
Verifying programs with Complex data structures using Coq
 Kenneth Roe The Johns Hopkins University

 break

http://www.cs.jhu.edu/~roe

Preventing Heartbleeds

The theorem proving techniques presented on this poster to verify DPLL could also
be applied to OpenSSL and would have almost certainly found the Heartbleed bug.
We suggest two approaches as to how our techniques could be used to block
Heartbleed.
1) Since packets being received cannot be trusted, add sanity checks to verify
 the invariants. Formal methods could be used to verify that the sanity checks
 work and to verify that once the invariants are satisfied, that unauthorized
 information cannot leak out
2) Separation logic can be used to add a pre-condition to memcpy that insures
 that it does not copy beyond the end of the record which the source pointer
 references. An unchecked parameter to memcpy was key to the Heartbleed
 bug. Formal methods could verify that the parameters to memcpy are sound.

Heartbleed is a bug in OpenSSL code
 Thousands of websites use OpenSSL for HTTPS
 Websites vulnerable to sensitive data stealing attacks
Bug is in newly added heartbeat code
 - A heart beat is sent once every few seconds by one
 side of an SSL connection to check if the other side is
 alive
 - The other side responds with a message echoing the
 payload data
Exploitation of this bug is shown below
 - Message has broken payload_len field
 - Response constructed based on payload_len field
 - No bounds check on memcpy
 - Data beyond end of allocated block copied over

Type (1 byte) payload_len (2 bytes) Payload

TLS1_HB_REQUEST 65535 1 byte

payload_len should be 1 here. It should
also always be equal to length-3.

Type payload_len (2 bytes) Payload

TLS1_HB_RESPONSE65535 65535 bytes

length

65538

HB data

...

...

...

Victim Response
SSLv3 record

length

4

HB data

...

...

...

SSLv3 record

Attacker request

Other stu�
passwords, private keys

memcpy moves
payload+other stu�

to response

Logo from heartbleed.com

Motivation

95% of software bugs such as Heartbleed relate to violations
of data structure invarants

The object of our research is to create tools for documenting
and reasoning about complex data structure invariants

Proof development productivity is the key issue that needs to
be addressed.

One can build up the data structure invariants starting with
an attempt to prove that a program does not have certain
types of bad behavior such as:
- nil pointer references
- dangling pointer references
- array out of bound references
- unallocated memory reads/writes

As an example, the Heartbleed bug could have been found
just from a specification stating that there were no reads of
unallocated memory

To study data structure invariant verification, we chose to
verify a simplified version of DPLL

DPLL algorithm is a well suited example
 - Data structure has very complex invariant
 - Implementation code is small

We implemented a variation that is about 200 lines of
C code, supports the 2 watch variable unit propagation
algorithm but not learning.

We then developed an invariant for the data structures which
includes all the dependencies related to mainting the two watch
variables.

We are working on a verification of this invariant.

Efficient SAT solving algorithm for CNF expressions such
as:
 (A v ~B v C) ^
 (A v ~C v D)

DPLL algorithm:
 (1) Choose a variable and assign it a value
 (2) Perform unit propagation to find additional
 assignments implied by the choices already made.
 (3) Backtrack and change choices when a contradiction
 is found

Watch variables
 (1) Makes unit propagation very efficient
 (2) Two unassigned variables chosen at random
 (3) If a watch variable in a clause is assigned, then
 choose a replacement. If one cannot be found,
 then there is only one assigned variable left and
 a unit propagation needs to be performed.

Blue variables in the example above are initial watch
variables After A is assigned false, we move the watch
that was on A in the two clauses to C and D respectively
(the brown variables).

Our C program uses the following data structures to
store the clauses, the watch variable linked lists, the
assignments and a “todo” queue.:

#define VAR_COUNT 4

char assignments[VAR_COUNT];

struct clause {
 struct clause *next;
 char positive_lit[VAR_COUNT];
 char negative_lit[VAR_COUNT];
 char watch_var[VAR_COUNT];
 struct clause *watch_next[VAR_COUNT];
 struct clause *watch_prev[VAR_COUNT];
} *clauses;

struct clause *watches[VAR_COUNT];

struct assignments_to_do {
 struct assignments_to_do *next, *prev;
 int var;
 char value;
 int unit_prop;
} *assignments_to_do_head, *assignments_to_do_tail;

struct assignment_stack {
 struct assignment_stack *next;
 int var;
 char value;
 char unit_prop;
} *stack;

Here is a diagram showing what the data structures look
like right after A is assigned false.

