
Abstract
The StackGuard compiler provides robust

automatic protection against the all-too-com-
mon problem of stack smashing vulnerabili-
ties. However, this protection is only provided
for programs and libraries that are re-compiled
with StackGuard. Thus protecting an entire
system requires that all potentially vulnerable
programs be re-compiled to assure that an
attacker cannot exploit a stack smashing vul-
nerability to gain privilege on the system. This
paper describes securing a Linux distribution
against stack smashing attacks by re-compil-
ing all of the C software from source code
using the StackGuard compiler. We present
our experience re-compiling 526 packages
from source code, and our experience deploy-
ing and using the resultant system.

1 Introduction
StackGuard is an extension togcc that provides an
integrity check for function call activation records,
making programs largely immune to stack smashing
attacks [5]. This paper describes our experiences pro-
tecting an entire host system by re-compiling all
potentially vulnerable programs with StackGuard.
This form of protection is necessary because of the
broad proliferation of stack smashing vulnerabilities.
Since the Morris Worm first illustrated stack smash-
ing [25] literally thousands of buffer overflow vulner-
abilities have been discovered in security-sensitive
code, and continue to be discovered to this day:

Buffer overflows appear to be the most com-
mon problems reported in May, with degrada-
tion-of-service problems a distant second.
Many of the buffer overflow problems are
probably the result of careless programming,
and could have been found and corrected by the
vendors, before releasing the software, if the
vendors had performed elementary testing or
code reviews along the way.[6]

The base problem is that, while individual buffer
overflow vulnerabilities are simple to patch, the vul-
nerabilities are profligate. Millions of lines of legacy
code are still running as privileged daemons (root)
that contain numerous software errors. New programs
may be built with more care, but are often still written
in unsafe languages such as C, where simple errors
can leave serious vulnerabilities.

The continued success of these attacks is also due
to the “patchy” way we protect against such attacks.
In the life cycle of a buffer overflow attack a (mali-
cious) user discovers the vulnerability in a highly
privileged program and someone else implements a
patch to defend againstthat particular attack, on that
privileged program. Fixes to buffer overflow attacks
attempt to solve the problem at the source (the vulner-
able program) instead of at the destination (the stack
being overflowed).

To escape this cycle, some groups have under-
taken a systematic audit of their source code to look
for potential security vulnerabilities, including stack
smashing vulnerabilities [7]. However, such work is
expensive, and rarely appreciated by customers [4], so
few have followed this laudable path, as evidenced by
the appearance of a new stack smashing vulnerability
in the 2nd and 3rd releases of Microsoft’s Internet
Explorer version 4. Code audits are also not necessar-
ily totally effective, in that a subtle stack smashing
vulnerability was discovered in thelprm utility after
it had been audited for vulnerabilities [13].

StackGuard was developed to address these prob-
lems: programs compiled with StackGuard are largely
immune to stack smashing attacks. However, effec-
tively protecting asystemrequires thatall security
sensitive programs be compiled with StackGuard.
This paper describes our experience doing a complete
re-build of all the programs and all the shared libraries
in a Linux distribution [12]. By re-compiling all of the
programs in a distribution, we can ensure that all of
the programs that run asroot (either because they
are setuid root , or becauseroot runs them
directly) are protected by StackGuard.

Section 2 describes stack smashing attacks. Sec-
tion 3 reviews the StackGuard defense against stack

Protecting Systems from Stack Smashing Attacks with StackGuard
Crispin Cowan, Steve Beattie, Ryan Finnin Day,

Calton Pu, Perry Wagle, and Erik Walthinsen
Department of Computer Science and Engineering

Oregon Graduate Institute of Science& Technology
(crispin@cse.ogi.edu)

http://www.cse.ogi.edu/DISC/projects/immunix

This work supported by DARPA grant F30602-96-1-0331.

smashing attacks. Section 4 presents the procedure for
re-building the large set of packages in a Linux distri-
bution. Section 5 describes the impact of StackGuard
protection on the system’s operation. Section 6 dis-
cusses the effective protection provided by these
efforts. Section 7 covers related work. Section 8 dis-
cusses the availability of a StackGuard-protected
Linux distribution. Finally, Section 9 presents our
conclusions.

2 Stack Smashing Attack
Buffer overflow attacks exploit a lack of bounds
checking on the size of input being stored in a buffer
array. By writing datapast the end of an allocated
array, the attacker can make arbitrary changes to pro-
gram state stored adjacent to the array. By far, the
most common data structure to corrupt in this fashion
is the stack, called a “stack smashing attack,” which
we briefly describe here, and is described at length
elsewhere [20, 21, 23].

Many C programs have buffer overflow vulnera-
bilities, both because the C language lacks array
bounds checking, and because the C programmers
culture encourages a performance-oriented style that
avoids error checking [18, 17]. For instance, many
standard C library functions such asgets and
strcpy do not do bounds checking.

