Tabular & Surrogate benchmark
* NMT example

* Awareness of CO2e footprint discussions, potential of AutoML for
positive and negative impact
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Roadmap

Motivation for AutoML
Hyperparameter Optimization (HPO)
Neural Architecture Search (NAS)
Extension to Multiple Objectives
Evaluation

QU A W nhoe

Application to Neural Machine Translation (MT)
* Hyperparameters that matter: Literature survey
* Implementing AutoML in practice: case study
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Output

Probafbilities
I_I t | Softmax |
yperparameters — —
Linear
([ Add &lNorm ]ﬁ\
. . Feed
* Architectural hyperparameters: Ty
° L
# of Ia.ye s o r ~ | Add & Norm J~
 # of hidden units in feed-forward layer g CEE R MTt-Head
. Feed Attention
e # attention heads eiitoTy ) e)o g} N
* Word embedding dimension ] (AJd & Nom J<
.. : ) N | ~(AddENom) Masked
* Training pipeline hyperparameters: e Mul Head
e # of subword units —t )
| J )
 Optimizer hyperparameters: Positional 4 Positional
P N yp P Encoding ®_O ¢ Enclolding
* |nitial learning rate for ADAM, etc. inout Output
Embedding Embedding
Inputs Outputs

(shifted right)



Bahar et. Al. Empirical Investigation of
. . . Optimization Algorithms in Neural
O ptl m |Ze r a n d ‘ ea rn I n g rate Machine Translation, Prague Bulletin of

Mathematical Lingustics, 2017

\ SGD ——be— Adagrad
5 | =——g—— RMSProp =——s—— Adadelta

Denkowski & Neubig. Stronger Baselines for Trustable
Results in Neural Machine Translation, WNMT2017

34 WMT German-English Is WMT English-Finnish
32 14 i
-
13 =
301 @ —
Adam 121 Adam =
281 —a— SGD —m— SGD
. . 111 . | . . 10 J | \
15 20 8 10 12 14 0 0.5 1 1.5 2
Training Sentences (millions) Training Sentences (millions) [terations
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Subword units

Ding et. Al., A Call for Prudent Choice of Subword Merge
Operations in Neural Machine Translation, MT Summit 2019

BLEU score of Transformer models with different BPE units, and delta
between best and worst models (IWSLT2015) --> don't use defaults!

0 05k 1k 2k 4k 8k 16k 32k o
ar-en 30.3 308 306 305 304 298 28 275 33
cs-en | 24.6 233 230 227 212 226 20.6 21.0 4.0
de-en 28.1 28.6 28.0 284 277 275 2677 252 34
frren 288 298 296 293 287 285 275 26.6 3.2
en-ar  12.6 13.0 121 123 118 113 10.7 10.6 24
en-cs | 173 171 16.7 164 16.1 156 147 138 3.5
en-de 26.1 274 274 26.1 263 26.1 258 239 3.5
en-fr 252 25.6 253 255 253 247 241 228 2.8

Variance from random restarts

Ok 0.5k 1k 2k 4k 8k 16k 32k
BPE size

(a) ar-en



Subword/character interacts with #layer

Cherry, et al. Revisiting Character-Based Neural Machine
Translation with Capacity and Compression. EMNLP 2018

B EnFrChar & EnFrBPE B DeEnChar & DeEn BPE
40.0 33
A
36.0 29
o 1x2+2 Ix2+4 6x2+ - 1X2+2 3x2+4 6X2+8
B CsEnChar & CsEnBPE B FiEnChar & FiEn BPE
7 20
/ —aA £ %—”—_‘
16
14
1x2+2 2+4 BX2+ 1 %2+2 3x2+4 6x2+8

Figure 1: Test BLEU for character and BPE translation as architectures scale from 1 BiLSTM encoder layer and 2
LSTM decoder layers (1 x24-2) to our standard 6 x2+8. The y-axis spans 6 BLEU points for each language pair.



Speed-accuracy tradeoff with Deep Encoder
Shallow Decoder

<~ NAR: CMLM T'=4 NAR: CMLM T=10 @ NAR: DisCo W AR

Kasai, et. Al. Deep Encoder, Shallow

b o Decoder: Re-evaluating Non-autoregressive
98 0-0 12-1 7 MT, ICLR2021
a 27.0/ - -6-0
0-1
—]
m 27 6-6
%65 \121
261 |
Ix 3X OX
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Pushing the limits with very deep layers

Model BLEU | a | b | c g
a:6L-6L 41.5 - | - -
b:12L-12L 42.6 | + - -
c:24L-12L. 433 | + | + =
d:48L-12L 436 |+ | + | = +
e:60L-12L 438 |+ | + | + +
f:36L-36L 4377 |+ | + | = +
g:12L-60L  43.1 |+ | + | =

Table 3: BLEU comparison of different encoder and de-
coder layers (using ADMIN initialization, on WMT’ 14
EN-FR). In the matrix, each element (i,j) indicates if
the model in row i significantly outperforms the model
in column j (+), under-performs j (-), or has no statisti-
cally significant difference (=).

