A Component Security Infrastructure

Yu David Liu Scott F. Smith
Department of Computer Science
The Johns Hopkins University
{yliu, scott @cs.jhu.edu

June 25, 2002

Abstract ture [RL96, EFLF99, CEEF01]. By building on top of an
existing security infrastructure we achieve two important
This paper defines a security infrastructure for access cgains: open standards developed by cryptographers are
trol at the component level of programming language deore likely to be correct than a new architecture made by
sign. Distributed components are an ideal place to defing and, a component security model built on SDSI/SPKI
and enforce significant security policies, because compyil allow the component security policies to involve other
nents are large entities that often define the political deumon-component SDSI/SPKI principals. We have chosen
aries of computation. Also, rather than building a securi8DSI/SPKI in particular because it is the simplest general
infrastructure from scratch, we build on a standard one, tinérastructure which has been proposed as an Internet stan-
SDSI/SPKI security architecture [EFI99]. dard. Other architectures which could also be used to se-
cure components include the PolicyMaker/KeyNote trust
management systems [BFK99], and the Query Certificate
1 Introduction Manager (QCM) extension [GJOO0]. The most widely used
PKI today, X.509 [HFPS99], is too hierarchical to secure
Today, the most widely used security libraries are loweahe peer-to-peer interactions that characterize comgenen
level network protocols, such as SSL, or Kerberos. Appli- Although we have found no direct precedent for our ap-
cations then need to build their own security policies basprbach, there is a significant body of related work. PLAN
on SSL or Kerberos. What this ends up doing in practi@®a language for active networks which effectively uses
is making the policy narrow and inflexible, limiting the dethe PolicyMaker/KeyNote security infrastructure [HK99];
sign space of the implementation and thus the final feat®eAN is not component-based. Several projects have gen-
set implemented for users. A component-level policy usralized the Java Applet model to support mobile untrusted
ing a security infrastructure, on the other hand, can batbhde [GMPS97, BV01, HCE€98]. These projects focus
(1) abstract away from keys and encryption to conceptsarf mobile code, however, and not on securing distributed
principal, certificate, and authorization; and, (2) alittracomponent connections; and, they do not use existing se-
away from packets and sockets to service invocations @urity infrastructures.
distributed components. This is the appropriate level of

abstraction for most application-level programming, atbmponents we informally characterize a software

creation of such an architecture is our goal. component. Our characterization here differs somewhat
It is well known that components [Szy98] are usefgtom the standard one [Szy98] in that we focus on the be-

units upon which to place security policies. But, whil@avior of distributed components atn-timesince that is

there has been quite a bit of recent research integrating\§Rat is relevant to dynamic access control.

curity into programming languages, little of this has been c ; 4 add bl i .

at the componentlevel. Industry has been making progres]S‘ omponents are hamed, addressable entities, running

: . e at a particular location (take this to be a machine and

securing components. The CORBA Security Specification N

[OMGO02] layers existing security concepts and protocols a process on that machine);

on top of CORBA. It is designed for interoperability be- 2. Components have services which can be invoked;

tween components using different existing protocols such o .

as Kerberos, SSL, etc, and not using a higher-level secu™ Components may be distributdds. services can be

rity architecture. Microsoft's DCOM uses a very simple invoked across the network;
ACL-based security layer. The above properties hold of the most widespread com-

In this paper we define a new component-layer securfignent systems today, namely CORBA, DCOM, and Jav-
model built on top of the SDSI/SPKI security infrastrucaBeans.

1.1 Fundamental Principles of Component
Security Chatter

We now define some principles we believe should be at
the core of secure component architectures. We implement
these principles in our model.

Principle 1.1 Each Component should be a principal in
the security infrastructure, with its own public/privateyk _@;gfﬂ“g"“‘
pai r. connector

This is the most fundamental principle. It allows access o

control decisions to be made directly between componerft§jure 1: Two Chatter cells communicating over the net-
not via proxies such as users, etc (but, users and organy¥@tk via Chat connector

tions should also be involved in access control policies).

Principle 1.2 As with other principals, components are . . : .
.) : allow for persistent connections. Persistent connections
known to outsiders by their public key.

can be made across the Internet. This is particularly good

Public keys also serve as universal component namf@$ security because a connection is secured at set-up, not

since all components should have unique public keys. UpOn every transaction. This is analogous to SSH: once
a secure session is in place, it can stay up for hours or

Principle 1.3 Components each have their own securgghys and perform many transactions without additional au-
namespace for addressing other components (and othigirization checks. See Figure 1 for an example of two
principals). Chatter cells which are connected across the Internet

. via a persisten€hat connection. They can communicate
By localizing namespaces to the component level, a moré : .
thesend andreceive operations.

eer-to-peer, robust architecture is obtained. Compsne))
P P P here is goresident celin charge of cells at each loca-

may also serve public names to outsiders. .)
tion. The president can veto any access request and revoke

Principle 1.4 Components may be private—if they are nény live connection at its location.