The common form of buffer overflow exploitation
is to attack buffers allocated on the stack. The attacker
has two mutually dependent goals, illustrated in Fig-
ure 1 :

Inject Attack Code: The attacker provides an input
string that contains executable, binary code for the
machine being attacked. This code typically does
something simple such asexec(“sh”) to pro-
duce aroot shell.

Change the Return Address: There is a stack frame
for a currently active function above the stack
buffer being attacked. The buffer overflow
changes the return address to point to the attack
code. When the function returns, instead of jump-
ing back to where it was called from, it jumps to
the attack code.

The programs that are attacked using this tech-
nique are usually privileged daemons; programs run
under theroot user-ID. The injected attack code is
usually a short sequence of instructions that spawns a
shell, also under the user-ID ofroot . The effect is to
give the attacker a shell withroot ’s privileges.

If the program input is provided locally, then this
class of vulnerability may allow any user with a local
account to becomeroot . If the program input comes
from a network connection, this class of vulnerability
may allow any user anywhere on the network the abil-
ity to becomeroot on the local host. Thus while new
instances of this class of attack are not intellectually
interesting, they are none the less critical to practical
system security.

Often the attacks are based on reverse-engineering
the attacked program to determine the exact offset
from the buffer to the return address in the stack
frame, and the offset from the return address to the
injected attack code. However, the reverse-engineer-
ing has been reduced to a cook book [21]:

• The location of the return address can be approxi-
mated by simply repeating the desired return
address several times in the approximate region of
the return address.

• The offset to the attack code can be approximated
by prepending the attack code with someNOP
instructions. The overwritten return address need
only jump into the middle of the field ofNOPs to
hit the target.

Cook-book descriptions of stack smashing attacks
[20, 21, 23] have made building buffer-overflow
exploits easy. The only remaining work for a would-
be attacker is to find a poorly protected buffer in a
privileged program, and construct an exploit. Hun-
dreds of such exploits have been reported in recent
years [6].

The implication for system administrators is that
theymustkeep up with system patches. When a stack
smashing vulnerability is announced, it is very shortly
followed by “script kids” trying out their new toy on
various hosts to see who has and has not deployed a
patch. This has the effect of turning patches and
upgrades from a casual “when it’s convenient” task
into an urgent task. StackGuard’s goal is to make
these patches less urgent.

Attack
code

return
address

Local
variables

buffer

FFFF

0000

Stack
Growth

String
Growth

Figure 1: Stack Smashing Attack

3 StackGuard Defense
StackGuard is a compiler enhancement to protect pro-
grams against stack smashing attacks [5, 3]. The
StackGuard code generator produces programs that
defend themselves against stack smashing attack by
doing integrity checks on the stack prior to returning
from function calls. Section 3.1 briefly recounts the
StackGuard integrity checking mechanism, and Sec-
tion 3.2 describes some recent advances in the Stack-
Guard mechanism.

3.1 StackGuard Integrity Check for
Activation Records

StackGuard seeks not to prevent stack smashing
attacks from occurring at all, but rather to prevent the
victim program from executing the attacker’s injected
code. StackGuard does this by detecting that the
return address has been alteredbefore the function
returns. The detection method is to place a “canary”1

word next to the return address on the stack, as shown
in Figure 2. When the function returns, it first checks
to see that the canary word is intact before jumping to
the address pointed to by the return address word.

Inspecting for the canary word checks the integrity
of the stack for stack smashing attacks. Because the
attacker’s tool in stack smashing is a sequential byte
copy caused by a buffer overflow, inspecting the word
immediately below the return address is sufficient to
detect tampering with the return address. To prevent
the attacker from guessing the canary value and plac-
ing it in the canary word’s location during the buffer
overflow, the canary value is a 32-bit random number
chosen at the time the program starts.

The StackGuard implementation is avery simple
patch to gcc 2.7.2.3 [26]. The gcc

1.A direct descendent of the Welsh miner’s canary.

function_prologue and
function_epilogue functions have been altered
to emit code to place and check canary words. The
changes are architecture-specific (in our case,i386),
but since the total changes to thegcc code generator
are under 100 lines, portability is not a major concern.
All the changes in the gcc calling conventions are
undertaken by the callee, so code compiled with the
StackGuard-enhancedgcc is completely inter-opera-
ble with genericgcc .o files and libraries. The addi-
tional instructions added to the function prologue are
shown in pseudo-assembly form in Figure 3, and the
additional instructions added to the instruction epi-
logue are shown in Figure 3.

3.2 Canary Integrity

The canary word provides an integrity check only so
long as the attack cannot be performed without alter-
ing the canary word. If the attack can proceedwithout
altering the canary value, either by carefully stepping

Attack
code

return
address

Local
variables

buffer

FFFF

0000

Stack
Growth

String
Growth

Figure 2: StackGuard Defense Against
Stack Smashing Attack

canary

move canary-index-constant into register[5]
push canary-vector[register[5]]

Figure 3: Function Prolog Code: Laying Down a Canary
move canary-index-constant into register[4]
move canary-vector[register[4]] into register[4]
exclusive-or register[4] with top-of-stack
jump-if-not-zero to constant address canary-death-handler
add 4 to stack-pointer
return from function

canary-death-handler:
...

