The Cell Project:

Component Technology for the Internet

Ran Rinat

Scott F. Smith

Department of Computer Science
The Johns Hopkins University
{rinat, scott}@Qcs.jhu.edu

October 11, 2001

Abstract

We propose a new component model
with a focus on the needs of Internet
components, mainly dynamism and se-
curity. It is based around the concept of
a cell—a new programming abstraction
with component-specific responsibilities.
At the heart of it is the introduction
of a persistent link mode of interaction
into components. In existing technolo-
gies (COM/Corba/Java Beans), compo-
nents interact exclusively by obtaining
handles to other components on runtime
and then invoking operations via inter-
faces. With persistent links, components
are developed assuming some imports
given; then on runtime they must link
to other components which will provide
the implementations for the imports, via
exports. Cells include both models of
interaction in one entity. Supported
features include cross-network persistent
linking, cells as containers of objects,
a connection-based security mechanism,
and cross-component class inheritance.
These features are expected to prove es-
pecially beneficial for components in the
Internet.

1 Introduction

Component-based software systems are
recently receiving significant attention
in both industrial and research envi-
ronments. Traditionally, the emphasis
has been on components as binary en-
tities of independent third-party compo-
sition. The distributed computing en-
vironment of the Internet, however, has
introduced a new and important dimen-
sion of dynamism: mnot only are pre-
fabricated components used as building
blocks of larger systems, but they ar-
rive at their destination on runtime, by
programmatically shipping them across
the network. Applets and downloaded
plug-ins are typical examples. In addi-
tion, components often need to interact
across the network via a persistent chan-
nel of communication. Messenger sys-
tems are a good example. Most impor-
tantly, these dynamic aspects of code-
shipping and cross-network interaction
introduce security as a major concern in
component technology.

In existing technologies—including
COM, Corba, and Java Beans—
components interact via the client-
server model: one component (the
client) obtains on runtime a handle

to another (the server), and then uses
it to invoke operations via interfaces,
see Fig. 1(a). This kind of interaction
is asymmetric (client versus server)
and explicit (client calls operation on
server). The client-server model has
been successfully applied to numerous
communication-related disciplines of
computer science.

There is, however, a different model
of interaction, which we will call the
persistent link model, see Fig 1(b). In
this model, components must be linked
to one another before they can interact.
FEach component is developed assuming
some imports given. These imports are
used as if they were actually defined in-
side the component. At link time, the
imports are linked to the other compo-
nent’s exports. From this time on, calls
to an import refer to the linked export in
the other component. This kind of inter-
action is symmetric and implicit: refer-
ences to imports do not look any differ-
ent than references to local entities. The
persistent link model is usually used for
modules, or packages, which are not run-
time abstractions.

In this paper we propose a new compo-
nent model that addresses the dynamic
nature of Internet components by sup-
porting the client-server and the per-
sistent link modes of interaction in one
streamlined architecture, see Fig. 2. It
is based around the concept of a cell (the
name is inspired by the biological notion
of cell). Cells are first-class stateful enti-
ties which exist in the runtime environ-
ment, and which offer two kinds of ser-
vices: (1) operation invocation via ser-
vices (like COM/CORBA /Java objects),
and (2) persistent link to other cells
via connectors (like modules). Linking
is totally dynamic and revocable: two
linked cells can be unlinked at a later
time. Cells are meant as a new program-

ming abstraction — a language mecha-
nism with different responsibilities than
classes and objects.

As illustrated in Fig 2, a cell contains
both passive code, in the form of classes
and functions, and executing stateful el-
ements in the form of objects. This is
another focus of the model: cells are run-
time object containers, and mechanisms
are provided to control the level of isola-
tion of a cell with respect to its objects.
Some important features of cells are out-
lined below.

Per-link security mechanism. Cells
authenticate each-other at link time, and
the linking succeeds only if it is agreed
by both sides. Interaction then usually
proceeds without further checks. For
heavy interactions over a relatively short
period of time, this kind of protocol is
more efficient than per-invocation secu-
rity checks. Such interactions are typical
for Internet components: applets usu-
ally arrive for a short period of time,
and components connecting across the
network do so for a limited time. In
both cases, appropriate security checks
are vital. Since per-link checks occur
only once at connection time, more sub-
stantial, possibly time consuming, poli-
cies can be devised. Per-call checks on
the other hand must typically be light.