registered in nameservers, then since their public keys ardn this paper, we are not going to focus much on the cell-

not guessable, they are hidden from outsiders. specific aspects, so the paper can be viewed as a proposal
for a general component security architecture. The one

This principle introduces a capability-like layer in theyception is we do assume that each location has a single

architecture: a completely invisible component is & Sgresident cell which is in charge of all cells at that locafio

cured component. Capabilities are also being usedgRq even this assumption is not critical.

other programming-language-based security models [Mil\ye yse a simple, denotational model of cells here,

VDABWO6]. which suffices for definition of the security model. We
are currently implementing JCells, a modification of
1.2 The Cell Component Architecture Java which incorporates the cell component architecture

Lu
We are developing a security architecture for a particul[ar
distributed component languag€glls [RS02]. A brief

definition of cells is as follows. 1.3 The SDSI/SPKI Infrastructure
Cells are deployable containers of objects and We very briefly review the SDSI/SPKI architecture, and
code. They expose typed linking interfacesr(- give an overview of how we use it as a basis for the cell
nector§ that may import glugin) and export security architecture. _
(plugou) classes and operations. Viathese inter- ~ SDSI/SPKI is a peer-to-peer (P2P) architecture, a more

faces, cells may be dynamically linked and un- flexible format than the centralized X.509 PKI [HFPS99].
linked, locally or across the network. Standard Each SDSI/SPKbrincipal has a public/private key pair,
client-server style interfacesdrvice$ are also and optional additional information such as its locatiod an
provided for local or remote invocations. Cells servers from which its certificate may be retrievEertifi-
may be dynamically loaded, unloaded, copied, catesare information signed by principals; forms of certifi-
and moved. cate include principals (giving the public key and optional
information), group membership certificates (certifying a
So, cells have run-time services like DCOM angrincipal is a member of a certain group), aadtho-
CORBA components, but they also hasennectorghat rization certificatesauthorizing accesdName serversire

secure servers which map names (strings) to certificatesialization, and focus on the access control policies for
There is naa priori centralized structure to names—eactells. We will define cells € C and cell referencea €
server can have an arbitrary mapping. étended nameCR. First we define the public and private keys of a cell.

is a name which is a chain of name lookups; for instance

asking one name server for “Joe’s Sally” means to 108k2 Ce|| Identifiers CID and Locations LOC

up “Joe” on that name server, and then asking Joe’s name

server to look up “Sally”. Access control decisions can Hdl cells are uniquely identified by theicell identifier
based either on direct lookup in an ACL, or via prese&D.

tation of authorization certificates. In access control-deg)efinition 2.1 A cell identifier CID € CID is the pub-
sions using certificates, these certificates may be optiongt, key associated with a cell. A corresponding secret key
delegated and revoked. See [RL96, B9, CEE"01]for o7p—1 (¢ cID~?) is also held by each cell.

details.

We use SDSI/SPKI both for access control, and fapeCIDis globally unique since it must serve as the idep-
a name service which allows cells to learn about eall ojlcells. Al messages sent by? cell are signed by its
other securely. As mentioned above, each cell is reggw and th‘%s V_Vh'Ch will be, verifiable g'Ve_q tGD.
tered as a SDSI/SPKI principal, and can issue certificateél\/h?n a cell is first loaded, '@D and CID™" are au-
which fit the SDSI/SPKI format. Each cell can also sery@Matically generated. Over the lifecycle of a cell, these
SDSI/SPKI names. We currently don't generate certiff2!ues will not change regardiess of any future unloading,
cates using the precise S-expression syntax of SDSI/S R@’dmg, running, or m!grathg_the ceII_may undergo. Since
but the syntax is not an important issue (and, an xMpe CID is t_hys Iong-llvedl, it is senS|bI¢ to make access
format is probably preferred in any case). We incofontrol decisions based directly on cell identity.

porate SDSI/SPKI extended names, authorization certjfi,52¢h l0aded cell is running within a particular CVM.
cates, delegation, and revocation models. CVM'’s are located at network location€DC which can

be taken to be IP addresses.

2 Cells 2.3 Cell Denotations

In this section we give a denotational model of cells ate now define the denotation of a cell—each cels a

cell references (local or remote references to cells). EddfHictured collection of data including keys, certificates
cell has a public/private key and is thus a SDSI/SPKI priftc. We don’t define explicitly how cells evolve over time
cipal. The public key not only serves for security, it servé§nce that is not needed for the core security model defini-
to identify cells as no two cells should share a public kefion.