Figure 4: Function Epilog Code: Checking a Canary

over the canary word, or by including the canary word
in the attack string, then the StackGuard integrity
check produced byfunction_epilogue will fail
to detect the attack.

The initial release of StackGuard protected the
canary value by choosing a 32-bit random number as
a canary value at programexec() time, making it
intractable for the attacker to guess the canary value
[5]. A subsequent version of StackGuard used a null
as a canary value (an idea proposed by “der Mouse”
[9]) since most string copying functions (the stack
smasher’s major tool) terminate when they encounter
a null, it was reasoned that the attacker could not
simultaneously deposit a null in the canary’s location,
and move on to alter the return address above the
canary.

However, not all string functions terminate when
they encounter a null. For instancegets() only ter-
minates on a newline or an EOF. We have extended
the null-canary mechanism to produce the “termina-
tor” canary: a 32-bit word comprised of a null byte, a
carriage return (0x0D), a line-feed (0x0A), and an
“EOF” in the libc representation (0xFF). Most
string copying functions will halt when they encoun-
ter one of these bytes.

The random canary is impervious to all string
operations, and not just those that terminate on the
“usual” termination symbols, and thus is more secure
than the terminator canary. Conversely, the terminator
canary is faster than the random canary check because
it does not have to look up the current canary value.
The terminator canary can be used to produce relocat-
able code, and thus protect shared libraries.

The StackGuard compiler thus offers command
line options to select either the terminator or random
canary mechanism. If complete random canary pro-
tection is desired, then all libraries must be compiled
with random canaries, and the program must be stati-
cally linked. However, if terminator canaries are
acceptable, then shared libraries with terminator

canary protection can be used, and the program itself
can be compiled with either option.

4 Securing a Host with StackGuard
Section 3 describes how StackGuard protects a single
program from being hijacked by the attacker. Our
general goal is to prevent the attacker from raising
their privileges on the host, which requires thatall
potentially vulnerable programs be protected from
stack smashing. This section describes our efforts to
protect all potentially vulnerable programs in a Red
Hat 5.1 Linux distribution. Section 4.1 discusses
which programs should be protected. Section 4.2
describes how we re-built these programs.

4.1 Which Programs are Vulnerable

Our goal is to ensure that any program an attacker
might try to stack smash to gain privileges is protected
by StackGuard. In principle, this is the set of pro-
grams that have more privilege than the attacker and
are exposed to attacker input. In practice, that set is so
large and ill-defined that the safest practice is to
StackGuardeverythingon the system, lest a program
gets overlooked and the attacker can exploit a vulner-
ability.

To illustrate why it is difficult to select the pro-
grams to be protected, consider the problem of finding
all programs that run as “root .”1 One can quickly
find all the programs that are installedsetuid
root with the following command:

find / -perm +4000 -user 0 -ls

With some more effort, one can find the set of
potential setuid root programs by inspecting a
repository of RPM files, as shown in Figure 5. Caveat:

1.More generally, we are interested in processes running as
anyuser-ID that has priviliges of interst to the attacker, e.g.
httpd can change web content, and any user-ID is more
priviliged than an anonymous remote attacker.

Figure 5: Perl Script to Search forsetuid root RPM Packages

#!/usr/bin/perl
open(RPMDB,”rpm -qa --queryformat ‘[%{filemodes:perms} %{fileusername} %{=name} %{filenames} \n]’ |”);
while(<RPMDB>) {

print;
($perms, $root, $package, $file) = split;
if (($perms =~ “s”) || ($perms =~ “S”)) {
next if ($perms =~ “d”);
next if ($root !~ “root”);
print(“ $perms, $root, $package, $file \n”);
}

}

pre- and post-install scripts in the RPM maychmod
executables, which will not be found by the script in
Figure 5. No such scripts have been found.

However, these techniques only capture the pro-
grams that are explicitly marked in the file system as
beingsetuid root , and miss those programs that
root may run via other means, such as the
/etc/rc.d* scripts, /etc/crontab ,
/etc/inetd.conf , and anything an administrator
may run directly from aroot shell. These programs
are also vulnerable, especially if they are daemons
that run constantly taking input from arbitrary users.

There is no reliable way to detectall of the pro-
grams thatroot may run, because there is no marker
in the file system that indicates thatroot is permitted
to run the program. On the contrary,root is explic-
itly permitted to runall executable files. At best, one
can use heuristic techniques such as inspection of the
/etc/* files, and instrumenting a kernel to report all
the programs thatroot runs over a substantial period
of time. Thus we concluded that StackGuarding
everything was the only truly secure option. Section 5
describes the impact of this decision on system com-
patibility and performance.