Runtime object containers. Every
object lives in some cell, and so cells di-
vide the general object space into smaller
groups of related objects. Security-wise,
a cell can protect its objects in vary-
ing degrees: several parameter passing
mechanisms are provided to help con-
trol the level of isolation of a cell with
respect to its objects. In addition, a
cell-serialization operation is supported,
which allows the set of objects belonging

Client]

\ 4

o

[Server

l

———OQ invocation interface

(a) The client-server interaction model

Component
use

-

import
export

=)

G_ linking interface

[Component

L~ implement

(b) The persistent link interaction model

Figure 1: Interaction models

to one cell to be serialized as a group.

Cross-component inheritance. A
class in one cell can extend a class in
another, simply by extending an import.
This cannot be supported in pure
client-server component models because
inheritance is not invocation. Since cells
can be unlinked and then relinked, the
superclass of a class extending an import
may dynamically change on runtime.
The syntactic fragile base-class problem
does not apply because imports within
connectors are statically typed, so the
superclass type cannot change. Cross-
component inheritance is central to
Internet programming: any applet-like
shipped component potentially needs to

inherit from a local system component
(a library).

Natural system architecture. In
many cases, symmetric composition re-
flects the natural structure of the system
at hand, resulting in a better architec-
ture. For example, a messenger system is
naturally built as two components inter-
acting symmetrically across the network.
In fact, the linking operation gives a con-
crete meaning to component composi-
tion. In COM/Corba/Java, which sup-
port only the client-server model, com-
position is more like a metaphor which
in practice translates to the two compo-
nents being clients of one another over a
period of time.

Cell

H - B

code

B

state
® sicg @

—

=>» function
E class
@ object

—o0

G_ connector
— plugin
—_— plugout
—0 Service

Figure 2: A Cell

Cross-network link. On top of the
basic concepts, it is possible to built a
distribution layer for cells. The move
from the local cell model to the dis-
tributed model is analogous to the move
from COM to DCOM; but whereas dis-
tribution in DCOM means remote invo-
cations, here it also means cross-network
cell linking (in addition to remote invo-
cations). Cells can directly link across
the network, just by applying the cell
linking operation between cells on dif-
ferent nodes. Such persistent inter-node
connections bear a strong analogy to the
persistent connections of internet pro-
tocols such as ftp and ssh, but are at
a higher level of programming abstrac-
tion. What this means is that persistent
service connections, which must be per-
formed in an ad-hoc manner in other lan-

guages, can be coded directly in the cell
language.

Unification of concepts. In exist-
ing technologies, the term “component”
actually refers to two distinct enti-
ties: the runtime invocable instances
(COM/Corba/Java objects) and the
classes from which these instances are
created (COM/Corba/Java classes). In
order for one COM object to call an op-
eration on another COM object, their
DLLs containing classes in binary form
must first be linked by the operating sys-
tem. It is a general-purpose kind of link
that lies outside the scope of the com-
ponent model. Cells in contrast are at
the same time invocable and linkable en-
tities, and the linking mechanism is an
integral part of the model. In addition

to simplicity and minimality of concepts,
this has an important advantage in terms
of security: in the authentication proto-
col for linking cells, each cell may query
the other via its services. This way,
the authentication protocol may rely on
substantial knowledge directly obtained
from the potential security threat. In
Java, security checks are per class, not
per instance, so only general external in-
formation such as where the class came
from or who signed it can be considered.
The Java security protocols cannot query
the potential security threat.

The cell project focuses on both foun-
dations and implementation. We have
recently launched a programming effort
aiming to implement cells as an exten-
sion of Java. In this short paper we
sketch the constructs and protocols sup-
ported by cells, via a series of examples.

2 The Cell Model

We first illustrate the basic concepts, and
then discuss some more advanced topics,
including distribution. The examples in
this section are written in a Java-like lan-
guage with cells.

2.1 Basic Cell Concepts

Cells are containers of classes, functions,
and objects, which interact via explicitly
declared external hooks (Fig. 2). There
are two kinds of hooks — connectors and
services — through which two modes of
interaction are supported:

1. Seamless interaction following link-
ing via a connector, a module-style
connection; and,

2. Explicit
ticular

interaction via a par-

service, a client-server,

COM/Corba/Java-style interac-

tion.