Definition 2.2 A cellc € C is defined as a tuple
2.1 The Cell Virtual Machine (CVM) c= (K, CertSTORE, SPT, NLT, BODY)

The Cell Virtual Machine (CVM) is where cells run, inyhere
analogy to Java's JVM. The CVM is responsible for tasks _ , . .
including cell loading, unloading, serializing, desdralg * K = (CID, CID™") are the cell's public and private
and execution. Each CVM is represented by a particular keys.
cell, called itspresident The president is a cell with extra e CertSTORE € CERTSET is the set of certificates
service interfaces and connectors to implement the CVM's held by the cell for purposes of access and delegation.
responsibilities. By reifying the CVM as a president cell, CERTSET is defined in Section 5.2 below.
our architecture can be homogeneously composed of cells. . . . ' .
It implicitly means CVM's are principals (identified by * SPT_ € SPT is the security policy table, defined in
their president cells), which allows for CVM-wide secu- Section 5 below.
rity policies. In composing security policies, the presile e NLT € NLT is the naming lookup table, defined in
cell serves as a more abstract notion of location than the Section 4 below.
network-protocol-dependent locations used in existing se
curity architectures such as Java’s. This separation of low®
level network protocols from the security architecture is
particularly well-suited to mobile devices: even if netkor
locations change from time to time, security policies can
stay the same. A cell environmentcenvt € CENVT is a snap-
For the purposes of defining the security architectushot of the state of all active cells in the universe:
a simple denotational model of cells suffices: we ignofENVT = {C C C | C finite and for anye;,co €
most of the run-time internals such as objects, classes @hdheir keys diffe.

BODY is the code body and internal state of the cell,
including class definitions, service interfaces, con-
nectors, and its objects. We treat this as abstract in
this presentation.

Name CID CVM LOC
24 Ce” References PtnrB 3...1| 8...1 | bbb.biz

cvM1 | 7...5| 7...5 | aaabiz

Cells holdcell referencescr, to other cells they wish to

. . Table 1a

interact with. Structurally, a cell reference corresponds -

to a SDSI/SPKI principal certificate, including the cell's I Name I e Namei

CID and possible location information. This alignment Table 1b

of SDSI/SPKI principal certificates with cell references N

. : ame Group Members

is an important and fundamental aspect of our use of the {CR(CID=3...1, CVM=8...1, LOCBEbb.biz),

SDSI/SPKI architecture. In an implementation, cell refer- | PtGrm Fc”\mm}
ences will likely also contain cached information for fast
direct access to cells, but we ignore that aspect here.

Table 1c

o]] Table 1: Naming Lookup Table for Chief Trader Cell
Definition 2.3 A cell referencecr € CR is defined as a

tuple Name CID [CVM | LOC
_ Ptk 41097 Kkkbiz
cr = (CID ey, CID post, LOC host) ChiefTrader 1...3| 6...5 | chieftrader.biz

whereCID...; is the CID of the referenced cell’IDy, ¢
is the CID of the CVM president cell where the referenced
cell is located; LOC},4; is the physical location of the
CVM where the referenced cell is locatedcifreferstoa The major functionalities of Chief Trader are shown
CVM president cellCID ..y = CID post- above. In service interfacdQuery , getQuote

takes the merchandise number and the category (pro-
Allinteractions with cells by outsiders are through ceft re otion/adult’s/children’s book) and returns the quote;
erences; the information ier can serve as a universal regggrch accepts an SQL statement and returns all mer-
source locator for cells since it includes the physicaliocgnandise satisfying the SQL query. The Chief Trader cell
tion and CVM in which the cell is running. also has aiTrade connector, which fulffills transactions
with its business partners. Inside getEndorse is a
plugin operation that needs to be implemented by the in-
voking cell, which endorses transactions to ensure non-
repudiation.

Our infrastructure has the following features.

Table 2: Naming Lookup Table for Business A Cell

Definition 2.4 REF2CELL is defined as follows: If
cenvt € CENVT andc¢r € CR, REF2CELL(cenvt,cr)
returns the celk which er refers to.

3 An Example _ _ o
Non-Universal Names Cells can be universally identi-
In this section we informally introduce our security archfied by theirCID’s. However, other forms of name are
tecture with an example modeled on a B2B (Business-ftgcessary to facilitate name sharing, including sharing by
Business) system such as a bookstore that trades onliifed name spaces, described below. Instead of assuming
with multiple business partners. the existence of global name servers, each cell contains a
In our example, there is a “Chief Trader” business thightweight Naming Lookup TabIléNLT), interpreting lo-
communicates with its trading partners Business A, Busial names it cares about, and only those it cares about; ex-

ness B, and Business M, all of which are encapsulatedgasseN| T's are given in Tables 1, 2, and 3. ALT entry
cells. Also, Business A has a partner Business K which Is .)
ps a local name into one of three forms of value:a cell

not a partner of the Chief Trader. Fig. 2 shows the layoti \
of the cells and the CVM president cells that hold therfeference, extended name, or group. SoNaf is three
CID’s are large numbers and for conciseness here we abb-tables for each sort; the three sub-tables for the Chief

breviate them as e.g. 4...9, hiding the middle digits. Thgader are given in Figures 1a, 1b, and 1c, respectively.
source code for the Chief Trader has the following JCells Figure 1a, a local name is mapped to a cell reference

code, which is more or less straightforward. er = (CIDut, CIDpost, LOCnos): the cell with CID

cell ChiefTrader { 3...1 running on a CVM orbbb.biz with president
S unle getuote(int No. String cate): cell CID8..1 is namedPtnrB in the Chief Trader's
List search(String condition); namespace. In Figure 1b, a map from local namesxto
connector ITrade { te_nded nameg defined, sgrving_ as an abbreviation.. In
plugouts{ N Figure 1c a grouPtnrGrp is defined. We now describe
) boolean makeTrans(Tradeinfo t); the meaning of these extended name and group name en-
plugins{ tries.