4.2 Re-compiling Programs and Libraries

Re-compiling all of the software included in a full
Linux distribution was an interesting exercise,
because it required two software technologies that we
did not have:

• emit code suitable for shared libraries

• a complete re-build environment

Producing shared library code required a compiler
enhancement so that StackGuard could emit PIC
(Position Independent Code). PIC is problematic for
StackGuard using the random canary method (see
Section 3.2) because the shared library code must ref-
erence theper processrandom canary table, which it
cannot do in PIC mode because it lacks global offsets.
The “terminator canary” enhancement eliminated the
dependence on the per process canary table, allowing
StackGuard to emit PIC code, and thus support shared
libraries.

Creating a complete build environment was also
challenging. All of the source files, header files, other
files, and utilities must be installed in the same loca-
tion as that assumed by the program author. To mini-
mize the problems of configuring the system the way
a source package expects, we selected the Red Hat 5.1
Linux distribution for its RPM feature.

RPM (Red Hat Package Manager) goes a long
way towards automating system configuration. An
RPM package includes all of the files a program needs

(much like atar ball) but also includes a database of
what packages have been installed, provides addi-
tional scripts to be run when packages are to be
installed and uninstalled, and explicitly declares
dependencies on other packages and files.

A special SRPM (Source RPM) is used to package
source code. SRPMs, unfortunately, donot provide
the anybuild-timedependency information. Thus one
has to installall binary RPM packages to ensure that
all required files will be present.

Installing everything in turn creates problems.
RPM packages typically turn on services at boot time
by editing a file in/etc/rc.d/* . Many of these
services present security vulnerabilities. To prevent
intrusion and corruptionwhile constructing a secure
system, the host should be disconnected from the net-
work until the vulnerable services have been turned
off.

We found that autoconf scripts (“./config-
ure ”) could be brittle, causing problems by making
odd decisions that are hard to detect. For instance, one
such script scanned assembly output for keywords
that happen to show up in the comments produced by
the StackGuard code generator.

In another example, theglibc-2.0.7-13
package tests for the existence of a C compiler option
by compiling a trivial program with all default librar-
ies suppressed, and looking for error output. This pro-
cedure causes the implicit dependence on
StackGuard’s canary_death_handler() to
fail, producing an error.1 Amending the option detec-
tion procedure forglibc fixed this problem.

Once the complete set of binary and source RPMs
are installed, a for loop performing “rpm -ba
$(package}.spec ” (build binary and source
packages after doing the prep, build, and install
stages) is used to build the packages. Since the
SRPMs do not have build dependency information,
we iterate the build loop until the binary packages
cease changing.

Unfortunately, some packages were not assembled
correctly. In one trivial instance, an SRPM package
was missing an icon image, and thus failed to build
correctly. In a more serious instance, the XFree86
package moves/usr/X11R6 to /usr/X11R6.$$
and replaces it, but fails to put the original
/usr/X11R6 directory back, despite the fact that the
package does not own the/usr/X11R6 directory.
This is problematic, because the original
/usr/X11R6 directory contained files that werenot

1.Standard gcc requires 3 symbols to compile the null
program: _start() , __eh_pc , and __throw() .
StackGuard adds a 4th requirement:
canary_death_handler() .

owned by the XFree86 package, so this build proce-
dure breaksotherpackages, including those that have
already been built.1

5 System Impact
A StackGuard-protected system is not noticeably dif-
ferent from an un-protected system. It functions iden-
tically to an un-protected system, unless you try to
stack-smash it. This paper was written on a Stack-
Guard-protected system, and the talk will be pre-
sented on a StackGuard-protected notebook computer.
It also does not “feel” slower, however we would like
a more qualitative analysis of the performance cost of
StackGuard protection. Section 5.1 presents perfor-
mance measures of StackGuard protection for the
SSH encryption system [27] and in Section 5.2 we
measure the StackGuard performance impact on the
Apache web server [2], both of which are broadly
used, vulnerable to attack, have available source, and
are quantifiably performance-intensive. Section 5.3
describes the trace incompatibilities introduced by
StackGuard.

5.1 StackGuard Cost in SSH Bandwidth

SSH [27] provides strongly authenticated and
encrypted replacements for the Berkeleyr* com-
mands. For instance, whilercp copies a file from one
machine to another as clear text,scp copies the file
by encrypting it on the source machine, and decrypt-
ing it on the destination machine.

SSH is a primary candidate for StackGuard pro-
tection because it is a crucial part of the security
perimeter. Thesshd daemon mediates requests for
login, execution, and copying. Ifsshd can be stack-
smashed, then the attacker can completely bypass all
of SSH’s strong authentication and encryption fea-
tures.