Two cells may interact seamlessly (to
be explained in a moment) after they are
linked via a connector. A connector on a
cell lists a series of imports and exports,
the plugins and plugouts. Each plugout is
implemented by an appropriate element
contained in the cell: a class plugout is
implemented by a contained class, and
a function plugout is implemented by a
contained function.

To interact with a cell via connec-
tor I, another cell must be linked at I.
That cell must also have a dual connec-
tor named I, in which the plugins and
plugouts trade places. Once a linkage
between two cells is established, refer-
ences to a plugin in a cell refer to the
connected plugout in the other cell. A
call to a function plugin within a cell
looks like a call to an external function
whose implementation will be provided
via linking. Similarly, extending or new-
ing a class plugin looks like extending or
newing an external class to be provided
via linking. Interaction via connectors
is therefore seamless from the point of
view of the cell authors. This notion of
linking via connector matching is close to
module interface matching, but connec-
tors are more dynamic: two linked cells
may be unlinked at a later time.

Class plugins allow a class in one cell
to inherit a class in another cell. This
powerful feature allows, for instance,
shipped code to inherit from local li-
braries, as is the case with applets us-
ing local libraries via inheritance (we il-
lustrate how to implement applets with
cells later).

The second mode of interaction is via
services. A service lists a series of opera-
tions which can be invoked by clients. In
contrast with plugins and plugouts, ser-

vices may only contain operations: no
classes are allowed. Every operation is
implemented by a function contained in
the cell. Clients invoke a operation on
a service by first obtaining an handle to
the service, and then invoking the oper-
ation on the handle, much like in COM
(where interfaces are the parallel for our
services). A given cell can have both con-
nectors and services, some of each.

Security-wise, cells are like walls pro-
tecting their contained elements. The in-
ternals of a cell cannot be accessed di-
rectly, only through connectors and ser-
vices. As explained in the introduc-
tion, cells support a per-link security
mechanism: at link-time, the two cells
may authenticate each-other, and decide
whether or not to allow the link. This is
realized by a special per-connector trust
predicate that allows arbitrary security
checks to be coded. This is illustrated
below.

Example: Explicit interaction via
services. A first example shows how
a COM-like purely service-oriented cell
can be defined. The cell has no connec-
tors.

cell nameserver {
service NameServer {
int lookup (String);
void setRoot (String);

}

// internal elements
Root theRoot = new Root(); // cell field

class Root { // class Root
String root;

}
// internal function
String toLowerCase(String s) {...}

// implementation of operation lookup:
// look up a name, returning its number

int lookup (String s) {...}

// implementation of setRoot:
// set default domain

void setRoot (String newRoot) {
theRoot.root = newRoot;
¥

In this example, the nameserver cell
has one service — NameServer — with two
services: lookup and setRoot. Their
implementations is given inside the cell.
The cell also contains a private function,
toLowerCase, which these implementa-
tions can invoke, and a field theRoot,
which is an object representing the cur-
rent root value. The presence of objects
in cells is important because it allows
cells to have state. Within the cell, the
private elements can be referred to di-

rectly by name.

Continuing with this example, the fol-
lowing client invokes some operations on
that service.

// obtain reference to the cell via some
// naming service

nameserver = lookup("nameserver");

// invoke operations

(nameserver < NameServer).setRoot(".jhu.edu");

(nameserver < NameServer).lookup("cs");
Example: secured linking via a
connector. The next example repeats

the same functionality as the previous
one, but using a connector instead of
a service to explicitly contrast the dif-
ferences between the two. In addition,
the server contains a trust predicate on
the NameServer connector to restrict the
parties that can link via that connector.
cell linkingnamesvr {
connector NameServer {
plugouts {

int lookup (String);
void setRoot (String);

// trust predicate: x represents the
// other cell connecting to this one

trust(x) {
//get certificate from other cell
String cert = (x < Cert).certificate();
. check that cert is a valid
certificate for access. Return true
iff the certificate is valid ...

} // end connector NameServer

// implementation of lookup and setRoot as in
// nameserver above ...

} // end cell linkingnamesvr

cell nameuser {
connector NameServer
plugins {
int lookup (String);
void setRoot (String);

}

service Cert {
String certificate();
}

}

// implementation of certificate: return the

// certificate for this cell ...
String certificate ...

