Kalman Filters for Mapping and Localization
Robot Arms

• Very accurate
 – Encoders at each joint (0.04 degree resolution)
 – Industrial grade design and assembled
 – ISO standard for accuracy and repeatability (9283)
 – Some arms are even metrology instruments

<table>
<thead>
<tr>
<th>Supported robot types</th>
<th>Position accuracy (Typical production data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot type</td>
<td>Average (mm)</td>
</tr>
<tr>
<td>IRB 140</td>
<td>0.35</td>
</tr>
<tr>
<td>IRB1400</td>
<td>0.45</td>
</tr>
<tr>
<td>IRB 2400L</td>
<td>0.45</td>
</tr>
<tr>
<td>IRB 2400/10 and 16</td>
<td>0.30</td>
</tr>
<tr>
<td>IRB 4400</td>
<td>0.30</td>
</tr>
<tr>
<td>IRB 6600-175/2.55; 225/2.55; 200/2.75</td>
<td>0.55</td>
</tr>
<tr>
<td>IRB 6600-175/2.80; 125/3.20</td>
<td>0.75</td>
</tr>
<tr>
<td>IRB 6650S-200/3.00; 125/3.50</td>
<td>0.65</td>
</tr>
<tr>
<td>IRB 7600-400/2.55; -150/3.50</td>
<td>0.65</td>
</tr>
<tr>
<td>IRB 7600-500/2.30</td>
<td>0.55</td>
</tr>
<tr>
<td>IRB 7600-340/2.80</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Mobile Robots

- Wheels and steering
 - Wheel slip
 - Wheel diameter
 - Wheel alignment
 - Steering alignment
 - Integration of velocity
Sensors

If you can’t model the world, then sensors are the robot’s link to the external world (obsession with depth)
Sensors

Robots’ link to the external world...

Sensors, sensors, sensors!
and tracking what is sensed: world models
Infrared sensors

“Noncontact bump sensor”

IR emitter/detector pair

(1) sensing is based on light intensity.

“object-sensing” IR

looks for changes at this distance

(2) sensing is based on angle received.

diffuse distance-sensing IR
Infrared Calibration

The response to white copy paper (a dull, reflective surface)

raw values (put into 4 bits)

15º increments

in the dark

fluorescent light

incandescent light

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

G.D. Hager
S. Leonard
Infrared Calibration

energy vs. distance for various materials

(the incident angle is 0º, or head-on)

(with no ambient light)
Sonar sensing

single-transducer sonar timeline

0

75μs

typically when reverberations from the initial chirp have stopped

the transducer goes into “receiving” mode and awaits a signal...

limiting range sensing

.5s

after a short time, the signal will be too weak to be detected

a “chirp” is emitted into the environment

Polaroid sonar emitter/receivers

No lower range limit for paired sonars...

[Graph showing a chirp signal with threshold and blanking time]

blanking time

17μs

threshold
Sonar effects

(a) Sonar providing an accurate range measurement

(b-c) Lateral resolution is not very precise; the closest object in the beam’s cone provides the response

(d) Specular reflections cause walls to disappear

(e) Open corners produce a weak spherical wavefront

(f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing
Sonar modeling

- **Initial time response**
- **Blanking time cone width**
- **Spatial response**
- **Accumulated responses**

G.D. Hager
S. Leonard
Laser Ranging

LIDAR/Laser range finder
64 lasers
Recent...

Structured light:
Project a known dot pattern with an IR transmitter (invisible to humans)

Infer depth from deformation to that pattern
Infer depth from focus: Points far away are blurry
Infer depth from stereo: Closer points are shifted
The Problem

• Mapping: What is the world around me (geometry, landmarks)
 – sense from various positions
 – integrate measurements to produce map
 – assumes perfect knowledge of position

• Localization: Where am I in the world (position wrt landmarks)
 – sense
 – relate sensor readings to a world model
 – compute location relative to model
 – assumes a perfect world model

• Together, these are SLAM (Simultaneous Localization and Mapping)
 – How can you localize without a map?
 – How can you map without localization?