Encryption and decrypting are done in software
using one of several ciphers, IDEA being the default.
Software encryption is performance-intensive, and
may limit the bandwidth of data communications
done via SSH. We measure the performance costs of
StackGuard protection by measuring the bandwidth of
a large-file copy operation viascp using the follow-
ing command:

scp bigsource localhost:bigdest

bigsource file is a 10 MB test file. The
“ locahost: ” clause forces the copy to go via the
SSH encrypted interface, but also bypasses the cost of

using the LAN hardware, allowing us to focus on the
StackGuard-induced slowdown of encryption as much
as possible. The test was run on a Pentium 200 MHz
machine running Red Hat 5.1 Linux, with 64 MB of
RAM, usingssh 1.2.25 .

We measured the performance impact both by
measuring the wall-clock elapsed time of the copy
operation, and by observing the bandwidth of the
copy as reported byscp . The compute time of the scp
command is not useful, because most of the
encrypt/decrypt work is done behind the scenes by
other processes. Averaged over five runs, the generic
scp ran for 14.5 seconds (+/- 0.3), and achieved an
average throughput of 754.9 kB/s (+/- 0). The Stack-
Guard-protectedscp ran for 13.8 seconds (+/- 0.5),
and achieved an average throughput of 803.8 kB/s (+/-
48.9).

We do not actually believe that StackGuard
enhanced SSH’s performance. Rather, the test showed
considerable variance, with latency ranging from
13.31 seconds to 14.8 seconds, and throughput rang-
ing from 748 kB/s to 817 kB/s, on an otherwise quies-
cent machine. Since the two averages are within the
range of observed values, we simply conclude that
StackGuard protection did not significantly impact
SSH’s performance.

5.2 StackGuard Cost in the Apache Web
Server

The Apache web server [2] is also clearly a candidate
for StackGuard protection. While it is not normally
run as root , Apache is the primary mediator for
access to all content on a web server, and also must
accept highly complex input from both the client
machines and the web content it manages. If Apache
can be stack smashed, the attacker can seize control of
the web server, allowing the attacker to read confiden-
tial web content, as well as change or delete web con-
tent without authorization. The web server is also a
performance-critical component, determining the
amount of traffic a given server machine can support.

We measure the impact of StackGuard protection
for Apache by measuring Apache’s performance
using the WebStone benchmark [19], with and with-
out StackGuard protection. The WebStone benchmark
measures various aspects of a web server’s perfor-
mance, simulating a load generated from various
numbers of clients. The results with and without
StackGuard protection are shown in Table 1.

As in Section 5.1, performance with and without
StackGuard protection is virtually indistinguishable.
The StackGuard-protected web server shows a very
slight advantage for a small number of clients, while
the unprotected version shows a slight advantage for a

1.That the failure induced by XFree86 occurs verylate in the
entire build procedure just adds to frustration :-) This
problem is fixed in the current XFree release.

large number of clients. In the worst case, the unpro-
tected Apache has a 8% advantage in connections per
second, even though the protected web server has a
slight advantage in average latency on the same test.
As before, we attribute these variances to noise, and
conclude that StackGuard protection has no signifi-
cant impact on web server performance.

5.3 Incompatibilities

The first StackGuard incompatibility is that it is not
capable of compiling the Linux kernel. StackGuard
changes the format of a stack activation record, and
introduces a dependency on the
canary_death_handler() function. It is thus
necessary to switch to a standard compiler to build
kernels.

The only other incompatibility found to date is
that there is an unknown bug in manifested by the
StackGuardedld.so (dynamic linker). When the
StackGuardedld.so is present, then certain popular
binary applications (Netscape, Acroread, Star Office
4.0) that depend onlibc5 will fail. The precise
nature of the bug is difficult to determine, since it is
only manifested by binary-only applications. Replac-
ing the StackGuardedld.so with a genericld.so
completely solves this problem, and no other compat-
ibility problems have been found. StackGuard is in
production on the author’s laptop, our group’s file
server, and has been downloaded by at least 1000 sep-
arate individuals. Other than theld.so problem, no
incompatibilities have been found.

6 Protection
An exhaustive demonstration that a system is com-
pletely invulnerable, even to the limited scope of
attacks represented by stack smashing, is difficult and

Table 1: Apache Web Server Performance With and Without StackGuard Protection

StackGuard
Protection

of
Clients

Connections
per Second

Average Latency
in Seconds

Average Throughput
in MBits/Second

No 2 34.44 0.0578 5.63

No 16 43.53 0.3583 6.46

No 30 47.2 0.6030 6.46

Yes 2 34.92 0.0570 5.53

Yes 16 53.57 0.2949 6.44

Yes 30 50.89 0.5612 6.48

beyond the scope of this paper. Such a demonstration
requires us to show thatall possible entries are pro-
tected, while the attacker need only findone unpro-
tected program. Rather, we will show the degree of
protection offered by StackGuard by examining the
behavior of programs known to be vulnerable to stack
smashing attacks.