EndorseClass getEndorse();

}
J . Extended Names Although names are local, names-
/* ... cell body here ... */

} paces of multiple cells can be linked together as a pow-

Business A Cell
CID:1.9

CVM 0
CID: 6.5
Location: chieftrader.biz

Business M Cell
CID:8.3

) 7ZID : 8.1
Location: aaa¥jz Location: bbb.biz

Business K Cell

Legend: CVM 3 CID :4..1

L. CID:9.7
A —# B :Aissituatedon B Location: kkkbiz

Figure 2: Example: A B2B System Across the Internet

AL LGN e N e L, = A of its IQuery service can be invoked by any member in
M 8...3 | thiscid localhost groupPtnrGrp ; the second entry in the table indicates
Chief | 1.3]6.5 chieftrader biz thatPtnrA can invoke any operation of itQuery ser-

Table 3: Naming Lookup Table for CVM 1 President CeNice; the third entry indicateBtnrA can also connect to
' its ITrade connector.

erful scheme to refer to other cells across cell boundaries;

we just ran into an exampleClVM1 A] in Table 1c. This yooks Security decisions can also be made contingent
refersto a cellnamedin t_he namespace of the cell name_gn the parameters passed in to an operation. This mech-
CVM1from the perspective of the namespace of the Chiglism is called ook and provides access control at a
Trader cell itself. Extended names make it possible fokiger level of granularity. The fourth entry of Table 4 has
cell to interact with other cells whos&iD and location in- 5 pookh1 attached, which declares that thetQuote
formation is not directly known: the Chief Trader cell doe@peration ofiQuery service in the Chief Trader cell can
not directly keep track of th€ID and location of Businessye invoked byPtnrB only if the second parameter pro-

A, but still has a name for it aBtnrA and the two can y;qed is equal tgromotion , meaning only promotion
communicate. Extended names also help keep the sizg @k chandise can be quoted BB .

naming information on any individual cell small.

Cell Groups Our system supports the definition Ofgjegation Delegation solves the problem of how two
cell groups. The ability to define groups greatly easgg)is naware of each other can interact effectively. For in
the feasibility of defining security policies: policiegance Business K is not a partner of the Chief Trader, but
can be group-based and need not be updated for &4 it is a partner of Business A (a partner of the Chief
ery single cell. Table 1c defines a grouptnr- Trader), it is reasonable for Business K to conduct busi-
Grp with three members. Group members can be gagg with the Chief Trader. According to Table 4, Busi-
rect cell referencesQR(CID=3...1, CVM=8...1, ness A (namedtnrA in the name space of the Chief
LOC=bbb.biz) '), local names RInrA), extended raqer cell) can have access to figuery interface of
names [CVM1,M]), or other sub-groups. This flexibility\ne chief Trader, but business K can not. However, the
allows appropriate groups to be easily defined. Chief Trader has left the delegation bddlbit) of that
entry tol, which means any partner with this access right
Access Control The security policy defines how re-can delegate it to others. Table 5 shows Business As se-
sources should be protected. The units of cell protemsrity policy table; it defines a delegation policy whereby
tion include services, connectors and operations. EachrantsPtnrK a certificate for thdQuery service of
cell contains asecurity policy tablewhich specifies the the Chief Trader cell. Thus cell K can invoke tliguery
precise access control policy. Table 4 gives the Chirvice using this delegation certificate, even though the
Trader’s security policy table. Here, operatissarch Chief Trader cell does not directly know Business K.

Subject Resource Accessright | Hook Delbit
PtnrGrp (thiscell ,IQuery.search) invoke NULL | O
PtnrA (thiscell , IQuery) invoke NULL | 1
PtnrA (thiscell ,ITrade) connect NULL | O
PtnrB (thiscell ,IQuery.getQuote) | invoke h1** 0

** hi(argl, arg2) {arg2= “promotion”}

Table 4: Security Policy Table for Chief Trader

[Subject [Resource [Accessright] Hook [Delbit |
| PtnrK_ | {ChiefTrader ,1Query) [invoke | NULL [0 |

Table 5: Security Policy Table for Business A

4 Name Services Definition 4.3 Given a spac&/ = CR U G U Ngxr of

values,
Name services are needed to find cells for which a cell

referenceer is lacking. The example of Section 3 gave 1+ €ach naming lookup enti/LE € _N]UE is a tuple
several examples of name service in action. NLE = (n,v) forn € Nandv € V;

