
A Component Security Infrastructure

Yu David Liu Scott F. Smith
Department of Computer Science

The Johns Hopkins University�
yliu, scott�@cs.jhu.edu

June 25, 2002

Abstract

This paper defines a security infrastructure for access con-
trol at the component level of programming language de-
sign. Distributed components are an ideal place to define
and enforce significant security policies, because compo-
nents are large entities that often define the political bound-
aries of computation. Also, rather than building a security
infrastructure from scratch, we build on a standard one, the
SDSI/SPKI security architecture [EFL�99].

1 Introduction

Today, the most widely used security libraries are lower-
level network protocols, such as SSL, or Kerberos. Appli-
cations then need to build their own security policies based
on SSL or Kerberos. What this ends up doing in practice
is making the policy narrow and inflexible, limiting the de-
sign space of the implementation and thus the final feature
set implemented for users. A component-level policy us-
ing a security infrastructure, on the other hand, can both
(1) abstract away from keys and encryption to concepts of
principal, certificate, and authorization; and, (2) abstract
away from packets and sockets to service invocations on
distributed components. This is the appropriate level of
abstraction for most application-level programming, and
creation of such an architecture is our goal.

It is well known that components [Szy98] are useful
units upon which to place security policies. But, while
there has been quite a bit of recent research integrating se-
curity into programming languages, little of this has been
at the component level. Industry has been making progress
securing components. The CORBA Security Specification
[OMG02] layers existing security concepts and protocols
on top of CORBA. It is designed for interoperability be-
tween components using different existing protocols such
as Kerberos, SSL, etc, and not using a higher-level secu-
rity architecture. Microsoft’s DCOM uses a very simple
ACL-based security layer.

In this paper we define a new component-layer security
model built on top of the SDSI/SPKI security infrastruc-

ture [RL96, EFL�99, CEE�01]. By building on top of an
existing security infrastructure we achieve two important
gains: open standards developed by cryptographers are
more likely to be correct than a new architecture made by
us; and, a component security model built on SDSI/SPKI
will allow the component security policies to involve other
non-component SDSI/SPKI principals. We have chosen
SDSI/SPKI in particular because it is the simplest general
infrastructure which has been proposed as an Internet stan-
dard. Other architectures which could also be used to se-
cure components include the PolicyMaker/KeyNote trust
management systems [BFK99], and the Query Certificate
Manager (QCM) extension [GJ00]. The most widely used
PKI today, X.509 [HFPS99], is too hierarchical to secure
the peer-to-peer interactions that characterize components.

Although we have found no direct precedent for our ap-
proach, there is a significant body of related work. PLAN
is a language for active networks which effectively uses
the PolicyMaker/KeyNote security infrastructure [HK99];
PLAN is not component-based. Several projects have gen-
eralized the Java Applet model to support mobile untrusted
code [GMPS97, BV01, HCC�98]. These projects focus
on mobile code, however, and not on securing distributed
component connections; and, they do not use existing se-
curity infrastructures.

Components we informally characterize a software
component. Our characterization here differs somewhat
from the standard one [Szy98] in that we focus on the be-
havior of distributed components atrun-timesince that is
what is relevant to dynamic access control.

1. Components are named, addressable entities, running
at a particular location (take this to be a machine and
a process on that machine);

2. Components have services which can be invoked;

3. Components may be distributed,i.e. services can be
invoked across the network;

The above properties hold of the most widespread com-
ponent systems today, namely CORBA, DCOM, and Jav-
aBeans.

1.1 Fundamental Principles of Component
Security

We now define some principles we believe should be at
the core of secure component architectures. We implement
these principles in our model.

Principle 1.1 Each Component should be a principal in
the security infrastructure, with its own public/private key
pair.

This is the most fundamental principle. It allows access
control decisions to be made directly between components,
not via proxies such as users, etc (but, users and organiza-
tions should also be involved in access control policies).

Principle 1.2 As with other principals, components are
known to outsiders by their public key.

Public keys also serve as universal component names,
since all components should have unique public keys.

Principle 1.3 Components each have their own secured
namespace for addressing other components (and other
principals).

By localizing namespaces to the component level, a more
peer-to-peer, robust architecture is obtained. Components
may also serve public names to outsiders.

Principle 1.4 Components may be private—if they are not
registered in nameservers, then since their public keys are
not guessable, they are hidden from outsiders.

This principle introduces a capability-like layer in the
architecture: a completely invisible component is a se-
cured component. Capabilities are also being used in
other programming-language-based security models [Mil,
vDABW96].

1.2 The Cell Component Architecture

We are developing a security architecture for a particular
distributed component language,Cells [RS02]. A brief
definition of cells is as follows.

Cells are deployable containers of objects and
code. They expose typed linking interfaces (con-
nectors) that may import (plugin) and export
(plugout) classes and operations. Via these inter-
faces, cells may be dynamically linked and un-
linked, locally or across the network. Standard
client-server style interfaces (services) are also
provided for local or remote invocations. Cells
may be dynamically loaded, unloaded, copied,
and moved.

