Reproducible and Efficient Benchmarks for Hyperparameter Optimization of Neural Machine Translation Systems

Xuan Zhang Kevin Duh

Machine Translation

Architecture Hyperparameters:

- #layer
- #units/layer
- #embed

Training Hyperparameters:

- optimizer type
- learning rate
- batch size

Output Probabilities

The Transformer model architecture.¹

Objectives

Training Accuracy:

- BLEU
- perplexity

Computational Cost:

- inference speed
- model size

Machine Translation

Architecture Hyperparameters:

- #layer
- #units/layer
- #embed

Training Hyperparameters:

- optimizer type
- learning rate
- batch size

Output Probabilities

Objectives

Training Accuracy:

- BLEU
- perplexity

Computational Cost:

- inference speed
- model size

The Transformer model architecture.¹

Architecture Hyperparameters:

- #layer
- #units/layer
- #embed

Training Hyperparameters:

- optimizer type
- learning rate
- batch size

Exponential explosion of choices!

Output Probabilities

The Transformer model architecture.¹

Objectives

Training Accuracy:

- BLEU
- perplexity

Computational Cost:

- inference speed
- model size

Architecture Hyperparameters:

- #layer
- #units/layer
- #embed

Training Hyperparameters:

- optimizer type
- learning rate
- batch size

Exponential explosion of choices!

The Transformer model architecture.¹

Objectives

Training Accuracy:

- BLEU
- perplexity

Computational Cost:

- inference speed
- model size

Definition

HPO allows to automatically find good hyperparameter settings.

Let

- $\mathbf{L}(\lambda, D_{train}, D_{valid})$ denote the loss of the ML algorithm, using hyperparameters λ trained on D_{train} and evaluated on D_{valid} .

The HPO problem is to find a configuration λ^* that minimizes this loss:

$$\lambda^* \in argmin_{\lambda \in \Lambda} L(\lambda, D_{train}, D_{valid})$$

Algorithms

Model-Free Optimization Methods:

- Grid Search
- Random Search
- Population-based methods
 e.g. genetic algorithms, evolutionary algorithms --- CMA-ES

Sequential Model-Based Optimization Methods (SMBO):

- Bayesian Optimization
- Tree Parzen Estimator

Algorithms

Model-Free Optimization Methods:

- Grid Search
- Random Search
- Population-based methodse.g. genetic algorithms, evolutionary algorithms --- CMA-ES

Sequential Model-Based Optimization Methods (SMBO):

This talk

- Bayesian Optimization
- Tree Parzen Estimator

SMBO Framework

λ: hyperparameter configuration

 $f(\lambda)$: model performance (e.g. BLEU)

SMBO Framework

SMBO Framework

Hyperparameter Optimization

Challenges

- HPO algorithms are expensive. It is not feasible to run too many experiments and compare different HPO algorithms on NMT tasks in practice.
- Li and Talwalkar (2019)¹: "Of the 12 papers published since 2018 at NeurIPS, ICML, and ICLR that introduce novel Neural Architecture Search methods, none are exactly reproducible."

¹Li, Liam and Talwarkar, Ameet, "Random search and reproducibility for neural architecture search." ICML workshop on automated machine learning. 2019.

Goal

Enable **reproducible** Hyperparameter Optimization (HPO) research on Neural Machine Translation (NMT) tasks.

Contributions

– 01 – DATASET

We release a benchmark dataset for comparing HPO methods on NMT models.

- 02 -BENCHMARKS

We benchmark the performance of several HPO methods on both single-objective and multiobjective optimization on our dataset.

– 03 – ALGOR<mark>ITHM</mark>

We propose a novel graph-based HPO method.

Contributions

- 01 - DATASET

We release a benchmark dataset for comparing HPO methods on NMT models.

This talk

- 02 -BENCHMARKS

We benchmark the performance of several HPO methods on both single-objective and multiobjective optimization on our dataset.

– 03 – ALGOR<mark>ITHM</mark>

We propose a novel graph-based HPO method.

Table-Lookup Framework

Procedure:

- 1. Train a large number of NMT systems with diverse **hyperparameter configurations** and record their **performance**.
- 2. Constrain HPO methods to sample from this finite set of models.

Table-Lookup Framework

Procedure:

- 1. Train a large number of NMT systems with diverse **hyperparameter configurations** and record their **performance**.
- 2. Constrain HPO methods to sample from this finite set of models.

Benefits:

- 1. Allows HPO developers to simply lookup the performance of NMT systems without training them.
- 2. Reproducible and efficient HPO experiments.

Limitations:

Table needs to be large enough to cover the hyperparameter space.

Specification

- 6 MT Corpora:
 - large resource (WMT2019 Robustness): ja-en, en-ja (4M lines)
 - mid resource (TED Talks): zh-en, ru-en (170k lines)
 - low resource (IARPA MATERIAL): sw-en, so-en (24k lines)
- Search Space: 2245 Transformers (1547 GPU days)

dataset	bpe (1k)	#layers	#embed	#hidden	#att_heads	init_lr (10 ⁻⁴)
zh, ru, ja, en	10, 30, 50	2, 4	256, 512, 1024	1024, 2048	8, 16	3, 6, 10
sw	1, 2, 4, 8, 16, 32	1, 2, 4, 6	256, 512, 1024	1024, 2048	8, 16	3, 6, 10
SO	1, 2, 4, 8, 16, 32	1, 2, 4	256, 512, 1024	1024, 2048	8, 16	3, 6, 10

Objectives: BLEU, perplexity;

decoding time, #updates, GPU memory, #model parameters

Develop a robust **HPO** algorithm MT 2 Data a **HPO A** MT Data b Target **MT Data HPO B** Apply MT Data c

Application

HPO Algorithm Selection

Application

HPO Algorithm Selection

Single-objective Optimization

Application

HPO Algorithm Selection

Single-objective Optimization

Application

Application

HPO Algorithm Selection

Single-objective Optimization

Multiobjective Optimization

en-ja sw-en 0.200 0.05 0.175 0.150 0.04 0.125 0.03 0.100 0.075 0.02 0.050 0.01 0.025 0.000 0.00 bpe #embed #layers heads hidden init_Ir bpe #embed #layers heads heads #hidden

Application

HPO Algorithm Selection

Single-objective Multiobjective Optimization Optimization

Hyperparameter Analyses

Hyperparameter Importance

Model Ranking Correlation

Application

HPO Algorithm Selection

Single-objective Multiobjective Optimization Optimization

Hyperparameter Analyses

Summary

We provide a tabular dataset for comparing HPO methods on NMT models.

Our benchmarks are reproducible.

Dataset and code are publicly available.

Our benchmarks are efficient.

One can perform multiple random trials of the same algorithm to test robustness.

Feel free to utilize our dataset to develop your new HPO methods.

Reproducible and Efficient Benchmarks for Hyperparameter Optimization of Neural Machine Translation Systems

PAPER

PARENTE

https://www.mitpressjournals.org/doi/pdf/10.1162/tacl a 00322

https://github.com/Este1le/hpo nmt

https://github.com/Este1le/gbopt