2. a naming lookup tableVLT € NLT is a set of
4.1 Names and Groups naming lookup entriesNLT C NLE such that for

Ny, V;1),{ng,ve) € NLT, n na.
The Cell naming scheme uses the decentralized extended (n1,v1), (nz, ve) 1 # M2

naming scheme of SPKI/SDSI [CER1]. In contrastwith An example illuminating this definition can be found in
global naming schemes such as DNS and X.509 whdgble 1 of Section 3GET_VALUE(NLT, n) is a partial
global name servers are assumed, decentralized nanfiifigtion which looks up the value of in tableNLT, and
more reflects the nature of the Internet, for which Cells ageundefined for names with no mapping.
designed. Each and every cell can serve as an independed, the JCells language, the naming lookup table is main-
light-weight SDSI/SPKI naming server, so name servicetRined by an interfactélaming presenton all cells, which
pervasively distributed. contains the operations for both looking up and modifying
The set of local names are strings € N. Local name lookup table information. Data in the naming lookup
names map to cell references, cell extended names, t&fde can only be located or modified \ldaming . The
cell groups. most important operation iiNaming is lookup , which
The extended name mechanism, illustrated in the exafte now specify. Group membership is another important
ple, enables a cell to refer to other cells through a chainajieration which we leave out of this short version.
cross-cell name lookups.

Definition 4.1 An extended name.,:(€ Ngxr) is a se- 4.3 Name LOOkUp

quence of local namesy , m, - . ., m]- Thelookup (cenvtng, Crs) Operation, defined in Fig.
Eachn;y, is a local name defined in the name space of tRe/00ks up an extended name;;, starting from the nam-
cell n;. ing lookup table of the current cell which has reference

SDSI/SPKI groups are represented as a name bindffigr+» and returns the final cell reference that, refers
bers. Group members are themselves local names, wifigignded name lookup, the operation is parameterized by
can in turn be mapped to cells or sub-groups. The owrg¢ global cell environmerdenvt A simple local name is

of the group is the cell holding the local name. i‘SPeCial case of an extended name WENGTH(7.4:) =
Definition 4.2 The set of group& is defined asG = The first case inookupl is when the name is not an
POWER(CR UNgxr). extended name: the valuein the NLT is directly re-

turned. The second case is for an extended name, and the
4.2 The Naming Lookup Table and Naming pext element of the extended name m_ust be looked up us-
Interface ing cellv's nameserver. The last case is where the value is
an extended name itself.
Local name bindings are stored imaming lookup table The above algorithm does not define how the com-
NLT. Every cell (including presidents) holds such a tablputation is distributed; to be clear, given an invocation
defining how local names relevant to it are mapped to cdd®kup on a cell, the only parts involving distributed in-
and groups. teraction areREF2CELL and GET _VALUE, which in

lookupl (cenvt ne.:, cr, pathse}f =
let [n1, N2y eny ’fLs] = MNeat,
(K, _, -, NLT,) = REF2CELIl(cenvt,cr),
(CID, CID_;) = K in
if (CID, n,) € pathsethen raise error;
let pathset= pathsetu {(CID, n1)} in
v = GET_VALUE(NLT, n1) in
casev € CR andLENGTH (next) = 1: v
casev € CR andLENGTH (nest) > 1: lookupl (cenvi[na, ..., ns], v, pathse}
casev € Ngxr: let cr’ = lookupl (cenwt, v, cr, pathse} in
lookupl (cenuvt,[na,...,ns], cr’, pathse}
otherwise raise error
lookup (Cenvt meq:, cr) =lookupl (cenvi ries:, Cr, @)

Figure 3: Definition ofookup

combination locate another cell, look up a name from it2. The set of resourcé = (Q, U), where
and immediately return the value, be it a cell reference or

extended name, to the initial invoker; all recursive calls t e O = Ngxr U {thiscell} is the set of re-
lookupl are local. source owners, with hi scel | denoting the
Compared with SDSI/SPKI [CEED1], our algorithm cell holding the security policy itself.

is more general since it allows arbitary expansion of local
names (the third case in the algorithm). For example, “Sal-
lie’s Joe’s Pete” could in the process of resolution return a
extended name for “Joe” on Sally as “Sam’s Joe”, which
then must be resolved before “Pete” can be looked up on . : i . .
it; [CEET01] will not resolve such names. However, this A partial orqleﬁy is defined on protectpn uniteq Su
more general form is expressive enough that cyclic nan&%‘s'f an_d only ifuy IS subsumed by.,; details are omitted
are possible (e.g. “Sallie’s Joe” maps to the extended na this short version. , ,
“Sallie’s Joe's Fred”) and a simple cycle detection algo- ACCeSS rights aré = {invoke ,connect }, where if
rithm must be used to avoid infinite computation. The cj-€ CNT, a will be connect , and ifu € SRV U OP, a
cle detection algorithm used in Fig. 3 is as follows. Thll be invoke .