So, cells have run-time services like DCOM and
CORBA components, but they also haveconnectorsthat

Chatter Chatter

send

receive
send

receive

C

ta
h

C

t

a
h

connector

plugin

plugout

Figure 1: Two Chatter cells communicating over the net-
work via Chat connector

allow for persistent connections. Persistent connections
can be made across the Internet. This is particularly good
for security because a connection is secured at set-up, not
upon every transaction. This is analogous to SSH: once
a secure session is in place, it can stay up for hours or
days and perform many transactions without additional au-
thorization checks. See Figure 1 for an example of two
Chatter cells which are connected across the Internet
via a persistentChat connection. They can communicate
by thesend andreceive operations.

There is apresident cellin charge of cells at each loca-
tion. The president can veto any access request and revoke
any live connection at its location.

In this paper, we are not going to focus much on the cell-
specific aspects, so the paper can be viewed as a proposal
for a general component security architecture. The one
exception is we do assume that each location has a single
president cell which is in charge of all cells at that location,
and even this assumption is not critical.

We use a simple, denotational model of cells here,
which suffices for definition of the security model. We
are currently implementing JCells, a modification of
Java which incorporates the cell component architecture
[Lu02].

1.3 The SDSI/SPKI Infrastructure

We very briefly review the SDSI/SPKI architecture, and
give an overview of how we use it as a basis for the cell
security architecture.

SDSI/SPKI is a peer-to-peer (P2P) architecture, a more
flexible format than the centralized X.509 PKI [HFPS99].
Each SDSI/SPKIprincipal has a public/private key pair,
and optional additional information such as its location and
servers from which its certificate may be retrieved.Certifi-
catesare information signed by principals; forms of certifi-
cate include principals (giving the public key and optional
information), group membership certificates (certifying a
principal is a member of a certain group), andautho-
rization certificatesauthorizing access.Name serversare

secure servers which map names (strings) to certificates.
There is noa priori centralized structure to names—each
server can have an arbitrary mapping. Anextended name
is a name which is a chain of name lookups; for instance
asking one name server for “Joe’s Sally” means to look
up “Joe” on that name server, and then asking Joe’s name
server to look up “Sally”. Access control decisions can be
based either on direct lookup in an ACL, or via presen-
tation of authorization certificates. In access control deci-
sions using certificates, these certificates may be optionally
delegated and revoked. See [RL96, EFL�99, CEE�01] for
details.

We use SDSI/SPKI both for access control, and for
a name service which allows cells to learn about each
other securely. As mentioned above, each cell is regis-
tered as a SDSI/SPKI principal, and can issue certificates
which fit the SDSI/SPKI format. Each cell can also serve
SDSI/SPKI names. We currently don’t generate certifi-
cates using the precise S-expression syntax of SDSI/SPKI,
but the syntax is not an important issue (and, an XML
format is probably preferred in any case). We incor-
porate SDSI/SPKI extended names, authorization certifi-
cates, delegation, and revocation models.

2 Cells

In this section we give a denotational model of cells and
cell references (local or remote references to cells). Each
cell has a public/private key and is thus a SDSI/SPKI prin-
cipal. The public key not only serves for security, it serves
to identify cells as no two cells should share a public key.

2.1 The Cell Virtual Machine (CVM)

The Cell Virtual Machine (CVM) is where cells run, in
analogy to Java’s JVM. The CVM is responsible for tasks
including cell loading, unloading, serializing, deserializing
and execution. Each CVM is represented by a particular
cell, called itspresident. The president is a cell with extra
service interfaces and connectors to implement the CVM’s
responsibilities. By reifying the CVM as a president cell,
our architecture can be homogeneously composed of cells.
It implicitly means CVM’s are principals (identified by
their president cells), which allows for CVM-wide secu-
rity policies. In composing security policies, the president
cell serves as a more abstract notion of location than the
network-protocol-dependent locations used in existing se-
curity architectures such as Java’s. This separation of low-
level network protocols from the security architecture is
particularly well-suited to mobile devices: even if network
locations change from time to time, security policies can
stay the same.

For the purposes of defining the security architecture,
a simple denotational model of cells suffices: we ignore
most of the run-time internals such as objects, classes and

serialization, and focus on the access control policies for
cells. We will define cells� � � and cell references�� �� � . First we define the public and private keys of a cell.

2.2 Cell Identifiers CID and Locations LOC

All cells are uniquely identified by theircell identifier,
CID.

Definition 2.1 A cell identifier �	
 � � �� is the pub-
lic key associated with a cell. A corresponding secret key�	

� (� � ��
�) is also held by each cell.

TheCID is globally unique since it must serve as the iden-
tity of cells. All messages sent by a cell are signed by its�	

�, and thus which will be verifiable given theCID.

When a cell is first loaded, itsCID and �	

� are au-
tomatically generated. Over the lifecycle of a cell, these
values will not change regardless of any future unloading,
loading, running, or migrating the cell may undergo. Since
the CID is thus long-lived, it is sensible to make access
control decisions based directly on cell identity.

Each loaded cell is running within a particular CVM.
CVM’s are located at network locationsLOC which can
be taken to be IP addresses.