• All localization, mapping or SLAM methods are based on updating a state:
 – What makes a state? Localization? Map? Both?
 – How certain is the state?
Representations for Bayesian Robot Localization

Discrete approaches (’95)
- Topological representation (’95)
 - uncertainty handling (POMDPs)
 - occas. global localization, recovery
- Grid-based, metric representation (’96)
 - global localization, recovery

Particle filters (’99)
- sample-based representation
- global localization, recovery

Kalman filters (late-80s?)
- Gaussians
- approximately linear models
- position tracking

Multi-hypothesis (’00)
- multiple Kalman filters
- global localization, recovery
Gaussian (or Normal) Distribution

Univariate

\[p(x) \sim N(\mu, \sigma^2) \]

\[p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}} \]

Multivariate

\[p(x) \sim N(\mu, \Sigma) \]

\[p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)} \]
Properties of Gaussians

\[X \sim N(\mu, \sigma^2) \quad \Rightarrow \quad Y \sim N(a\mu + b, a^2\sigma^2) \]

\[X_1 \sim N(\mu_1, \sigma_1^2) \quad \quad X_2 \sim N(\mu_2, \sigma_2^2) \quad \Rightarrow \quad X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) \]

- We stay in the “Gaussian world” as long as we start with Gaussians and perform only linear transformations (closed under linear transformation)
- Same holds for multivariate Gaussians
Dynamical Systems

- “System” that changes
- We will represent a system by its state x_t at time t
- We will also require that a system be observable

\[\dot{x}_t = f(x_t, u_t) \]

external command input

“process model” (state transition)

“observation model” (measurements of the states)
Kalman Filter

- Seminal paper published in 1960
- Great web page at http://www.cs.unc.edu/~welch/kalman/
- Recursive solution for discrete linear filtering problems
 - A state $x \in \mathbb{R}^n$
 - A measurement $z \in \mathbb{R}^m$
 - Discrete (i.e. for time $t = 1, 2, 3, \ldots$)
 - Recursive process (i.e. $x_t = f(x_{t-1})$)
 - Linear system (i.e. $x_t = A x_{t-1}$)
- The system is defined by:
 1) linear process model
 \[x_t = A x_{t-1} \]
 state transition
 2) linear measurement model
 \[z_t = H x_t \cdot \]
 observation model

How a state transitions into another state How a state relates to a measurement
Kalman Filter

1. **Prior estimate** \hat{x}_t' at step t: Use the process model to predict what will be the next state of the robot

2. **Posterior estimate** \hat{x}_t at step t: Use the observation model to correct the prediction by using sensor measurement

Compute posterior estimate as a linear combination of the prior estimate and difference between the actual measurement and expected measurement

$$\hat{x}_t = \hat{x}_t' + K_t (z_t - H\hat{x}_t')$$

Where the Kalman gain K_t is a blending factor that adds a measurement innovation.
Kalman Filter

Define **prior error** between true state and prior estimate
\[e'_t = x_t - \hat{x}'_t \]
and the **prior covariance** as
\[\Sigma'_t = E(e'_t e'_t^T) \]

Define **posterior error** between true state and posterior estimate
\[e_t = x_t - \hat{x}_t \]
and it’s **posterior covariance** as
\[\Sigma_t = E(e_t e_t^T) \]

The gain \(K \) that **minimizes** the **posterior covariance** is defined by
\[K_t = \Sigma'_t H^T (H \Sigma'_t H^T + R)^{-1} \]

Note that
- If \(R \rightarrow 0 \) then \(K_t = H^{-1} \) and \(\hat{x}_t = \hat{x}'_t + K_t (z_t - H \hat{x}'_t) = \)
- If \(\Sigma'_t \rightarrow 0 \) then \(K_t = 0 \) and \(\hat{x}_t = \)
Kalman Filter