Previously [5], we reported StackGuard’s penetra-
tion resistance when exploits were applied to various
vulnerable programs, reproduced here in Table 2. To
test the effectiveness of the protections applied in this
paper, we applied new exploits against vulnerabilities
found in XFree86-3.3.2-5 [1] and lsof [28].
When applied to an un-protected Red Hat 5.1 Linux
machine, the exploits yielded root shells. When
applied to the identical system protected as described
in this paper, the exploit just produced a StackGuard
intrusion alert insyslog , but no penetration was
achieved.

7 Related Work
This section describes related work in protecting sys-
tems against stack smashing attacks. Section 7.1 and
Section 7.2 describe techniques specifically designed
to protect a system against stack smashing attacks,
while the remaining sections describe programming
techniques to reduce or eliminate the vulnerabilities
that enable stack smashing attacks.

7.1 Non-Executable Stack

Casper Dik and “Solar Designer” have developed
Solaris and Linux patches, respectively, that make the
stack non-executable [10, 11], precisely to address the
stack smashing problem. These patches simply make
the stack portion of a user process’s virtual address
space non-executable, so that attack code injected

onto the stack cannot be executed. They offer the
advantages ofzeroperformance penalty, and that pro-
grams work and are protected without re-compilation.
However, they do necessitate running a specially-
patched kernel, unless this approach is adopted as a
standard; Solaris 2.6 incorporates a non-executable
stack as a configuration option in/etc/system .

This technique is non-trivial and non-obvious, for
the following reasons:

• gcc uses executable stacks for function trampo-
lines for nested functions.

• The Linux kernel (for example) uses executable
user stacks for signal delivery.

• Functional programming languages, and some
other programs, rely on executable stacks for run-
time code generation.

Solar Designer’s Linux patch addresses the tram-
poline problem and other use of executable stacks by
detecting such usage, and permanently enabling an
executable stack for that process. The patch deals with
signal handlers by dynamically enabling an execut-
able stack only for the duration of the signal handler.
Both of these compromises offer potential opportuni-
ties for intrusion, e.g. a buffer overflow vulnerability
in a signal handler.

Non-executable stack protection intersects with
that offered by StackGuard; there are attacks that can
bypass each technique that are caught by the other.
For instance, an attacker can bypass a non-executable
stack by injecting the attack code into a separate heap
buffer, and then just use a stack buffer to re-point a

Table 2: StackGuard Penetration Resistance

Vulnerable Program Result Without StackGuard Result with StackGuard

dip 3.3.7n root shell program halts

elm 2.4 PL25 root shell program halts

Perl 5.003 root shell program halts irregularly

Samba root shell program halts

SuperProbe root shell program halts irregularly

umount 2.5K/libc 5.3.12 root shell program halts

wwwcount v2.3 httpd shell program halts

zgv 2.7 root shell program halts

return address to the attack code on the heap. Stack-
Guard would stop this form of attack.

Conversely, an attacker can bypass StackGuard
protection using buffer overflows to alterotherpoint-
ers in the program besides the return address, such as
function pointers andlongjmp buffers, which need
not even be on the stack. If the attack code were
injected into a buffer that is on the stack, then a non-
executable stack would stop it. Such attacks are rela-
tively rare, but have been constructed, as is the case
for exploits againstPerl 5.003 and Super-
Probe shown in Table 2.

Non-executable stacks are entirely compatible
with StackGuard-protected programs. For protection-
in-depth, one may well choose to use both techniques.
Also, an extension to StackGuard to defend function
pointers andlongjmp buffers is under development.

7.2 FreeBSD Stack Integrity Check

Alexander Snarskii developed a FreeBSD patch [24]
that does similar integrity checks to StackGuard’s.
However, these integrity checks were non-portable,
hard-coded in assembler, and embedded inlibc .
This protects against stack smashing attacks inside
libc , but is not as general as StackGuard.

7.3 Array Bounds Checking for C

Richard Jones and Paul Kelly developed agcc patch
[16] that does full array bounds checking for C pro-
grams. Compiled programs are compatible with other
gcc modules, because they have not changed the rep-
resentation of pointers. Rather, they derive a “base”

pointer from each pointer expression, and check the
attributes of that pointer to determine whether the
expression is within bounds.

The performance costs are substantial: a pointer-
intensive program (ijk matrix multiply) experienced
30× slowdown. Since slowdown is proportionate to
pointer usage, which is quite common in privileged
programs, this performance penalty is particularly
unfortunate. The compiler is also not mature; complex
programs such aselm fail to execute when compiled
with this compiler.

However, this method is strictly more secure than
StackGuard, preventing all buffer overflow attacks,
not just those that attempt to alter function activation
records. If the bounds-checking compiler were
mature, we could use programs compiled with the
bounds-checking compiler the to provide a “fall back
position” if StackGuard-protected programs start
detecting a determined attempt to break in [5].