// somewhere inside the cell, we may have
// seamless calls to setRoot and lookup:

. setRoot("jhu.edu")
. lookup("cs")
. lookup ("www")

} end cell nameuser

// obtain reference to nameuser
// via some naming service

nameuser = lookup("nameuser");

//obtain reference to linkingnamesvr
linkingnamesvr = lookup("linkingnamesvr");
// link cells

link nameuser linkingnamesvr at NameServer;
// unlink at a later time

unlink nameuser linkingnamesvr at NameServer;

In this example, the linkingnamesvr
cell is similar to the nameserver above,
but we use a connector NameServer with
plugouts instead of a service with opera-
tions. The user cell nameserver also has
a connector NameServer, but with a dual

set of plugins.

The two are dynamically linked by
the 1link statement. The setRoot and
lookup operations can be directly in-
voked from inside nameuser, because
those services are plugged in. If lookup
were invoked before the connection to
the name server was established, a run-
time error would result.

The 1linkingnamesvr cell above
includes a trust predicate on the
NameServer connector. The nameuser
cell includes a service interface Cert
which the linkingnamesvr uses in its
trust predicate to determine if the user
is authorized to link via NameServer.
The linkingnamesvr-nameuser linking
succeeds only if the trust predicate
returns true. (In the general case,
nameuser could also have its own trust
predicate on the NameServer connector
for mutual authentication.)

2.2 Cells as Object Contain-
ers

Cells own the objects they create. With
this axiom we can define adequate no-
tions of inter-cell parameter passing,
inter-cell object reference, and serializa-
tion. These notions provide a design
space in which the degree of isolation of
a given cell may be controlled. They also
lead to an elegant generalization to a dis-
tributed architecture, which requires few
additional concepts.

Parameter Passing. One of the more
difficult design decisions is how cells can
talk to one another at the lower (ob-
ject) level. If no thought were given, one
cell could own an object that directly
points to an object owned by another
cell, and such a channel may persist even
after the connection between the two

cells has ended. This constitutes a po-
tentially risky back-door. We thus de-
fine three parameter passing mechanisms
for how object arguments are passed be-
tween cells:

1. by (hard) reference. Using this
mechanism, a cell can get hold of a
reference pointing directly to an ob-
ject owned by a different cell. Such
pointers are efficient but violate cell-
encapsulation. They should be used
only between tightly coupled cells,
where a lower degree of isolation suf-
fices.

2. by copy: the object and all objects
it refers to, transitively, are copied.
When an object is copied from one
cell to another, its class must be ei-
ther defined in, or plugged into, the
target cell. This mechanism guaran-
tees full isolation, but may involve
copying large segments of data.

3. by modulated reference: this is an
object reference which is modulated
by the cell, i.e. the reference is sus-
tained by the approval of the owning
cell, and approval can in the future
be withdrawn. See Fig. 3. Mod-
ulated references can span virtual
machines and locations.

Modulated references are a variation
on a well-known concept in distributed
object systems: rather than holding a
hard reference to an object, the cell holds
a stub object which knows how to reach
the actual object which is in another cell.
This idea normally applies to objects at
different physical locations, but we gen-
eralize it to objects in different cells.

Modulated references allow one cell to
hold a logical reference to an object in
another cell without violating its encap-
sulation. The accessability of such point-

ers is subject to the connection: a modu-
lated reference passed through a connec-
tion is only “live” as long as the connec-
tion itself is live. Objects held as direct
pointers on the other hand will stay alive
even if their defining connector has been
disconnected. Modulated references gen-
eralize naturally to cross-network refer-
ences, where clearly direct pointers are
impossible.

Cell Serialization. Another impor-
tant aspect of cells we are building in
is a serialization protocol. Object serial-
ization is e.g. in Java an extremely ad-
hoc operation—much manual notation is
needed to specify how deep to serialize
the object structure, and there is a huge
code versioning problem to deal with
when objects are deserialized. We be-
lieve serialization however can effectively
happen at a conceptually higher level
than individual objects, namely at the
cell level. Each cell is a natural encapsu-
lation of its code and its owned objects,
which can be serialized as a unit, and
later deserialized. The serialization pro-
tocol is straightforward except for hard
references to nonlocal objects: since the
object pointed to is not owned by the
cell, it cannot be serialized. One of three
choices is possible: raise an exception,
replace the object with null, and turn the
reference into a modulated reference.