• Recipe:
 1. Start with an initial guess
 \(\hat{x}_0, \Sigma_0 \)
 2. Compute prior (prediction)
 \[
 \hat{x}'_t = A \hat{x}_{t-1} + B u_{t-1} \\
 \Sigma'_t = A \Sigma_{t-1} A^T + Q
 \]
 3. Compute posterior (correction)
 \[
 K_t = \Sigma'_t H^T (H \Sigma'_t H^T + R)^{-1} \\
 \hat{x}_t = \hat{x}'_t + K_t (z_t - H \hat{x}'_t) \\
 \Sigma_t = (1 - K_t H) \Sigma'_t
 \]

Time update (predict)

Measurement update (correct)

REPEAT
Initial
\hat{x}_0, Σ_0

Predict \hat{x}_1' from \hat{x}_0 and u_0
\[
\hat{x}_1' = A\hat{x}_0 + Bu_0 \\
\Sigma_1' = A\Sigma_0 A^T + Q
\]

Correction using z_1
\[
K_1 = \Sigma_1'H^T(H\Sigma_1'H^T + R)^{-1} \\
\hat{x}_1 = \hat{x}_1' + K_1(z_1 - H\hat{x}_1') \\
\Sigma_1 = (1 - K_1H)\Sigma_1'
\]

Predict \hat{x}_2' from \hat{x}_1 and u_1
\[
\hat{x}_2' = A\hat{x}_1 + Bu_1 \\
\Sigma_2' = A\Sigma_1 A^T + Q
\]
Fully Observable vs Partially Observable

Bel(s)

Bel(s)

Bel(s)

Bel(s)

Bel(s)

Bel(s)

F(o|s)

16-735, Howie Choset
Kalman Filter Limitations

• Assumptions:
 – Linear process model
 \[x_{t+1} = Ax_t + Bu_t + w_t \]
 – Linear observation model
 \[z_t = Hx_t + v_t \]
 – White Gaussian noise
 \[N(0, \Sigma) \]

• What can we do if system is not linear?
 – Non-linear state dynamics
 \[x_{t+1} = f(x_t, u_t, w_t) \]
 – Non-linear observations
 \[z_t = h(x_t, v_t) \]

Linearize it!

\[
x_{t+1} \approx \tilde{x}_{t+1} + A(x_t - \tilde{x}_t) + Ww_t
\]
\[
\tilde{x}_{t+1} = f(\tilde{x}_t, u_t, 0)
\]
\[
z_t \approx \tilde{z}_t + H(x_t - \tilde{x}_t) + Vv_t
\]
\[
\tilde{z}_t = h(\tilde{x}_t, 0)
\]
KF vs EKF

\[x_{t+1} = Ax_t \]

\[x_{t+1} = f(x_t) \]
Extended Kalman Filter

- Where A, H, W and V are Jacobians defined by

$$f(x, u, w) = \begin{bmatrix} f_1(x, u, w) \\ \vdots \\ f_M(x, u, w) \end{bmatrix}$$

$$A(x_t) = \begin{bmatrix} \frac{\partial f_1(x_t, u_t, 0)}{\partial x_1} & \cdots & \frac{\partial f_1(x_t, u_t, 0)}{\partial x_M} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M(x_t, u_t, 0)}{\partial x_1} & \cdots & \frac{\partial f_M(x_t, u_t, 0)}{\partial x_M} \end{bmatrix}$$

$$W(x_t) = \begin{bmatrix} \frac{\partial f_1(x_t, u_t, 0)}{\partial w_1} & \cdots & \frac{\partial f_1(x_t, u_t, 0)}{\partial w_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M(x_t, u_t, 0)}{\partial w_1} & \cdots & \frac{\partial f_M(x_t, u_t, 0)}{\partial w_N} \end{bmatrix}$$

$$h(x, v) = \begin{bmatrix} h_1(x, v) \\ \vdots \\ h_N(x, v) \end{bmatrix}$$

$$H(x_t) = \begin{bmatrix} \frac{\partial h_1(x_t, 0)}{\partial x_1} & \cdots & \frac{\partial h_1(x_t, 0)}{\partial x_M} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_N(x_t, 0)}{\partial x_1} & \cdots & \frac{\partial h_N(x_t, 0)}{\partial x_M} \end{bmatrix}$$