2.3 Cell Denotations

We now define the denotation of a cell—each cell� is a
structured collection of data including keys, certificates,
etc. We don’t define explicitly how cells evolve over time
since that is not needed for the core security model defini-
tion.

Definition 2.2 A cell c � � is defined as a tuple

c � �� � ����� ���� � �� � � ��� � � �
 � �
where � � ��	
 � �	

�� are the cell’s public and private

keys. ����� ���� � � ! � "#! " is the set of certificates
held by the cell for purposes of access and delegation.� ! � "#! " is defined in Section 5.2 below. �� � � #$" is the security policy table, defined in
Section 5 below. ��� � %& " is the naming lookup table, defined in
Section 4 below. � �
 � is the code body and internal state of the cell,
including class definitions, service interfaces, con-
nectors, and its objects. We treat this as abstract in
this presentation.

A cell environment ��'(� � � ! %) " is a snap-
shot of the state of all active cells in the universe:� ! %) " � *� + � , finite and for any-� � -. �� , their keys differ/.

2.4 Cell References

Cells holdcell references, �� , to other cells they wish to
interact with. Structurally, a cell reference corresponds
to a SDSI/SPKI principal certificate, including the cell’s
CID and possible location information. This alignment
of SDSI/SPKI principal certificates with cell references
is an important and fundamental aspect of our use of the
SDSI/SPKI architecture. In an implementation, cell refer-
ences will likely also contain cached information for fast
direct access to cells, but we ignore that aspect here.

Definition 2.3 A cell reference�� � � � is defined as a
tuple �� � ��	
 0122 � �	
 3456 � � �� 3456 �
where�	
 0122 is the�	
 of the referenced cell;�	
 3456
is the�	
 of the CVM president cell where the referenced
cell is located;� �� 3456 is the physical location of the
CVM where the referenced cell is located. If�� refers to a
CVM president cell,�	
 0122 � �	
 3456.
All interactions with cells by outsiders are through cell ref-
erences; the information in�� can serve as a universal re-
source locator for cells since it includes the physical loca-
tion and CVM in which the cell is running.

Definition 2.4 ��78���� is defined as follows: If��'(� � � ! %) " and �� � � � , ��78���� 9-:;< = � -> ?
returns the cell� which �� refers to.

3 An Example

In this section we informally introduce our security archi-
tecture with an example modeled on a B2B (Business-to-
Business) system such as a bookstore that trades online
with multiple business partners.

In our example, there is a “Chief Trader” business that
communicates with its trading partners Business A, Busi-
ness B, and Business M, all of which are encapsulated as
cells. Also, Business A has a partner Business K which is
not a partner of the Chief Trader. Fig. 2 shows the layout
of the cells and the CVM president cells that hold them.
CID’s are large numbers and for conciseness here we ab-
breviate them as e.g. 4. . . 9, hiding the middle digits. The
source code for the Chief Trader has the following JCells
code, which is more or less straightforward.

cell ChiefTrader {
service IQuery {

double getQuote(int No, String cate);
List search(String condition);

}
connector ITrade {

plugouts{
boolean makeTrans(TradeInfo ti);

}
plugins{

EndorseClass getEndorse();
}

}
/* ... cell body here ... */

}

Name CID CVM LOC
PtnrB 3. . . 1 8. . . 1 bbb.biz
CVM1 7. . . 5 7. . . 5 aaa.biz

Table 1a

Name Extended Name
PtnrA [CVM1,A]

Table 1b

Name Group Members

PtnrGrp @CR(CID=3. . . 1, CVM=8. . . 1, LOC=bbb.biz),
PtnrA ,
[CVM1,M]A

Table 1c

Table 1: Naming Lookup Table for Chief Trader Cell

Name CID CVM LOC
PtnrK 4. . . 1 9. . . 7 kkk.biz
ChiefTrader 1. . . 3 6. . . 5 chieftrader.biz

Table 2: Naming Lookup Table for Business A Cell

The major functionalities of Chief Trader are shown
above. In service interfaceIQuery , getQuote
takes the merchandise number and the category (pro-
motion/adult’s/children’s book) and returns the quote;
search accepts an SQL statement and returns all mer-
chandise satisfying the SQL query. The Chief Trader cell
also has anITrade connector, which fulfills transactions
with its business partners. Inside it,getEndorse is a
plugin operation that needs to be implemented by the in-
voking cell, which endorses transactions to ensure non-
repudiation.

Our infrastructure has the following features.

Non-Universal Names Cells can be universally identi-
fied by theirCID’s. However, other forms of name are
necessary to facilitate name sharing, including sharing by
linked name spaces, described below. Instead of assuming
the existence of global name servers, each cell contains a
lightweightNaming Lookup Table(NLT), interpreting lo-
cal names it cares about, and only those it cares about; ex-
ampleNLT’s are given in Tables 1, 2, and 3. AnNLT entry
maps a local name into one of three forms of value:a cell
reference, extended name, or group. So, anNLT is three
sub-tables for each sort; the three sub-tables for the Chief
Trader are given in Figures 1a, 1b, and 1c, respectively.
In Figure 1a, a local name is mapped to a cell reference�� � ��	
 0122 � �	
 3456 � � �� 3456 �: the cell with CID
3...1 running on a CVM onbbb.biz with president
cell CID 8...1 is namedPtnrB in the Chief Trader’s
namespace. In Figure 1b, a map from local names toex-
tended namesis defined, serving as an abbreviation. In
Figure 1c a groupPtnrGrp is defined. We now describe
the meaning of these extended name and group name en-
tries.

