600.471 Theory of Computation

November 5, 2007

Handout 11: Homework 5

Instructor: Susan Hohenberger

TA: Omar Zaidan

This assignment is due by the start of lecture on Monday, November 19.

- 1. (2 points, with 1 point bonus if *all* answers are correct.) Answer each of the following with TRUE or FALSE. You do not need to justify your answers. (Note: when dealing with sets like O(f(n)), $\Omega(f(n))$, etc., we use the symbols = and \in interchangeably.)
 - 1. $2^{10} = O(n)$

11. $2^n = o(3^n)$

2. 16n = O(n)

12. 1 = o(n)

3. $n^4 = O(n^2 \log^2(n))$

13. $2\log(n) = o(\log(n))$

4. $n \log(n) + 10n = O(n^2)$

14. $\frac{1}{3} = o(1)$

5. $3^n = O(2^n)$

15. $log_2(n) = \Theta(log_3(n))$

6. $3^n = 2^{O(n)}$

16. $2^n = \Theta(4^n)$

7. $2^{2^n} = O(2^{2^n})$

17. $n^5 = \Theta(32^{\log_2(n)})$

8. $n^n = O(n!)$

18. $n^3 = \Omega(n^3)$

9. n = o(n)

19. $log(n) = \Omega(log(log(n)))$

10. $2n = o(n^2)$

- 20. $2^{5^n} = \Omega(5^{2^n})$
- 2. (1 point) Prove that the following language is in NP. You may use either the guess-and-check method, or else describe a suitable nondeterministic Turing machine.

k-PCP (*k*-Post Correspondence Problem), for a fixed alphabet Σ with $|\Sigma| \geq 2$, is:

 $\{\langle S, k \rangle \mid S \text{ is a finite set of dominoes over } \Sigma, k \text{ is an integer written in unary, and there is a sequence of at most } k \text{ dominoes (allowing repeats)}$ for which the top and bottom sequences are equal}.

If k was not written in unary, would your solution to the above still work? Why or why not?

- 3. (3 points) (Sipser 7.20) [undirected paths]
- 4. **(3 points)** (Sipser 7.26) [puzzle]
- 5. **(3 points)** (Sipser 7.30) [Minesweeper]
- 6. (3 points) (Sipser 7.37) [factoring if P = NP]