Liu, et. Al. Very Deep Transformers for Neural
Machine Translation, 2020



Hyperparameter exploration, sequentially

Araabi & Monz, Optimizing Transformer for Low-
Resource Neural Machine Translation

ID System Sk

1  Transformer-big 3.3
2  Transformer-base 8.3
3 2 + feed-forward dimension (2048 — 512) 8.8
4 3 + attention heads (8— 2) 9.2
5 4+ dropout (0.1—-0.3) 10.6
6 5+layers (6 —5) 10.9
7 6+ label smoothing (0.1— 0.6) 11.3
8 7+ decoder layerDrop (0 — 0.3) 12.9
9 8+ target word dropout (0 — 0.1) 13.7
10 9 + activation dropout (0 — 0.3) 14.3



Architecture hyperparameter and model size

decoder_att

decoder_transformer_x_att_enc_h2o_weight: (e, e),
decoder_transformer_x_att_enc_k2h_weight: (e, e),

L] L]
. decoder_transformer_x_att_enc_pre_norm_beta: (e,),
decoder_transformer_x_att_enc_pre_norm_gamma: (e,),
decoder_transformer_x_att_enc_g2h_weight: (e, e),

decoder_transformer_x_att_enc_v2h_weight: (e, e),
decoder_transformer_x_att_self_h2o_weight: (e, e),

L]
. |VI O d e I S I Ze CO u nt . decoder_transformer_x_att_self_i2h_weight: (3xe, e),
L] decoder_transformer_x_att_self_pre_norm_beta: (e,),
decoder_transformer_x_att_self_pre_norm_gamma: (e,)

https://github.com/Estelle/nparam
Py # B P E Of SO u rce’ ta rget: S b’ tb The total number of decoder_att parameters can be calculated as follows:
nparam_decoder_att = tnkx4ex(2e+l)
* #layers =sn, tn
. bed=
#e m e e decoder_transformer_x_ff_h2o_bias: (e,),

. decoder_transformer_x_ff_hZo_w:?igP.]t: (e, f),

* FF #hidden=f R L o

decoder_transformer_x_ff_pre_norm_beta: (e,),
decoder_transformer_x_ff_pre_norm_gamma: (e,)

e Total
— t n 3 ( 8 e 3 e +7 e + 2 ef +f ) The total number of decoder_ff parameters can be calculated as follows:
+sn E 3 ( 4 e E 3 e+ 5 e+ 2 ef +f nparan_decoder_ff = tnx(2f+3e+t)
+4e+(sb*e+tb*(2e+1

decoder_ff

decoder_final

decoder_transformer_final_process_norm_beta: (e,),
decoder_transformer_final_process_norm_gamma: (e,)

The total number of decoder_final parameters can be calculated as follows:

nparam_decoder_final = 2e
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https://github.com/Este1le/nparam

Additional references on NMT hyperparameters

* Britz et. Al. Massive Exploration of Neural Machine
Translation Architectures, EMNLP 2017

* Wang et. Al. Learning Deep Transformer Models for
Machine Translation, ACL 2019

 Dewangan, et. Al. Experience of neural machine translation between
Indian languages, Machine Translation (2021)

* Lankford, Afli, Way. Transformers for Low-Resource Languages: Is
Feidir Linn!. MT Summit 2021



Software Implementation of AutoML

« HPO/NAS algorithms are in general simple to implement.

* Challenge is the interface with the ML toolkit and the
underlying computing infrastructure.

* Design considerations:
e Automatically submit jobs
* Automatically check job states
* Automatically evaluate and collect results
* Parallelization
* Maximize the GPU utilization
* Allow users to customize the AutoML runs by specifying arguments,
e.g. #GPU, #configuration, #epochs
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Existing AutoML Toolkits

Google Vizier

Dangling
. Work Finder
AutomatedStopping Suggestion
Workers v Workers

Persistent

Automated Stopping Service —>| Database

Suggestion Service

R

{ Vizier API
/

[E—
Evaluation
‘Workers

Figure 1: Architecture of Vizier service: Main compo-
nents are (1) Dangling work finder (restarts work lost
to preemptions) (2) Persistent Database holding the cur-
rent state of all Studies (3) Suggestion Service (creates
new Trials), (4) Early Stopping Service (helps terminate
a Trial early) (5) Vizier API (JSON, validation, multi-
plexing) (6) Evaluation workers (provided and owned by
the user).

Ray Tune

Ray AIR enables simple scaling of Al workloads.