lookup function maintains a sqiathsetof each recur-

sivelookup name this initial request induces; if the samiefinition 5.2 A security policy entrype € SPEis a tu-
naming lookup entry is requested twice, a cycle is flaggele spe = (s,r, a, h, d), meaning access right to re-
and the algorithm aborted. A cycle can only be inducgé@urcer can be granted to subjest if it passes the secu-
in the third case (local name expansion), where the aldtly hookh. This access right can be further delegated if
rithm divides the lookup process into two subtrees. Siniseset to 1. Specifically, we require

there are only finitely many expansion entries possible, the

algorithm always terminates. eseS,reRacA

¢ U = SRV U CNT U QP is the set of protec-
tion units, which can be a cell service interface,
connector, or operation, respectively.

e h € His an optional security hook, a predicate which
5 Access Control may perform arbitrary checking before access rights
are granted (details are in Section 5.1 below). It is
Access control decisions in the cell security architecture € unlessr = (o, u), o = thi scel | and« € OP.
are based on the SDSI/SPKI model, specialized to the par- The set of security hooks that is associated with oper-
ticular resources provided by cells. Each cell has associ- ationop € OP is denoted, .
ated with it asecurity policy tablewhich declares what
subjectshave access to whagsourcesof the cell. This ® d € D = {0,1} is the delegation bit as per the
is an “object-based” use of SDSI/SPKl—every cell is re- SDSI/SPKI architecture. It defines how the access
sponsible for controlling access to its resources. rights can be further delegated, detailed in Section
5.2 below.
Definition 5.1 1. The set of subjectS = Ngxr U
{ALL}: Subjects are extended names for cells or The Security policy table is then a set of security poli-
groups, orALL which denotes any subject. cies held by a cellSPT € SPT = POW ER(SPE).

5.1 Security Hooks In this definition, CID; is the CID of revocation certifi-

h | gel ab . ioh cate issuer cellCIDp is the cell which earlier received
e access control model above restricts access rig t%r’ioauthorization certificate from the issuer cell but whose

cell connectors and service interfaces based on requegkisicate is now going to be revoke@IDy, is the CID

?ng principals._ However, more expressivengss is nee esource owner celyj is the resource unit; and, is the

in some situations. One obvious example is local name a5 right to be revoked. The set of certificates is defined
entries: How can one protect a single local name ent CRRTSET — POW ER(AUTHC U REVOC)

1., one particular invocation dbokup ? Currentty, we Support for delegation is reflected in the definition of a

have a naming interface defined (see Section 4.2), g%urity policy entrySPE: a delegation bit] is included.

complztel)é pr?;ectlng operatlolxnok;p IS too tcogrsg— This bit is set to permit the authorized requester cell to
grained. For Nese cases we Need a paramelerized Sefiq, delegate the access rights to other cells. Cells can

rity pOI'CYE’ n Wh'cg tthe policy |st_based :)on ;he pargculaaeﬁne delegation security policies by composing security
arguments passed 1o an operation suclbasup . Se- olicy entries for resources they do not own. This kind

curity hooks are designed to fill this need. Hooks can E?entry takes the forngs, (o, u), a, NULL, d), with o %

!mplemen.ted n prac.t|-ce ¢|ther as JCells code or W”ttﬁﬁ]scell . This denotes that aAuthC' granting access
in some simple specification language; here we abstract

. . . a0 u of o can be issued if the requestersis Notice
view them as predicates. The set of security hoblks security hooks are meaningless in this case.

contains verifying predicates that are being checked Wher:ll_he delegation proceeds as follows: suppose that on the

the associated operatiop is triggered. resource cell side there is a security policy endpy =
Definition 5.3 Given security policy entryspe = (s;(thiscell ., u),a,h,1); cell s will be granted an
(s,(0,0p), a, hop, d), @ hoOKh,, € H,, is a predicate AuthC if it requests accessto unitu on the resource ceII..
Cells holdingAuthC can define their own security poli-
Bop (V15 0, U cies on how to further delegate the access rights to a third
party, issuing anothed uthC', together with the certificate
wherev, , 1, ...v,, are operationop parameters, and eachpassed from its own delegating source. This propagation
v; € VAL, for VAL an abstract set of values which in<an iterate. Cells automatically accumulate “their” pife o
cludes cell references along with integers and strings. authorization certificates from such requests, in their own
CertSTORE. When finally access to the resource is at-
Access control security hooks are checked right before tampted, the requestor presents a chaintofhC which
vocation of the associated operation, and the invocatig resource cell will check to determine if the access right

can happen only if the security hook returns true. should be granted. Existence of a certificate chain is de-
fined by predicateE XISTS_CERTCHAIN, see Fig. 4.
5.2 Delegation In the definition, operato€EOUNTERPARTMaps autho-

rization certificates to their corresponding revocatior ce
We use the SPKI/SDSI delegation model to support dettficate, and vice-versaBs in Figure 4 checks revocation
gation in cell access control. A subject wishing accessdertificates: if some cell revokes tieithCit issued ear-
a cell’s resource can present a collection of certificates #wr, it sends a correspondifgvoCto the resource owner.
thorizing access to that cell. And, revocation certificatyghen any cell makes a request to the resource and presents
can nullify authorization certificates. a series oAuthG the resource holder will also check if any