Extended Names Although names are local, names-
paces of multiple cells can be linked together as a pow-

CVM
 0

CID
: 6..5

Location:
 chieftrader.biz

CVM
 1

CID
: 7..5

Location:
 aaa.biz

CVM
 2

CID
: 8..1

Location:
 bbb.biz

CVM
 3

CID
: 9..7

Location:
 kkk.biz

Chief Trader Cell

CID
: 1..3

Business A Cell

CID
: 1..9

Business
 M
 Cell

CID
: 8..3

Business B Cell

CID
: 3..1

Business
 K
 Cell

CID
: 4..1
Legend:

A
 B
 :A is situated on B

Figure 2: Example: A B2B System Across the Internet

Name CID CVM LOC
A 1. . . 9 thiscid localhost
M 8 . . . 3 thiscid localhost
Chief 1. . . 3 6. . . 5 chieftrader.biz

Table 3: Naming Lookup Table for CVM 1 President Cell

erful scheme to refer to other cells across cell boundaries;
we just ran into an example, [CVM1, A] in Table 1c. This
refers to a cell namedA in the namespace of the cell named
CVM1, from the perspective of the namespace of the Chief
Trader cell itself. Extended names make it possible for a
cell to interact with other cells whoseCID and location in-
formation is not directly known: the Chief Trader cell does
not directly keep track of theCID and location of Business
A, but still has a name for it asPtnrA and the two can
communicate. Extended names also help keep the size of
naming information on any individual cell small.

Cell Groups Our system supports the definition of
cell groups. The ability to define groups greatly eases
the feasibility of defining security policies: policies
can be group-based and need not be updated for ev-
ery single cell. Table 1c defines a groupPtnr-
Grp with three members. Group members can be di-
rect cell references (CR(CID=3...1, CVM=8...1,
LOC=bbb.biz)), local names (PtnrA), extended
names ([CVM1,M]), or other sub-groups. This flexibility
allows appropriate groups to be easily defined.

Access Control The security policy defines how re-
sources should be protected. The units of cell protec-
tion include services, connectors and operations. Each
cell contains asecurity policy tablewhich specifies the
precise access control policy. Table 4 gives the Chief
Trader’s security policy table. Here, operationsearch

of its IQuery service can be invoked by any member in
groupPtnrGrp ; the second entry in the table indicates
thatPtnrA can invoke any operation of itsIQuery ser-
vice; the third entry indicatesPtnrA can also connect to
its ITrade connector.

Hooks Security decisions can also be made contingent
on the parameters passed in to an operation. This mech-
anism is called ahook, and provides access control at a
finer level of granularity. The fourth entry of Table 4 has
a hookh1 attached, which declares that thegetQuote
operation ofIQuery service in the Chief Trader cell can
be invoked byPtnrB only if the second parameter pro-
vided is equal topromotion , meaning only promotion
merchandise can be quoted byPtnrB .

Delegation Delegation solves the problem of how two
cells unaware of each other can interact effectively. For in-
stance, Business K is not a partner of the Chief Trader, but
since it is a partner of Business A (a partner of the Chief
Trader), it is reasonable for Business K to conduct busi-
ness with the Chief Trader. According to Table 4, Busi-
ness A (namedPtnrA in the name space of the Chief
Trader cell) can have access to theIQuery interface of
the Chief Trader, but business K can not. However, the
Chief Trader has left the delegation bit (Delbit) of that
entry to1, which means any partner with this access right
can delegate it to others. Table 5 shows Business A’s se-
curity policy table; it defines a delegation policy whereby
it grantsPtnrK a certificate for theIQuery service of
the Chief Trader cell. Thus cell K can invoke theIQuery
service using this delegation certificate, even though the
Chief Trader cell does not directly know Business K.

Subject Resource Accessright Hook Delbit
PtnrGrp Bthiscell , IQuery.search C invoke NULL 0
PtnrA Bthiscell , IQuery C invoke NULL 1
PtnrA Bthiscell , ITrade C connect NULL 0
PtnrB Bthiscell , IQuery.getQuote C invoke h1DD 0

DD h1(arg1, arg2) =@arg2E “promotion”A
Table 4: Security Policy Table for Chief Trader

Subject Resource Accessright Hook Delbit
PtnrK BChiefTrader , IQuery C invoke NULL 0

Table 5: Security Policy Table for Business A

4 Name Services

Name services are needed to find cells for which a cell
reference�� is lacking. The example of Section 3 gave
several examples of name service in action.

4.1 Names and Groups

The Cell naming scheme uses the decentralized extended
naming scheme of SPKI/SDSI [CEE�01]. In contrast with
global naming schemes such as DNS and X.509 where
global name servers are assumed, decentralized naming
more reflects the nature of the Internet, for which Cells are
designed. Each and every cell can serve as an independent,
light-weight SDSI/SPKI naming server, so name service is
pervasively distributed.