$$V(x_t) = \begin{bmatrix} \frac{\partial h_1(x_t, 0)}{\partial v_1} & \cdots & \frac{\partial h_1(x_t, 0)}{\partial v_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_M(x_t, 0)}{\partial v_1} & \cdots & \frac{\partial h_M(x_t, 0)}{\partial v_N} \end{bmatrix}$$

\[f(x, u, w) = \begin{bmatrix} f_1(x, u, w) \\ \vdots \\ f_M(x, u, w) \end{bmatrix} \]

\[h(x, v) = \begin{bmatrix} h_1(x, v) \\ \vdots \\ h_N(x, v) \end{bmatrix} \]
EKF for Range-Bearing Localization

- **State** $s_t = [x_t \ y_t \ \theta_t]^T$ 2D position and orientation
- **Input** $u_t = [v_t \ \omega_t]^T$ linear and angular velocity
- **Process model**

\[
f(s_t, u_t, w_t) = \begin{bmatrix}
x_{t-1} + (\Delta t)v_{t-1}\cos(\theta_{t-1}) \\
y_{t-1} + (\Delta t)v_{t-1}\sin(\theta_{t-1}) \\
\theta_{t-1} + (\Delta t)\omega_{t-1}
\end{bmatrix} + \begin{bmatrix}
w_{x_t} \\
w_{y_t} \\
w_{\theta_t}
\end{bmatrix}
\]

- **Given a map,** the robot sees N landmarks with coordinates

\[
l_1 = [x_{l_1} \ y_{l_1}]^T, \ldots, l_N = [x_{l_N} \ y_{l_N}]^T
\]

The observation model is

\[
z_t = \begin{bmatrix}
h_1(s_t, v_1) \\
h_2(s_t, v_2) \\
\vdots \\
h_N(s_t, v_N)
\end{bmatrix}, \quad h_i(s_t, v_t) = \begin{bmatrix}
\sqrt{(x_t - x_{l_i})^2 + (y_t - y_{l_i})^2} \\
\text{atan2}(y_{l_i} - y_t, x_{l_i} - x_t) - \theta_t
\end{bmatrix} + \begin{bmatrix}
v_r \\
v_b
\end{bmatrix}
\]
Linearize Process Model

\[
f(s_t, u_t, w_t) = \begin{bmatrix}
x_{t-1} + (\Delta t)v_{t-1} \cos(\theta_{t-1}) \\
y_{t-1} + (\Delta t)v_{t-1} \sin(\theta_{t-1}) \\
\theta_{t-1} + (\Delta t)\omega_{t-1}
\end{bmatrix} + \begin{bmatrix}
w_{x_t} \\
w_y \\
w_{\theta_t}
\end{bmatrix}
\]

\[
A(x_t) = \begin{bmatrix}
\frac{\partial f_1(x_t, u_t, 0)}{\partial x_1} & \cdots & \frac{\partial f_1(x_t, u_t, 0)}{\partial x_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_M(x_t, u_t, 0)}{\partial x_1} & \cdots & \frac{\partial f_M(x_t, u_t, 0)}{\partial x_N}
\end{bmatrix}
\]

\[
A(s_{t-1}) = \begin{bmatrix}
1 & 0 & -\Delta t v_{t-1} \sin(\theta_{t-1}) \\
0 & 1 & \Delta t v_{t-1} \cos(\theta_{t-1}) \\
0 & 0 & 1
\end{bmatrix}
\]
Linearize Observation Model

\[z_t = \begin{bmatrix} h_1(s_t, v_1) \\ \vdots \\ h_N(s_t, v_N) \end{bmatrix} \]

\[h_i(s_t, v_t) = \begin{bmatrix} \sqrt{(x_t - x_{li})^2 + (y_t - y_{li})^2} \\ \text{atan2}(y_{li} - y_t, x_{li} - x_t) - \theta_t \end{bmatrix} + \begin{bmatrix} v_r \\ v_b \end{bmatrix} \]