" o . RevoCmatches thé&uthC
Definition 5.4 An authorization certificateAuthC €

AUTHC is a signed tuple
5.3 isPermtted: The Access Control De-
AuthC = <CID[, CIDD, CIDR, u,a, d) C|s|0n

whereCIDy is the CID of certificate issuer cellCIDp is Each cell in JCells has a built-in security interfd&e-

the CID of the cell being delegated?ID g is the CID of curity , which contains a series of security-sensitive op-

resource owner celly is the resource unity is the access erations. The most important isPermitted (see

right to be delegated; d is the delegation bit: if 1, the celtig. 5), which checks if access right.,(€ A) to re-

specified byCID p can further delegate the authorizatiorsource unitu,.,(€ U) can be granted to subject,., (€

to other cells. CR). If u.eq € QP, a list of arguments are provided
by arglist,., (€ ARGLIST) for possible checking by a

Definition 5.5 A revocation certificate RevoC' € hook. A set of authorization certificateSertSet,, (€

REVQOC is a signed tuple CERTSET) may also be provided. The cell performing
the check ixr (€ CR). The environment for all active

RevoC = (CIDy, CIDp, CIDg, u, a) cells iscenvie CENVT).

EXISTSCERTCHAINCeNVt Crepk, Clreq, Ureq, @req, CEMSeleq)=
let (C|Dchk, t1, tz) =Clehk in
let (CIDyeq, t1,t2) = Clyeq in
let (t;, CertSTORE,, t2, ts, ta) = REF2CELI(cenvi Crepg) in
case B andB; andBs : (CIDg, , Uk, , @req)
otherwisee
where
B; = JAuthy, ...Auth, € CertSeteq with

Authy = (CIDcpk, CIDg,, {CIDchrk, Ugy), Breqs 1)
Autl“g = (C|Dk1,C|Dk2, (CIDchk,ukz),ameq, 1)

Auth, = (CIDkn—1) CIDT@(I: (ClDChk: ukn)’ Qreq, d) (d € {05 1})

B2 =Ui, <u Uk, _q o Su Uk,
Bs =Vauth € {Authl, . AUthn}, COUNTERPAR(I'auth) ¢ CertSTORE, &

Figure 4: Definition oEXISTSCERTCHAIN

isPermitted (CenvtCryeg, Ureq; req, arglistreq, CertSeteq, Clepk) =
let (CIDyeg, t1,t2) = Crpeq iN
let (t1, t2, SPTak, ts, t4) = REF2CELLlcenvt crepg) in
(3(s,(o,u), a, h,d) € SPT1x. B1 and B and B; and By)
or
lett = EXISTSCERTCHAINCENV Clenk, Clregs Ureqs 8req, CertSeteq) in
let (CID;eq, Ureq, 8req) = tfOrt # ein
(3(s, (o, u}, a,h,d) € SPT.nx. B1 and By and Bs and By)
where
B: = (a= areq)
B, = (o =thiscell) and (Ureq <u U)
Ba =
caseISGROUP(cenvts): isMember (cenviCryeq, S, Cleni)
caselSCELL(cenvis):
let (CIDg, ClDpost, ; LOChost,) = loOkup (cenvis,crepg) in (CIDs = CIDyeq)
B4 = h(arglist,) whereu,., € OP

Figure 5: Definition ofisPermitted

isPermitted grants access either if there is a diehitecture to give a general component security architec-
rect entry in the security policy table granting access, wre. Particularly satisfying is how components can serve
if proper authorization certificates are presented. The fies principals, and how SDSI/SPKI naming gives a se-
or case checks if there is directly an entry in the securityre component naming system. We believe this infras-
policy table granting access. If authorization certifisatéructure represents a good compromise between simplicity
are provided together with the request (secondase), and expressivity. Very simple architectures which have no
permission will be granted if these certificates form a valakplicit access control or naming structures built-in lack
delegation chain, and the first certificate of the chain ctre ability to express policies directly and so application
be verified to be in the security policy tablB; matches would need to create their own policies. More complex
the access righB, matches the resourcBz matches the architectures such as trust management systems [BFK99]
subjects, which is complicated by the case a subject isr@ difficult for everyday programmers to understand and
group; and3, checks the security hook if any. thus may lead to more security holes.
Beyond our idea to use SDSI/SPKI for a peer-to-peer
. component security infrastructure, this paper makes sev-
6 Conclusions eral other contributions. We define four principles of com-
ponent security, including the principle that components
In this paper we have shown how the SDSI/SPKI infraiemselves should be principals. An implementation as-
tructure can be elegantly grafted onto a component pect developed here is tleell reference the public key

plus location information is the necessary and sufficieiaioo] Carl A. Gunter and Trevor Jim. Policy-directed cer-
data to interact with a cell. This notion combines pro- tificate retrieval. Software - Practice and Experience
gramming language implementation needs with security 30(15):1609-1640, 2000.

needs: the cell needs to be accessed, and information $g4PS97] L. Gong, M. Mueller, H. Prafulichandra, and R. Sulees.