7.4 Memory Access Checking

Purify [15] is a memory usage debugging tool for C
programs. Purify uses “object code insertion” to
instrumentall memory accesses. The approach is sim-
ilar to StackGuard, in that it does integrity checking of
memory, but it does so on each memory access, rather
than on each function call return. As a result, Purify is
both more general slower than StackGuard, imposing
a slowdown of 2 to 5 times the execution time of opti-
mized code, making Purify more suitable for debug-
ging software. StackGuard, in contrast, is intended to
be left on for production use of the compiled code.

7.5 Type-Safe Languages

All of the vulnerabilities described here result from
the lack of type safety in C. If only type-safe opera-
tions can be performed on a given variable, then it is
not possible to use creative input applied to variable
foo to make arbitrary changes to the variablebar .

Type-safety is one of the foundations of the Java
security model. Consequently,errors in the Java type
checking system are one of the ways that Java pro-
grams and Java virtual machines can be attacked [8,
22]. If the correctness of the type checking system is
in question, then programs depending on that type
checking system for security get the same benefit as
type-unsafe programs. Applying StackGuard tech-
niques to Java programs and JVMs may yield benefi-
cial results.

7.6 Debugging Tools

Various tools have been developed to minimize the

number of buffer overflow vulnerabilities. The sim-
plest is togrep the source code for highly vulnerable
library calls such asstrcpy and sprintf . Ver-
sions of the C standard library have also been devel-
oped that complain when a program links to
vulnerable functions likestrcpy andsprintf .

However, buffer overflow vulnerabilities can be
subtle. Even defensive code that uses safer alterna-
tives such asstrncpy andsnprintf can contain
buffer overflow vulnerabilities if the code contains an
elementary off-by-one error. For instance, thelprm
program was found to have a buffer overflow vulnera-
bility [13], despite having been audited for security
problems such as buffer overflow vulnerabilities. To
combat the problem of subtle residual bugs, more
advanced debugging tools have been developed, such
as fault injection tools [14]. The idea is to inject delib-
erate buffer overflow faults at random to search for
vulnerable program components.

Debugging techniques can only minimize the
number of buffer overflow vulnerabilities, and provide
no assurances thatall the buffer overflow vulnerabili-
ties have been eliminated. Thus for high assurance,
protective measures such as StackGuard should be
employed unless one isvery sure that all potential
buffer overflow vulnerabilities have been eliminated.

8 Availability
This paper describes our efforts to create an entire
Linux system that is protected by StackGuard every-
where that it is potentially vulnerable to stack smash-
ing attacks. The StackGuard compiler has been
available for some time under the GPL [5]. The pro-
tected Linux distribution has also been available since
August 1998, and includes:

• the StackGuard compiler

• StackGuard-protected binary RPM files for all C
programs

• the scripts for re-building Red Hat 5.1 from source
code

• SSH binary distributions1

This paper describes the protection of Red Hat
Linux 5.1. A protected version of Red Hat 5.2 is being
constructed, but is not complete at press time. Being a
research group, we donot want to be in the business
of distributing and supporting a Linux version. This
distribution is intended to demonstrate the viability of

1.Due to export restrictions, SSH is available only to
residents of the United States and Canada. Foreign users
are encouraged to get the StackGuard compiler from us,
and the source code for SSH from it’s home site in Finland,
and build their own protected SSH.

StackGuard protection for security in production sys-
tems, by putting it into production ourselves. It is our
hope that Linux distributors will adopt the use of
StackGuard to enhance the security of their products.

9 Conclusions
StackGuard is an effectively transparent replacement
for gcc that offers protection from the pervasive
problem of stack smashing vulnerabilities. In previous
work [5] we demonstrated the penetration resistance
of StackGuard, along with some quantitative mea-
surements of StackGuard’s performance costs. This
paper presents a qualitative view of the practical and
performance implications of using StackGuard in a
production environment. If StackGuard is used thor-
oughly to protect all of the potentially vulnerable pro-
grams in a system, then the system is effectively
protected against stack smashing attacks.

System administrators wishing to protect their
systems can use the tools and procedures presented in
this paper to protect themselves. System and applica-
tion vendors wishing to offer more secure products
can use the StackGuard compiler to deliver executable
codes that are resistant to stack smashing attacks.
Finally, users wishing to obtain a system protected
from stack smashing can use the Linux distribution
that we presented here.

References
[1] Andrea Arcangeli.xterm Exploit. Bugtraq

mailing list, http://geek-
girl.com/bugtraq/ , May 8 1998.

[2] Brian Behlendorf, Roy T. Fielding, Rob
Hartill, David Robinson, Cliff Skolnick, Randy
Terbush, Robert S. Thau, and Andrew Wilson.
Apache HTTP Server Project.
http://www.apache.org .