The set of local names are strings; � % . Local
names map to cell references, cell extended names, and
cell groups.

The extended name mechanism, illustrated in the exam-
ple, enables a cell to refer to other cells through a chain of
cross-cell name lookups.

Definition 4.1 An extended name'FG H 9� % IJ K ? is a se-
quence of local namesL'� � '. � M M M � '5N.
Each'O� � is a local name defined in the name space of the
cell 'O.

SDSI/SPKI groups are represented as a name binding
which maps the name of the group to the set of group mem-
bers. Group members are themselves local names, which
can in turn be mapped to cells or sub-groups. The owner
of the group is the cell holding the local name.

Definition 4.2 The set of groupsP is defined asP �Q RS TU 9� � V % IJ K ?.
4.2 The Naming Lookup Table and Naming

Interface

Local name bindings are stored in anaming lookup table,
NLT. Every cell (including presidents) holds such a table,
defining how local names relevant to it are mapped to cells
and groups.

Definition 4.3 Given a space) � � � V P V % IJ K of
values,

1. each naming lookup entry��� � %& ! is a tuple��� � �' � (� for ; � % and< �) ;

2. a naming lookup table��� � %& " is a set of
naming lookup entries:��� + %& ! such that for�'W � (W � � �'X � (X � � ���, ; � Y� ;. .

An example illuminating this definition can be found in
Table 1 of Section 3.Z� � [\�]� 9��� � ' ? is a partial
function which looks up the value of; in tableNLT, and
is undefined for names; with no mapping.

In the JCells language, the naming lookup table is main-
tained by an interfaceINaming present on all cells, which
contains the operations for both looking up and modifying
name lookup table information. Data in the naming lookup
table can only be located or modified viaINaming . The
most important operation inINaming is lookup , which
we now specify. Group membership is another important
operation which we leave out of this short version.

4.3 Name Lookup

The lookup 9cenvt� ' FG H �cr^_H ? operation, defined in Fig.
3, looks up an extended name'FG H, starting from the nam-
ing lookup table of the current cell which has reference�� ^_H , and returns the final cell reference that'FG H refers
to. Since arbitrary cell name servers could be involved in
extended name lookup, the operation is parameterized by
the global cell environmentcenvt. A simple local name is
a special case of an extended name withLENGTH('FG H) =
1.

The first case inlookup1 is when the name is not an
extended name: the value(in the ��� is directly re-
turned. The second case is for an extended name, and the
next element of the extended name must be looked up us-
ing cell (’s nameserver. The last case is where the value is
an extended name itself.

The above algorithm does not define how the com-
putation is distributed; to be clear, given an invocation
lookup on a cell, the only parts involving distributed in-
teraction are��78���� and Z� � [\�]� , which in

lookup1 (cenvt, `abc , cr, pathset) =
let [`d e `f e ggge `h] = `abc ,ij e e e klm e n = REF2CELL(cenvt,cr),iopq e opq rdn s j

in
if

iopq e `dn t pathsetthen raise error;
let pathset= pathsetu viopq e `dnw inx s yz m {|l }z ~klm e `d� in

casex t � � andlzk ym� ~`abc � s �: x
casex t � � andlzk ym� ~`abc � � �: lookup1 (cenvt, [`f e ggge `h], v, pathset)
casex t � �� � : let �� � s lookup1 ~��`x� e x ecr epathset� in

lookup1 ~��`x� e �`f e g g g e `h � e �� � epathset�
otherwise: raise error

lookup (cenvt, `abc , cr) = lookup1 (cenvt, `abc , cr, �)

Figure 3: Definition oflookup

combination locate another cell, look up a name from it
and immediately return the value, be it a cell reference or
extended name, to the initial invoker; all recursive calls to
lookup1 are local.

Compared with SDSI/SPKI [CEE�01], our algorithm
is more general since it allows arbitary expansion of local
names (the third case in the algorithm). For example, “Sal-
lie’s Joe’s Pete” could in the process of resolution return an
extended name for “Joe” on Sally as “Sam’s Joe”, which
then must be resolved before “Pete” can be looked up on
it; [CEE�01] will not resolve such names. However, this
more general form is expressive enough that cyclic names
are possible (e.g. “Sallie’s Joe” maps to the extended name
“Sallie’s Joe’s Fred”) and a simple cycle detection algo-
rithm must be used to avoid infinite computation. The cy-
cle detection algorithm used in Fig. 3 is as follows. The
lookup function maintains a setpathsetof each recur-
sivelookup name this initial request induces; if the same
naming lookup entry is requested twice, a cycle is flagged
and the algorithm aborted. A cycle can only be induced
in the third case (local name expansion), where the algo-
rithm divides the lookup process into two subtrees. Since
there are only finitely many expansion entries possible, the
algorithm always terminates.