\[H(s_t) = \begin{bmatrix} \frac{\partial h_1(s_t, 0)}{\partial x_t} & \frac{\partial h_1(s_t, 0)}{\partial y_t} & \frac{\partial h_1(s_t, 0)}{\partial \theta_t} \\ \vdots & \vdots & \vdots \\ \frac{\partial h_N(s_t, 0)}{\partial x_t} & \frac{\partial h_N(s_t, 0)}{\partial y_t} & \frac{\partial h_N(s_t, 0)}{\partial \theta_t} \end{bmatrix} \]

\[H_i(s_t) = \begin{bmatrix} -x_{li} + x_t & -y_{li} + y_t & 0 \\ \sqrt{(x_t - x_{li})^2 + (y_t - y_{li})^2} & \sqrt{(x_t - x_{li})^2 + (y_t - y_{li})^2} & \frac{y_{li} - y_t}{(x_t - x_{li})^2 + (y_t - y_{li})^2} \\ \frac{y_{li} - y_t}{(x_t - x_{li})^2 + (y_t - y_{li})^2} & -x_{li} + x_t & \frac{-x_{li} + x_t}{(x_t - x_{li})^2 + (y_t - y_{li})^2} \\ 0 & -1 \end{bmatrix} \]
Extended Kalman Filter

- Kalman Filter Recipe:
 - Given
 \[\hat{x}_0, \Sigma_0 \]
 - Prediction
 \[\hat{x}'_t = A\hat{x}_{t-1} + Bu_{t-1} \]
 \[\Sigma'_t = A\Sigma_{t-1}A^T + Q \]
 - Measurement correction
 \[K_t = \Sigma'_tH^T(H\Sigma'_tH^T + R)^{-1} \]
 \[\hat{x}_t = \hat{x}_t' + K(z_t - H\hat{x}'_t) \]
 \[\Sigma_t = (I - K_tH)\Sigma'_t \]

- Extended Kalman Filter Recipe:
 - Given
 \[\hat{x}_0, \Sigma_0 \]
 - Prediction
 \[\hat{x}'_t = f(\hat{x}_{t-1}, u_{t-1}, 0) \]
 \[\Sigma'_t = A_t\Sigma_{t-1}A_t^T + W_tM_tW_t^T \]
 - Measurement correction
 \[K_t = \Sigma'_tH_t^T(\Sigma'_tH_t^T + V_tR_tV_t^T)^{-1} \]
 \[\hat{x}_t = \hat{x}_t' + K_t(z_t - h(\hat{x}'_t, 0)) \]
 \[\Sigma_t = (I - K_tH_t)\Sigma'_t \]
Artificial Landmarks

[Diagram of Shiphull Positioning System]

Open water

1. GPS
2. Short-range ADCP
3. Acoustic beacon

10 meters
2 kilometers

Lippsett

G.D. Hager
S. Leonard

600.436/600.636
Natural Visual Landmarks

- Visual landmarks: SIFT, SURF, corners,
Data Association

- From observation model, we have an expected
 \[z_t = \begin{bmatrix} h_1(s_t, v_1) \\ \vdots \\ h_N(s_t, v_N) \end{bmatrix} \]
 Observation of landmark #1
 Observation of landmark #N

- So if we have N landmarks \(l_1, \ldots, l_N \) and we are given a scan \(z_t \), how do associate each landmark to a scan observation?

\[\begin{bmatrix} \hat{l}_{i_t} \\ \vdots \\ \hat{l}_{i_t} \end{bmatrix} = \begin{bmatrix} \hat{l}_{i_t} \end{bmatrix} + K_t \begin{bmatrix} z_{i_t} - h_i(\hat{x}_t', 0) \end{bmatrix} \]

Observation of landmark #i must be in the i\(^{th}\) row!
From Localization to Mapping