Data Train Tune Serve RLIib

O%J Tasks Actors

From: Google Vizier: A Service for Black-Box Optimization, Golovin et al. 2017

https://docs.ray.io/en/latest/

Ray Core enables scalable
apps to be built in pure Python.

________________________________

Objects
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Use existing AutoML toolkits or Implement your own?

* Choice 1:

Take an existing AutoML toolkit, and reimplement your training pipeline.

* Choice 2:

Already have a training pipeline, e.g. Amazon Sockeye for MT, add an AutoML
wrapper on top of it.

It's worth implementing AutoML from scratch in this case.



Case Study: Amazon Sockeye with AutoML

* Amazon Sockeye:
An open-source sequence-to-sequence framework for NMT built on PyTorch.

https://github.com/awslabs/sockeye

* Sockeye-recipes (Duh et al.):
Training scripts and recipes for the Sockeye toolkit.
https://github.com/kevinduh/sockeye-recipes3

* Sockeye-recipes with AutoML:
Automatic hyperparameter search with asynchronous successive halving

on top of sockeye-recipes.
https://github.com/kevinduh/sockeye-recipes3/tree/automl
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https://github.com/awslabs/sockeye
https://github.com/kevinduh/sockeye-recipes3
http://https:/github.com/kevinduh/sockeye-recipes3/tree/automl

Outline for Case Study

* Asynchronous Successive Halving (ASHA)
e Software design
* Use case



Recall: Successive Halving (SHA)

-- multi-armed bandit algorithm to perform early stopping

A

loss

0% budget 100 %

124
From : automl.org



Asynchronous Successive Halving (ASHA)

* In the sequential SHA, the algorithm waits for all configurations in a
rung to complete before promoting configurations to next rung.

 ASHA removes the bottleneck created by synchronous promotions.

* It would promote a configuration to next rung when
* There's an idle worker.
* There's a configuration that is secured a position in the top 1/p of this rung.

e Parallelization with maximal GPU utilization



Asynchronous Successive Halving (ASHA)

 ASHA promotes a configuration to next rung when there's a
configuration that is secured a position in the top 1/p of this rung.

p: 2 (promote top % to next rung) ‘ '

not started running finished

rung 1 #configs: 5

w OOOO000 OO0 O -
5.0 7.5 2.3 4.6

BLEU 8.2 3.4
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Asynchronous Successive Halving (ASHA)

 ASHA promotes a configuration to next rung when there's a
configuration that is secured a position in the top 1/p of this rung.

p: 2 (promote top % to next rung) ' '

not started running finished

rung 1 e #configs: 5
w 0000000 OO O v
4.7 2.3 4.6 8.2 34

BLEU 5.0 7.5
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Asynchronous Successive Halving (ASHA)

p: 2 (promote top % to next rung)

rung 2

rung 1

BLEU

rung O

BLEU

#configs: 3

1

8.5

11.3

5.0 7.5 4.7

10.0 |

6.2

not started running finished

#configs: 5

00000
2.3 4.6 3.2 8.2 3.4
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Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do
state = check_state(config)
react to state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
candidate = get _candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)
end
end 129



Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0do

— At each time step, we check the state of each config,

For each config do

and submit jobs to idle GPUs

state = check_state(config)
react to state(config, state, r, R)

end

If ASHA is finished do

Return
end

For each idle GPU do

candidate = get _candidate(configs, p)
promote(candidate)

submit_train(candidate, GPU, u)

end
end
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Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do
state = check_state(config)
react to state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
candidate = get _candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)
end
end

We check the state of each configurations,
and react accordingly to different states
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Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0 do
For each config do

state = check_state(config)

react to state(config, state, r, R)
end
If ASHA is finished do

Return

end
For each idle GPU do

candidate = get _candidate(configs, p)

promote(candidate) — Find config candidates and submit training jobs.

submit_train(candidate, GPU, u)
end

end 132




Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t == 0do

For each config do

state = check_state(config)

react to state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
candidate = get _candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)
end
end

\ 4

It is done by reading the train log.

for 1 in lines:
if "Maximum number of not improved checkpoints" in 1:
return CONVERGED
elif "CUDA error: all CUDA-capable devices are busy or unavailable" in 1:
return GPU_ERROR
elif "CUDA out of memory" in 1:
return MEM_ERROR
elif "OverflowError" in 1:
return MATH_ERROR
elif "Best validation perplexity: inf" in 1 or "Train-ppl=nan" in 1:
return DIVERGED
elif "Stale file handle" in 1:
return STORAGE_ERROR
if "Training finished" in lines[0@]:
return SUCCESS
return RUNNING
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Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

f runtime % £ == 0 do state ____|Reacon _____________

For each config do RUNNING N/A

state = check state(config) . I
react to state(config, state, r, R) SUCCESS / SR
- ! i CONVERGED Collect evaluation results