5 Access Control

Access control decisions in the cell security architecture
are based on the SDSI/SPKI model, specialized to the par-
ticular resources provided by cells. Each cell has associ-
ated with it asecurity policy table, which declares what
subjectshave access to whatresourcesof the cell. This
is an “object-based” use of SDSI/SPKI—every cell is re-
sponsible for controlling access to its resources.

Definition 5.1 1. The set of subjects# � %�� � V*ALL/: Subjects are extended names for cells or
groups, orALL which denotes any subject.

2. The set of resources� � �� � � �, where

 � � % IJ K V *thiscell/ is the set of re-
source owners, withthiscell denoting the
cell holding the security policy itself. � � #�) V � % " V � $ is the set of protec-
tion units, which can be a cell service interface,
connector, or operation, respectively.

A partial order�� is defined on protection units:�� ���. if and only if �� is subsumed by�. ; details are omitted
from this short version.

Access rights are� � *invoke �connect /, where if
u � � % " , a will be connect , and if u � #�) V � $, a
will be invoke .

Definition 5.2 A security policy entry�� � � #$! is a tu-
ple �� � � �� � � � � � � � � �, meaning access right� to re-
source� can be granted to subject� , if it passes the secu-
rity hook� . This access right can be further delegated if�
is set to 1. Specifically, we require

 � � #, � � �, � � � .

 � � � is an optional security hook, a predicate which
may perform arbitrary checking before access rights
are granted (details are in Section 5.1 below). It is unless� � �¡ � ¢ �, ¡ � thiscell and ¢ � � $.
The set of security hooks that is associated with oper-
ation ¡� � � $ is denoted� £¤ .

 � � � � *¥ � ¦/ is the delegation bit as per the
SDSI/SPKI architecture. It defines how the access
rights can be further delegated, detailed in Section
5.2 below.

The Security policy table is then a set of security poli-
cies held by a cell:�� � � #$" � Q RS TU 9#$! ?.

5.1 Security Hooks

The access control model above restricts access rights to
cell connectors and service interfaces based on request-
ing principals. However, more expressiveness is needed
in some situations. One obvious example is local name
entries: How can one protect a single local name entry,
i.e., one particular invocation oflookup ? Currently, we
have a naming interface defined (see Section 4.2), but
completely protecting operationlookup is too coarse-
grained. For these cases we need a parameterized secu-
rity policy, in which the policy is based on the particular
arguments passed to an operation such aslookup . Se-
curity hooks are designed to fill this need. Hooks can be
implemented in practice either as JCells code or written
in some simple specification language; here we abstractly
view them as predicates. The set of security hooks� £¤
contains verifying predicates that are being checked when
the associated operation¡� is triggered.

Definition 5.3 Given security policy entry �� � ��� � �¡ � ¡� � � � � � £¤ � � �, a hook� £¤ � � £¤ is a predicate

� £¤ 9(� � (. � MMM(§ ?
where(� � (. � MMM(§ are operation¡� parameters, and each(O �) � & , for)� & an abstract set of values which in-
cludes cell references�� along with integers and strings.

Access control security hooks are checked right before in-
vocation of the associated operation, and the invocation
can happen only if the security hook returns true.

5.2 Delegation

We use the SPKI/SDSI delegation model to support dele-
gation in cell access control. A subject wishing access to
a cell’s resource can present a collection of certificates au-
thorizing access to that cell. And, revocation certificates
can nullify authorization certificates.

Definition 5.4 An authorization certificate
\¢�� � �� �"� � is a signed tuple

\¢�� � � ��	
 ¨ � �	
 © � �	
 ª � ¢ � � � � �
where�	
 ¨ is the�	
 of certificate issuer cell;�	
 © is
the �	
 of the cell being delegated;�	
 ª is the �	
 of
resource owner cell;¢ is the resource unit;� is the access
right to be delegated; d is the delegation bit: if 1, the cell
specified by�	
 © can further delegate the authorization
to other cells.

Definition 5.5 A revocation certificate ��(¡� ��!) � � is a signed tuple

��(¡� � ��	
 ¨ � �	
 © � �	
 ª � ¢ � ��

In this definition,�	
 ¨ is the �	
 of revocation certifi-
cate issuer cell;�	
 © is the cell which earlier received
an authorization certificate from the issuer cell but whose
certificate is now going to be revoked;�	
 ª is the �	

of resource owner cell;¢ is the resource unit; and,� is the
access right to be revoked. The set of certificates is defined
as� ! � "#! " � Q RS TU 9� � "� � V �!) � � ?.

Support for delegation is reflected in the definition of a
security policy entry,��� : a delegation bit� is included.
This bit is set to permit the authorized requester cell to
further delegate the access rights to other cells. Cells can
define delegation security policies by composing security
policy entries for resources they do not own. This kind
of entry takes the form�� � �¡ � ¢ � � � �NULL� � �, with ¡ Y�
thiscell . This denotes that an

\¢�� � granting access� to ¢ of ¡ can be issued if the requester is�. Notice
security hooks are meaningless in this case.