• For us, the landmarks have been a known quantity (we have a map with the coordinates of the landmarks), but landmarks are not part of the state
• Two choices:
 – Make the state the location of the landmarks relative to the robot (I also know exactly where I am …)
 • - No notion of location relative to past history
 • - No fixed reference for landmarks
 – Make the state the robot location now (relative to where we started) plus landmark locations
 • + Landmarks now have fixed location
 • - Knowledge of my location slowly degrades (but this is inevitable …)
EKF for Range-Bearing Localization

- State \(s_t = [x_t \ y_t \ \theta_t]^T \) 2D position and orientation
- Input \(u_t = [v_t \ \omega_t]^T \) linear and angular velocity
- Process model

\[
f(s_t, u_t, w_t) = \begin{bmatrix} x_{t-1} + (\Delta t)v_{t-1}\cos(\theta_{t-1}) \\ y_{t-1} + (\Delta t)v_{t-1}\sin(\theta_{t-1}) \\ \theta_{t-1} + (\Delta t)\omega_{t-1} \end{bmatrix} + \begin{bmatrix} w_{xt} \\ w_y \\ w_{\theta t} \end{bmatrix}
\]

- Given a map, the robot sees \(N \) landmarks with coordinates

\[
l_1 = [x_{l_1} \ y_{l_1}]^T, \ldots, l_N = [x_{l_N} \ y_{l_N}]^T
\]

The observation model is

\[
z_t = \begin{bmatrix} h_1(s_t, v_1) \\ \vdots \\ h_N(s_t, v_N) \end{bmatrix} \\
\]

\[
h_i(s_t, v_t) = \begin{bmatrix} \sqrt{(x_t - x_{l_i})^2 + (y_t - y_{l_i})^2} \\ \text{atan2}(y_{l_i} - y_t, x_{l_i} - x_t) - \theta_t \end{bmatrix} + \begin{bmatrix} v_r \\ v_b \end{bmatrix}
\]
Kalman Filters and SLAM

- Localization: state is the location of the robot
- Mapping: state is the location of 2D landmarks
- SLAM: state combines both
- If the state is $s_t = [x_t \ y_t \ \theta_t \ l_{1t}^{T} \ \ldots \ l_{Nt}^{T}]^{T}$ then we can write a linear observation system
EKF Range Bearing SLAM
Prior State Estimation

• State $s_t = [x_t \ y_t \ \theta_t \ l_1^T \ \cdots \ l_N^T]^T$ position/orientation of robot and landmarks coordinates

• Input $u_t = [v_t \ \omega_t]^T$ forward and angular velocity

• The process model for localization is

$$s_t' = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} \Delta t v_{t-1} \cos(\theta_{t-1}) \\ \Delta t v_{t-1} \sin(\theta_{t-1}) \\ \Delta t \omega_{t-1} \end{bmatrix}$$

This model is augmented for $2N+3$ dimensions to accommodate landmarks. This results in the process equation

$$\begin{bmatrix} x_t' \\ y_t' \\ \theta_t' \\ l_1'_{t} \\ \vdots \\ l_N'_{t} \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \\ l_{1t-1} \\ \vdots \\ l_{Nt-1} \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta t v_{t-1} \cos(\theta_{t-1}) \\ \Delta t v_{t-1} \sin(\theta_{t-1}) \\ \Delta t \omega_{t-1} \end{bmatrix}$$

Landmarks don’t depend on external input.
We assume static landmarks. Therefore, the function $f(s,u,w)$ only affects the robot’s location and not the landmarks.

$$\Sigma'_t = A_t \Sigma_{t-1} A_t^T + W_t Q W_t^T$$

The motion of the robot does not affect the coordinates of the landmarks.
EKF Range Bearing SLAM
Kalman Gain

\[K_t = \Sigma_t H_t^T (H_t \Sigma_t H_t^T + V_t R V_t^T)^{-1} \]

\[h_i(s_t, v_t) = \begin{bmatrix} \sqrt{(x_t - x_{li})^2 + (y_t - y_{li})^2} \\ \text{atan2}(y_{li} - y_t, x_{li} - x_t) - \theta_t \end{bmatrix} + [v_r, v_b]^T \]