. . . Going beyond the sandbox: An overview of the new se-
posedly from it needs to be authenticated. Modelling each curity architecture in the Java Development Kit 1.2. In

CVM with a president cell simplifies the definition of per- USENIX Symposium on Internet Technologies and Sys-
site security policies. It also separates low-level |aarati tems pages 103-112, Monterey, CA, December 1997.
information from security polices, a structure well-sditefHCC*t98] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and
to mobile devices. We define a name lookup algorithm T. von Eicken. Implementing multiple protection domains

which is more Complete than the one given in [GEH]— in Java. In1998 USENIX Annual Technical Conference

; pages 259-270, New Orleans, LA, 1998.
extended names can themselves contain extended names
d all names can thus be treated uniformly in our archité'?:ﬁpsgg] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459 |
anda Yy ternet X.509 public key infrastructure certificate and CRL

ture. Our architecture for name service is more pervasive profile, January 1999ftp://ftp.internic.net/

than the distributed architecture proposed in SDSI/SPKI— rfc/rfc2459.txt

every cell has its own local names and can automaticghy99] Michael Hicks and Angelos D. Keromytis. A Secure
serve names to others. So while we don’t claim any par- PLAN. In Proceedings of the First International Work-

ing Conference on Active Networks (IWAN '99plume

ticularly deep results in this paper, we believe the proposa 1653, pages 307-314. Springer-Verlag, 1999,

represents a simple, elegant approach that will work well
. P ti P 9 PP ﬁ.uOZ] Xiaoqgi Lu. Report on the cell prototype project. @mbal
In practce.)) o Report), March 2002.

Many featu_res_ are left out of this brief descriptio Mil] Mark Miller. The E programming languagehttp:/
SDSI/SPKI principals that are not cells should be able www.erights.org
to interoperate with cell principals. Several features ffyico2; oM. Corba security service specification, V1.8
SDSI/SPKI and of cells are not modeled. We have not Technical report, Object Management Group, March
given many details on how data sent across the network is 2002. http://www.omg.org/technology/

signed and encrypted. documents/formal/security_service.htm

The case of migrating cells is difficult and largelyR-96] sg”;'gtr'i-su?e“éeztef:r‘i’tyBi‘;tf're;s't-ri';‘tﬁfg”-1 9333:3_7/'“9’"'
sk_|pped in the paper; _c_urrently cells migrate with their theory.Ics.mit.edurcis/sdsi.html
private key, and a malicious host can co-opt such a c

. . 02] Ran Rinat and Scott Smith. Modular internet program-
There should never S|multaneogsly be two ce_lls _W|th the ming with cells. INECOOP 2002Lecture Notes in Com-
sameCID, but since the system is open and distributed it puter Science. Springer Verlag, 200ttp://www.
could arise in practice. By makir@lD’s significantly long cs.jhu.edu/hog/cells
and being careful in random number generation, the od&iz/98] Clemens Szyperskiomponent Software: Beyond Object-
of accidentally generating the sardD approach zero: Oriented ProgrammingACM Press and Addison-Wesley,

.. . . . New York, NY, 1998.
more problematic is when @ID is explicitly reused, ei- _
EIVRABW%] L. van Doorn, M. Abadi, M. Burrows, and E. WobbereS

ther by accident or through malicious intent. In this cas ; . .

. . . . cure network objects. IlEEE Symposium on Security and
protocol is needed to recognize and resolve this conflict, a Privacy, May 1996.
subject of future work.

References

[BFK99] Matt Blaze, Joan Feigenbaum, and Angelos D. Kerdgnyt
KeyNote: Trust management for public-key infrastruc-
tures. InSecurity Protocols—6th International Workshop
volume 1550 ot ecture Notes in Computer Scienpages
59-66. Springer-Verlag, 1999.

[BVO1] Ciaran Bryce and Jan Vitek. The JavaSeal mobile agent
kernel. Autonomous Agents and Multi-Agent Systems
4:359-384, 2001.

[CEET01] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fre
dette, Alexander Morcos, and Ronald L. Rivest. Certificate
chain discovery in SPKI/SDSIJournal of Computer Se-
curity, pages 285-322, 2001.

[EFLT99] cCarl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest
Brian M. Thomas, and Tatu Ylonen. SPKI certifi-
cate theory. Internet Engineering Task Force RFC2693,
September 1999tp://ftp.isi.edu/in-notes/
rfc2693.txt