The delegation proceeds as follows: suppose that on the
resource cell side there is a security policy entry�� � ��� � �thiscell � ¢ � � � � � �1 �; cell � will be granted an\¢�� � if it requests access� to unit ¢ on the resource cell.
Cells holding

\¢�� � can define their own security poli-
cies on how to further delegate the access rights to a third
party, issuing another

\¢�� � , together with the certificate
passed from its own delegating source. This propagation
can iterate. Cells automatically accumulate “their” pile of
authorization certificates from such requests, in their own����� ���� . When finally access to the resource is at-
tempted, the requestor presents a chain of

\¢�� � which
the resource cell will check to determine if the access right
should be granted. Existence of a certificate chain is de-
fined by predicate�«	� �� ��� ��¬\	� , see Fig. 4.
In the definition, operatorCOUNTERPARTmaps autho-
rization certificates to their corresponding revocation cer-
tificate, and vice-versa.B­ in Figure 4 checks revocation
certificates: if some cell revokes theAuthC it issued ear-
lier, it sends a correspondingRevoCto the resource owner.
When any cell makes a request to the resource and presents
a series ofAuthC, the resource holder will also check if any
RevoCmatches theAuthC.

5.3 isPermitted: The Access Control De-
cision

Each cell in JCells has a built-in security interfaceISe-
curity , which contains a series of security-sensitive op-
erations. The most important isisPermitted (see
Fig. 5), which checks if access righta®1¯ 9� � ? to re-
source unitu®1¯ 9� � ? can be granted to subjectcr® 1¯ 9�� � ?. If u®1¯ � � $, a list of arguments are provided
by arglist® 1¯ 9� � � P & �#"? for possible checking by a
hook. A set of authorization certificatesCertSet® 1¯ 9�� ! � "#! " ? may also be provided. The cell performing
the check iscr03° 9� � � ?. The environment for all active
cells iscenvt9� � ! %) " ?.

EXISTSCERTCHAIN~cenvtecr±²³ ecr´µ¶ eu´µ¶ ea´µ¶ eCertSet́µ¶ �=
let ~CID±²³ e td e tf � = cr±²³ in
let ~CID´µ¶ e td e tf � = cr´µ¶ in
let

i
td eCertSTORE±²³ e tf e t· e t¸ n = REF2CELL(cenvt, cr±²³) in
case Bd andBf andB· ¹ iCID³º eu³º ea´µ¶ n
otherwise »

where
Bd = ¼Authd e gggAuth½ t CertSet́µ¶ with

Authd s i
CID±²³ eCID³º e iCID±²³ eu³º n ea´µ¶ e �n

Authf s i
CID³º eCID³¾ e iCID±²³ eu³¾ n ea´µ¶ e �n

...

Auth½ s i
CID³¿Àº eCID´µ¶ e iCID±²³ eu³¿ n ea´µ¶ edn ~d t vÁ e �w�

Bf =u³¿ ÂÃ u³¿Àº ggg ÂÃ u³º
B· =

ÄÅÆÇÈ t vAuthd e gggeAuth½ w eCOUNTERPART~auth� Ét CertSTORE±²³
Figure 4: Definition ofEXISTSCERTCHAIN

isPermitted ~cenvtecr´µ¶ eu´µ¶ ea´µ¶ earglist´µ¶ eCertSet́µ¶ ecr±²³ � s
let ~CID´µ¶ e td e tf � = cr´µ¶ in
let

i
td e tf eSPT±²³ e t· e t¸ n = REF2CELL(cenvt, cr±²³) in
(¼ ise ioeun eaehedn t SPT±²³ g Bd and Bf and B· and B¸)

or
let t = EXISTSCERTCHAIN~cenvtecr±²³ ecr´ µ¶ eu´µ¶ ea´µ¶ eCertSet́µ¶ � in
let

i
CID´µ¶ eu´µ¶ ea´µ¶ n s Ç

for
Ç Ês » in

(¼ ise ioeun eaehedn t SPT±²³ g Bd and Bf and B· and B¸)
where

Bd s ~a s a´ µ¶ �
Bf s ~o s thiscell � and ~u´µ¶ ÂÃ u�
B· =

case
pËyÌ Í }Î ~cenvtes�: isMember ~cenvte cr´ µ¶ esecr±²³ �

case
pË ozll ~cenvtes�:
let

i
CIDh eCID²ÏhÐÑ eLOC²ÏhÐÑ n s lookup ~cenvtesecr±²³ � in ~CIDh s CID´µ¶ �

B¸ s h~arglist´µ¶ � whereu´ µ¶ t ÒÓ
Figure 5: Definition ofisPermitted

isPermitted grants access either if there is a di-
rect entry in the security policy table granting access, or
if proper authorization certificates are presented. The first
or case checks if there is directly an entry in the security
policy table granting access. If authorization certificates
are provided together with the request (secondor case),
permission will be granted if these certificates form a valid
delegation chain, and the first certificate of the chain can
be verified to be in the security policy table.B� matches
the access right;B. matches the resource;B­ matches the
subjects, which is complicated by the case a subject is a
group; andBÔ checks the security hook if any.