Compute the Jacobian \(H_i \) of each \(h_i \) and then stack them into one big matrix \(H \). Note that \(h_i \) only depends on 5 variables: \(x_r, y_r, \theta_r, x_{li}, y_{li} \)

\[H_i = \begin{bmatrix} \frac{\partial y_i}{\partial x_r} & \frac{\partial y_i}{\partial y_r} \\ -\frac{x_{li}(k) + x_r(k)}{r_i^2} & -\frac{y_{li}(k) + y_r(k)}{r_i^2} \\ \frac{y_{li}(k) - y_r(k)}{r_i^2} & \frac{-x_{li}(k) + x_r(k)}{r_i^2} \\ \frac{\rho_i}{r_i^2} & 0 \end{bmatrix} = \begin{bmatrix} \frac{x_{li}(k) - x_r(k)}{r_i^2} & \frac{y_{li}(k) - y_r(k)}{r_i^2} \\ \frac{-y_{li}(k) + y_r(k)}{r_i^2} & \frac{x_{li}(k) - x_r(k)}{r_i^2} \end{bmatrix} \]

\(\rho_i \) is the range of the landmark
EKF Range Bearing SLAM Measurement

\[\mathbf{z}_t = \begin{bmatrix} h_1(s_t, v_1) \\ \vdots \\ h_N(s_t, v_N) \end{bmatrix} \iff \begin{bmatrix} \sqrt{(x_t - x_i)^2 + (y_t - y_i)^2} \\ \arctan2(y_i - y_t, x_i - x_t) - \theta_t \end{bmatrix} + [v_r] \]

• Observe N landmarks \(\mathbf{z}_{i_t} = [r_{i_t}, \phi_{i_t}]^T \)

• Must have data association
 – Which measured landmark corresponds to \(\mathbf{h}_i \)?
 – If \(s_t \) contains the coordinates of \(N \) landmarks in the map, \(\mathbf{h}_i \) predicts the measurement of each landmark

• Must figure which measured landmark corresponds to \(\mathbf{h}_i \)
 \[\mathbf{s}_t = \hat{\mathbf{s}}_t + K_t (\mathbf{z}_t - \mathbf{h}(\hat{s}_t', 0)) \]

 Make sure that each landmark observation \(\mathbf{z}_{i_t} \) appears in the correct rows of \(\mathbf{z}_t \)

 \[\begin{bmatrix} \hat{l}_{i_t} \\ \vdots \end{bmatrix} = \begin{bmatrix} \hat{l}_{i_t}' \\ \vdots \end{bmatrix} + K_t \left(\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} - \begin{bmatrix} h_i(\hat{s}_t', 0) \\ \vdots \end{bmatrix} \right) \]
EKF Range Bearing SLAM
Posterior Update

- From K_t and H update the posterior state estimate
 \[
 \hat{s}_t = \hat{s}'_t + K_t(z_t - h(\hat{s}'_t, 0))
 \]
 \[
 \Sigma_t = (I - K_tH_t)\Sigma'_t
 \]

http://ais.informatik.uni-freiburg.de
Mono SLAM

- A visual landmark with a single camera does not provide range
- Data association is given by tracking or matching visual descriptors/patches

Robot Vision, Imperial College
Submaps

- As landmarks are added, the state vector grows
- For large maps only a few landmarks can be visible at any given time
- Use submaps to reduce the number of landmarks to manageable numbers
Navigation: RMS Titanic
Leonard & Eustice

- EKF-based system
- 866 images
- 3494 camera constraints
- Path length 3.1km 2D / 3.4km 3D
- Convex hull > 3100m²
- 344 min. data / 39 min. ESDF*
 *excludes image registration time
Search of Flight 370

Inertial Navigation System (INS):
A glorified IMU with Kalman filter
Summary

- Basic system modeling ideas
- Kalman filter as an estimation method from a system model
- Linearization as a way of attacking a wider variety of problems
- Mapping localization and mapping into EKF
- Extensions for managing landmark matching and not-well-constrained systems.