2.3 Cells in Distributed En-
vironments

As illustrated in the previous section,
cells can be used in a local setting for
modular and secure programming. How-
ever, a main focus is for cells to serve
as a cross-network abstraction for dis-
tributed environments. This means that
cells are global entities: every cell has

direct reference

o< — —

\ J
cell shield \

\

seaired digpatch mechanism

.|:|.____

cell-modulated reference

stub (proxy)

Figure 3: direct versus cell-modulated references

an identity, its cell identifier (cid), which
is unique over the network (like COM
GUIDs). References to cells are valid
across the network, and reference holders
use them in the same way regardless of
whether they refer to local or to remote
cells. This is the basis for the following
supported functionality:

1. Cells may be copied and shipped
across the mnetwork, to be
linked/invoked locally (applet-
style scenario).

2. Cells may move from one network
location to another (a form of roving
agents).

3. Cells may be linked across the net-
work, that is a cell in one location

can be linked to a cell in another lo-
cation via a plugging interface.

4. A client may transparently invoke
operations on a remote cell’s service.

Copying a cell from one location to
another realizes the applet-style mech-
anism in a way that allows for system-
atic authorization and invocation on the
client side. Linking cells across the net-
work allows for persistent peer-to-peer
connections to be made at a high level of
abstraction rather than at the low level
of internet protocols. Consequently, in-
stead of performing security checks on
a per-operation-invocation basis, such
checks will typically be performed on a
one-time per-link basis. This is a crucial
point for security-sensitive distributed

applications that need to maintain rea-
sonable performance.

We now elaborate on some of the de-
tails involved in the design. The network
is set of locations, each with an associ-
ated address space. Every cell must exist
in some location. Cells can communicate
across the network via connectors or ser-
vices in a way quite similar to local inter-
action. This is one of the key points of
our design: networked component inter-
action is a variation of local component
interaction. In particular, the mecha-
nisms for passing object parameters be-
tween cells on different locations are a
subset of those for passing objects be-
tween cells in one location: objects can
be passed by copy or by modulated ref-
erence. As for local cells, a copied object
must have its class present in the target
cell, either defined or plugged-in. Ob-
viously, objects cannot be passed across
the network as direct references.

Copying (moving) a cell means serial-
izing its static code part, i.e., classes and
functions declared inside, as well as its
current state, i.e., the objects to which
it holds a reference, each in its current
state. Object serialization is governed
by ownership as described in 2.2.

Cell-cell Connections which span the
network must be a restricted form of con-
nection. Objects must always run lo-
cally, and the class for the object and
all its superclasses must be in the same
location as the object itself. For this rea-
son, one cell cannot plug in classes from
another cell across the network. Fur-
thermore, as mentioned above, parame-
ters passed through a networked cell-cell
connection must be by copy or by mod-
ulated reference. Connectors with such
a restriction are declared networked.

Example: Cross-Network Linking.
Consider the linkingnamesvr example
above. This example can be explicitly
implemented with the user and server
cells being on different locations with
minimal change in the code. First, the
connector NameServer in both cells must
defined as networked. Then, supposing
a reference for the server cell has been
obtained in the user’s location, the ex-
act same link command is coded, and
the interaction proceeds transparently
over the network. The service exam-
ple nameserver can also be made dis-
tributed, just by defining the service
NameServer as networked.

Example: Applets. Applets are cells
that come from other locations on the
network. In Java, an applet arrives at
a location with requirements for several
system libraries, such as java.awt and
java.applet. In a cell implementation
of the applet concept, there must be a
cell for each such system library, and the
applet will then negotiate a linking with
such a library. Applets with insufficient
authorization will not be allowed to plug
into the system libraries. This structure
is illustrated in Fig. 4. The library cells
in the client’s location are of the form

cell awtlib {
connector AWTRoot {
plugouts {
class Canvas {...}
. other java.awt root class headers ...

// authorization policy to be enforced on
// library users connecting via AWTRoot
trust(x) {...}

connector AWTEvent {
plugouts {
. the java.awt.event class headers ...

// authorization policy to be enforced on

// library users connecting via AWTREvent
trust(x) {...}

. definition of all AWT classes ...

awtlib
WTevent IAWTeven
)
Canvas I myapp] at
Canvas
D Canvas| < I
\) AWTroot AWTroot MyCanvas
MyApplet
)
appletlib
| — |
~ Applet

' “ IApplet
Applet ppletRoot

——
B

== implements
=={> inherits

G

class

<
AppletRﬂ

connector

plugin

plugout

Figure 4: Applets with cells

} // end cell awtlib

cell appletlib {
connector AppletRoot {
plugouts {
Class Applet {...}
. other java.applet class headers ...