6 Conclusions

In this paper we have shown how the SDSI/SPKI infras-
tructure can be elegantly grafted onto a component ar-

chitecture to give a general component security architec-
ture. Particularly satisfying is how components can serve
as principals, and how SDSI/SPKI naming gives a se-
cure component naming system. We believe this infras-
tructure represents a good compromise between simplicity
and expressivity. Very simple architectures which have no
explicit access control or naming structures built-in lack
the ability to express policies directly and so applications
would need to create their own policies. More complex
architectures such as trust management systems [BFK99]
are difficult for everyday programmers to understand and
thus may lead to more security holes.

Beyond our idea to use SDSI/SPKI for a peer-to-peer
component security infrastructure, this paper makes sev-
eral other contributions. We define four principles of com-
ponent security, including the principle that components
themselves should be principals. An implementation as-
pect developed here is thecell reference: the public key

plus location information is the necessary and sufficient
data to interact with a cell. This notion combines pro-
gramming language implementation needs with security
needs: the cell needs to be accessed, and information sup-
posedly from it needs to be authenticated. Modelling each
CVM with a president cell simplifies the definition of per-
site security policies. It also separates low-level location
information from security polices, a structure well-suited
to mobile devices. We define a name lookup algorithm
which is more complete than the one given in [CEE�01]—
extended names can themselves contain extended names,
and all names can thus be treated uniformly in our architec-
ture. Our architecture for name service is more pervasive
than the distributed architecture proposed in SDSI/SPKI—
every cell has its own local names and can automatically
serve names to others. So while we don’t claim any par-
ticularly deep results in this paper, we believe the proposal
represents a simple, elegant approach that will work well
in practice.

Many features are left out of this brief description.
SDSI/SPKI principals that are not cells should be able
to interoperate with cell principals. Several features of
SDSI/SPKI and of cells are not modeled. We have not
given many details on how data sent across the network is
signed and encrypted.

The case of migrating cells is difficult and largely
skipped in the paper; currently cells migrate with their
private key, and a malicious host can co-opt such a cell.
There should never simultaneously be two cells with the
sameCID, but since the system is open and distributed it
could arise in practice. By makingCID’s significantly long
and being careful in random number generation, the odds
of accidentally generating the sameCID approach zero;
more problematic is when aCID is explicitly reused, ei-
ther by accident or through malicious intent. In this case a
protocol is needed to recognize and resolve this conflict, a
subject of future work.

References
[BFK99] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis.

KeyNote: Trust management for public-key infrastruc-
tures. InSecurity Protocols—6th International Workshop,
volume 1550 ofLecture Notes in Computer Science, pages
59–66. Springer-Verlag, 1999.

[BV01] Ciaran Bryce and Jan Vitek. The JavaSeal mobile agent
kernel. Autonomous Agents and Multi-Agent Systems,
4:359–384, 2001.

[CEEÕ01] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fre-
dette, Alexander Morcos, and Ronald L. Rivest. Certificate
chain discovery in SPKI/SDSI.Journal of Computer Se-
curity, pages 285–322, 2001.

[EFLÕ99] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian M. Thomas, and Tatu Ylonen. SPKI certifi-
cate theory. Internet Engineering Task Force RFC2693,
September 1999.ftp://ftp.isi.edu/in-notes/
rfc2693.txt .

[GJ00] Carl A. Gunter and Trevor Jim. Policy-directed cer-
tificate retrieval. Software - Practice and Experience,
30(15):1609–1640, 2000.

[GMPS97] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going beyond the sandbox: An overview of the new se-
curity architecture in the Java Development Kit 1.2. In
USENIX Symposium on Internet Technologies and Sys-
tems, pages 103–112, Monterey, CA, December 1997.

[HCCÕ98] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken. Implementing multiple protection domains
in Java. In1998 USENIX Annual Technical Conference,
pages 259–270, New Orleans, LA, 1998.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459: In-
ternet X.509 public key infrastructure certificate and CRL
profile, January 1999.ftp://ftp.internic.net/
rfc/rfc2459.txt .

[HK99] Michael Hicks and Angelos D. Keromytis. A Secure
PLAN. In Proceedings of the First International Work-
ing Conference on Active Networks (IWAN ’99), volume
1653, pages 307–314. Springer-Verlag, 1999.

[Lu02] Xiaoqi Lu. Report on the cell prototype project. (Internal
Report), March 2002.

[Mil] Mark Miller. The E programming language.http://
www.erights.org .

[OMG02] OMG. Corba security service specification, v1.8.
Technical report, Object Management Group, March
2002. http://www.omg.org/technology/
documents/formal/security_service.htm .

[RL96] Ronald L. Rivest and Butler Lampson. SDSI – A sim-
ple distributed security infrastructure, 1996.http://
theory.lcs.mit.edu/˜cis/sdsi.html .

[RS02] Ran Rinat and Scott Smith. Modular internet program-
ming with cells. InECOOP 2002, Lecture Notes in Com-
puter Science. Springer Verlag, 2002.http://www.
cs.jhu.edu/hog/cells .

[Szy98] Clemens Szyperski.Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-Wesley,
New York, NY, 1998.

[vDABW96] L. van Doorn, M. Abadi, M. Burrows, and E. Wobber. Se-
cure network objects. InIEEE Symposium on Security and
Privacy, May 1996.