[3] Crispin Cowan, Tim Chen, Calton Pu, and
Perry Wagle. StackGuard 1.1: Stack Smashing
Protection for Shared Libraries. InIEEE
Symposium on Security and Privacy, Oakland,
CA, May 1998. Brief presentation and poster
session.

[4] Crispin Cowan, Calton Pu, and Heather Hinton.
Death, Taxes, and Imperfect Software:
Surviving the Inevitable. InProceedings of the
New Security Paradigms Workshop,
September 1998.

[5] Crispin Cowan, Calton Pu, Dave Maier,
Heather Hinton, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, and Qian Zhang.
StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks. In
7th USENIX Security Conference, San
Antonio, TX, January 1998.

[6] Michele Crabb. Curmudgeon’s Executive
Summary. In Michele Crabb, editor,The SANS
Network Security Digest. SANS, 1997.
Contributing Editors: Matt Bishop, Gene
Spafford, Steve Bellovin, Gene Schultz, Rob
Kolstad, Marcus Ranum, Dorothy Denning,
Dan Geer, Peter Neumann, Peter Galvin, David
Harley, Jean Chouanard.

[7] Theo de Raadt et al. OpenBSD Operating
System.http://www.openbsd.org/ .

[8] Drew Dean, Edward W. Felten, and Dan S.
Wallach. Java Security: From HotJava to
Netscape and Beyond. InProceedings of the
IEEE Symposium on Security and Privacy,
Oakland, CA, 1996.
http://www.cs.princeton.edu/sip
/pub/secure96.html .

[9] “der Mouse”. Defeating Solar Designer non-
executable stack patch. Bugtraq mailing list,
http://geek-girl.com/bugtraq/ ,
February 4 1998.

[10] “Solar Designer”. Non-Executable User Stack.
http://www.false.com/security/
linux-stack/ .

[11] Casper Dik. Non-Executable Stack for Solaris.
Posting to comp.security.unix ,
http://x10.dejanews.com/getdoc.
xp?AN=207344316&CONTEXT=8900826
37.1567359211&% hitnum=69&AH=1 ,
January 2 1997.

[12] Linus Torvalds et al. Linux Operating System.
http://www.linux.org/ .

[13] Chris Evans. Nasty security hole inlprm .
Bugtraq mailing list, http://geek-
girl.com/bugtraq/ , April 19 1998.

[14] Anup K Ghosh, Tom O’Connor, and Gary
McGraw. An Automated Approach for
Identifying Potential Vulnerabilities in
Software. In Proceedings of the IEEE
Symposium on Security and Privacy, Oakland,
CA, May 1998.

[15] Reed Hastings and Bob Joyce. Purify: Fast
Detection of Memory Leaks and Access Errors.
In Proceedings of the Winter USENIX
Conference, 1992. Also available at
http://www.rational.com/support
/techpapers/fast_detection/ .

[16] Richard Jones and Paul Kelly. Bounds
Checking for C. http://www-
ala.doc.ic.ac.uk/ phjk/BoundsCh
ecking.html , July 1995.

[17] Barton P. Miller, David Koski, Cjin Pheow
Lee, Vivekananda Maganty, Ravi Murthy,
Ajitkumar Natarajan, and Jeff Steidl. Fuzz
Revisited: A re-examination of the

Reliability of UNIX Utilities and Services.
Report, University of Wisconsin, 1995.

[18] B.P. Miller, L. Fredrikson, and B. So. An
Empirical Study of the Reliability of UNIX
Utilities. Communications of the ACM,
33(12):33–44, December 1990.

[19] Mindcraft. WebStone Standard Web Server
Benchmark.
http://www.mindcraft.com/websto
ne/ .

[20] “Mudge”. How to Write Buffer Overflows.
http://l0pht.com/advisories/buf
ero.html , 1997.

[21] “Aleph One”. Smashing The Stack For Fun
And Profit.Phrack, 7(49), November 1996.

[22] Jim Roskind. Panel: Security of Downloadable
Executable Content. NDSS (Network and
Distributed System Security), February 1997.

[23] Nathan P. Smith. Stack Smashing
vulnerabilities in the UNIX Operating System.
http://millcomm.com/ nate/machi
nes/security/stack-
smashing/nate-buffer.ps , 1997.

[24] Alexander Snarskii. FreeBSD Stack Integrity
Patch.
ftp://ftp.lucky.net/pub/unix/lo
cal/libc-letter , 1997.

[25] E. Spafford. The Internet Worm Program:
Analysis. Computer Communication Review,
January 1989.

[26] Richard M. Stallman.Using and Porting GNU
C. Free Software Foundation, Inc., Cambridge,
MA.

[27] Tatu Ylonen. SSH (Secure Shell) Remote
Login Program.
http://www.cs.hut.fi/ssh .

[28] Anthony C. Zboralski. [HERT] Advisory #002
Buffer overflow in lsof. Bugtraq mailing list,
http://geek-girl.com/bugtraq/ ,
February 18 1999.