// authorization policy for applet library

// users connecting via AppletRoot
trust(x) {...}

. definition for all applet classes ...

} // end cell appletlib

In the server’s location, an applet cell
of the following form is declared:

cell myapplet {
// import all the relevant libraries
connector AWTRoot {
plugins {
class Canvas {...}

}
}

connector AWTEvent {
plugins {
. the java.awt.event class headers ...

connector AppletRoot{
plugins .{
class Applet {...}

}
}

service Run {
void main() {...}
// internal classes

// Applet imported from AppletRoot
class MyApplet extends Applet {...}

// Canvas imported from AWTRoot
class MyCanvas extends Canvas {...}

// implementation of main
void main() {...}

} // end cell myapplet
Assuming the client obtained a
reference for that cell, stored in

remoteapplet, it could copy it and then
use it locally. After connecting to the
client’s local library cells, the plugins
Applet and Canvas will refer to these
local classes. The following code copies
and then links the applet dynamically
with the libraries:

// link

myapplet = copy(remoteapplet);

link myapplet awtlib at AWTRoot;

link myapplet awtlib at AWTEvent;

link myapplet appletlib at AppletRoot;
// run the applet

(myapplet < Run).main();

Note that the library cells awt1lib and
appletlib may themselves hold state in-
formation. For instance, the appletlib
cell could keep track of the applets cur-
rently linked to it, and keep an audit
trail of critical library functions accessed.
Also note that there is no need to declare
any networked interfaces here since all
connections are made locally (after copy-
ing).

One important feature of this exam-
ple is that it shows how a class in one
cell can inherit from a class in another
cell. When a MyApplet object is created,
some of its code is in the myapplet cell,
and some is in the appletlib cell due to
inheritance from Applet. This does not

violate the requirement that objects have
their code locally, since all cells involved
are at the same location.

In addition to code, the imported ap-
plet could contain some data, as part
of its state. For instance, it could con-
tain relevant web links dynamically kept
up-to-date in the server’s location. The
server could even pick links which are ap-
propriate to the target client.

3 Related Work

We have already given the broad pic-
ture of how cells relate to existing com-
ponent technologies in the previous sec-
tions; here we briefly discuss related
work in the component research commu-
nity.

The importance of modeling the dy-
namic aspect of component connec-
tions has been addressed by several
researchers. Connection-oriented pro-
gramming as discussed in [Szy98] is
closely related to our plugging interface
connections, which can be viewed as a
concrete realization of that idea.

There are several foundational compo-
nent frameworks that have been devel-
oped. Piccola [AN00, LANOO] is based
on a core calculus for components. It
is a glue scripting langauge for putting
together software. Importantly, it ex-
plicitly models the dynamic nature of
component connection. It does not
include 1-1 linking/unlinking via plug-
ging/unplugging or trust relationships
and is untyped. Several purely static
component calculi have also been devel-
oped. [SCO00] models typed static com-
ponent composition. Some module sys-
tems are also very close to static compo-
nent systems; one such system is Units
[FF98], which allows some dynamic mod-
ule linking but is lacking any service in-

terfaces or statefulness.

Further information on the
cell project may be found at
www.cs.jhu.edu/hog/cells.

References

[ANOO] Franz Achermann and Oscar
Nierstrasz. Applications =
Components + Scripts — A
Tour of Piccola. In Mehmet
Aksit, editor, Software Archi-
tectures and Component Tech-
nology. Kluwer, 2000. to ap-
pear.

[FF98] Matthew Flatt and Matthias
Felleisen. Units: Cool mod-
ules for HOT languages.
In Proceedings of the ACM
SIGPLAN ’98 Conference
on Programming Language
Design and Implementation,
pages 236-248, 1998.

[LANOO] Markus Lumpe, Franz Acher-
mann, and Oscar Nierstrasz. A
Formal Language for Composi-
tion. In Gary Leavens and Mu-
rali Sitaraman, editors, Foun-
dations of Component Based
Systems, pages 69-90. Cam-
bridge University Press, 2000.

[SC00] Joao Costa Seco and Luis
Caires. A basic model of typed
components. In ECOOP, pages
108-128, 2000.

[Szy98] Clemens Szyperski. Com-
ponent Software: Beyond
Object-Oriented Programming.
ACM Press and Addison-
Wesley, New York, NY, 1998.