\ 4

enc
If ASHA is finished do GPU ERROR Submit again

Return MEM ERROR/  Delete job and add it to blacklist
end DIVERGED

For each idle GPU do
candidate = get _candidate(configs, p)
promote(candidate)
submit_train(candidate, GPU, u)
end
end 134




Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t==0do
For each config do
state = check_state(config)
react to state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do ,
| candidate = set candidate(confias, p)F—> Get configs that are ready to move to next rung.

oromote(candidate) (ASHA: no nee?. t(.) r\:valt till all the configs in
submit_train(candidate, GPU, u) current run to finish.)
end

end 135



Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t==0do
For each config do
state = check_state(config)
react to state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
candidate = get candidate(configs, p)

, Pick one from all the candidates.

promote(candidate)

submit_train(candidate, GPU, r, u, R)
end

end

Random search or Bayesian Optimization.
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Pseudo-Code

Input: configurations configs, state checking time interval t,
minimum training checkpoints r, checkpoints within each rung u,
maximum training checkpoints R, reduction rate p, number of GPUs G

If runtime % t==0do
For each config do
state = check_state(config)
react to state(config, state, r, R)
end
If ASHA is finished do
Return
end
For each idle GPU do
candidate = get _candidate(configs, p)

promote(candidate)
submit train(candidate, GPU, r. u, R) f—— Submit a train job and let it run for
end min(r, u*rung, R)-min(r, u*(rung-1), R) checkpoints

end 137



Implementation Challenges

* How to get the job state?
We check the job log.
* How to automatically check the job state?
We set up a timer running in a background thread.
* How to interact with the grid / GPU cluster?
Besides job states, we also check GPU states.
We debug carefully with possible errors.
* How to deal with failed jobs?
We either resubmit it or delete it.
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xzhangatestl

Example Run

—— arguments

> Pick up a candidate

—> Submit a train job
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Example Run

Check
job state &
GPU state

Finished jobs
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Example Run

ASHA finished
successfully.
The best config is 6 with

8.3 BLEU score.
141
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Review

Motivation for AutoML
Hyperparameter Optimization (HPO)
Neural Architecture Search (NAS)
Extension to Multiple Objectives
Evaluation

A i

Application to Neural Machine Translation (MT)



't's important to tune hyperparameters!

250
) 200 Histogram of BLEU scores for
T) 700+ Swahili-English Neural
| Machine Translation (NMT)
-8 150 models
:E 1 OO | Note the large variance!
50-
0

5 10 15 20 25
BLEU



Hyperparameter Optimization (HPO)

Black-Box

Grid Search

Random Search Multi- Fldellty

Populatlon Based Training Successwe Halving
CMA ES HyperBand

Search Scheduler

Sequential Bayesian Optlmlzatlon

Parallel
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Neural Architecture Search (NAS)

We discussed:

_ Methods similar to HPO Full train from scratch vs
Sequential vs. Cell-based + Gradient-based architecture  Weight share, One-shot, etc.
Ae A
Search Space _—— | Performance
—1 Search Strategy Estimation
A N Strategy
performance

estimate of A

Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

From: Elsken, Metzen, Hutter. Neural Architecture Search, A Survey, JMLR 2019 e



When deploying models, we care about
multiple objectives. But it's complex.

©n
o 16
-
— 14-
GEJ 12- : BLEU vs Time Scatterplot
S 10 3 LD, for 700+ Swahili-English
o 8 KSR L NMT models: unclear
- XYY "‘.:&"s‘ how to get best tradeoff
@) L,
@) 4 ¥
Q
vO :

BLEU ww




Evaluation is hard, so Tabular Benchmark for NMT
(Zhang & Duh, TACL2020)
Total: 2245 Transformer models,

Hyperparameter LIS LIEAEINEEE  trained on ~1550 GPU days;
Type record BLEU, train/test time, etc.

# BPE Subword 1k, 2k, 4k, 8k, https://github.com/Estelle/hpo nmt
Units 16k, 32k, 50k m
# Transformer Layers 1, 2,4, 6 zh-en

Word embedding 256, 512, 1024 ru-en TED 176

# Hidden Units 1024, 2048 ja-en WMT 150

# Attention Heads 8, 16 en-ja WMT 168

Initial Learning Rate 3x104, 6x1074, sw-en MATERIAL 767
for ADAM 10x10 so-en MATERIAL 605
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Use existing AutoML toolkits or Implement your own?

* Choice 1:

Take an existing AutoML toolkit, and reimplement your training pipeline.

* Choice 2:

Already have a training pipeline, e.g. Amazon Sockeye for MT, add an AutoML
wrapper on top of it.

It's worth implementing AutoML from scratch in this case.



Questions or Comments?