Verifying the DPLL algorithm

Coq data structure invariant
Contains all of the important properties in about 50 lines of
Coq code. A fragment of the invariant is shown in the box
below. Here is an informal statement of the watch variable
invariant:

All clauses have two watch variables. For each clause, one
of the following three cases is true:

1) The two watch variables are unassigned
2) All but one variable is assigned in the clause. One
 of the watch variables is the unassigned variable. The
 other is the most recently assigned variable
3) At least one of the assignments satisfies the clause. If one
 or both watch variables are assigned, then those
 assignments were either a satisfying assignment or done
 after the first satisfying assignment.

Consider this piece of code that removes the most
recent assignment:

 var = stack->var;
 value = stack->value;
 struct stack *n = stack->next;
 free(stack);
 stack = n;
 assignments[var] = 0;

assignments
0 (A)

2 (True)
1 (B) 2 (C) 3 (D)

stack var value unit_prop

0 (A) 2 (True) 0 (no)
next

clauses next positive_lit[1] positive_lit[2] positive_lit[3]

0 (B) 1 (C) 0 (D)
positive_lit[0]

negative_lit[1] negative_lit[2] negative_lit[3]

1 (B) 0 (C) 0 (D)
negative_lit[0]

watch_var[1] watch_var[2] watch_var[3]watch_var[0]

watche_next[1] watch_next[2] watche_next[3]watch_next[0]

watch_prev[1] watch_prev[2] watch_prev[3]watch_prev[0]

watches 0 (A) 1 (B) 2 (C) 3 (D)

0 (nil)

next positive_lit[1] positive_lit[2] positive_lit[3]

0 (B) 0 (C) 1 (D)
positive_lit[0]

negative_lit[1] negative_lit[2] negative_lit[3]

0 (A) 1 (C) 0 (D)
negative_lit[0]

watch_var[1] watch_var[2] watch_var[3]watch_var[0]

watche_next[1] watche_next[2] watches_next[3]watch_next[0]

watch_prev[1] watch_prev[2] watch_prev[3]watch_prev[0]

1 (A)

0 (A)

1 (A)

0 (A)

0 (nil)

0 1 01

0 1 0 1

0 (nil) 0 (nil) 0 (nil)

0 (nil) 0 (nil) 0 (nil) 0 (nil)

0 (nil) 0 (nil) 0 (nil) 0 (nil)

0 (nil) 0 (nil) 0 (nil)

0 0 0

assignments_to_do_head=nil
assignments_to_do_tail=nil

The first part of the invariant are spacial constructs asserting the two arrays and
three dynamic data structures in the heap. ARRAY(root, count, functional_representation)
is a spatial predicate for arrays. The functional representation is a list of the
elements.

AbsExistsT v0 . AbsExistsT v1 . AbsExists v2 . AbsExistsT v3. AbsExistsT v4.
 TREE(clauses,v0,sizeof_clause,[next_offset])) *
 TREE(assignments_to_do_head,v1,sizeof_assignment_stack,[next_offset]) *
 TREE(stack,v2,sizeof_assignment_stack,[next_offset]) *
 ARRAY(assignments,var_count,v3) * ARRAY(watches,var_count,v4) *

Next, we add on two assertions that guarantee that both the assignment_stack v2
and assignment array v3 are consistent. We use (a,b)--->c as an abbreviation for
nth(find(a,b),c).

 (AbsAll v5 in TreeRecords(v2) . ([nth(v3,(v2,v5)-->stack_var_offset)==(v2,v5)-->stack_val_offset])) *
 (AbsAll v5 in range(0,var_count-1) . ([nth(v3,v5)==0] *\/* AbsExists v6 in (TreeRecords(v2)) .
 ([((v2,v6)-->stack_var_offset==v5 /\ (v2,v6)-->stack_val_offset==nth(v3,v5))]))) *

The TREE declarations above define linked lists. They do not define the back
pointers of a double linked list to do this for the assignments_to_do_head list, we
add the following assertion:

 (AbsAll v5 in TreeRecords(v1) .
 ([((v5,v1)-->prev_offset==0 /\ (assignments_to_do_head)==v5) \/
 ((v5,v1)-->prev_offset inTree v1 /\ (v5,(v5,v1)-->prev_offset)-->next_offset==v5)])) *

Now we define the linked lists for each of the watch variables. Path is like TREE
but it defines lists inside of other structures. It is used for the embedded watch
variable linked lists. It takes the form:
Path(root, parent_functional_data,child_functional_form,node_size,pointer_offsets)
We also put in the assertion for the prev links:

 (AbsAll v6 in range(0,var_count-1)
 (Path((nth(v4,v5)), v0, v6, sizeof_clause, [watch_next_offset+v5]) *
 (AbsAll v7 in TreeRecords(v6)
 ([((v6,v7)--->(watch_prev_offset+v5)==0 /\ nth(v4,v5)====v6) \/
 ((v6,(v6,v7)--->(watch_prev_offset+v5))--->(watch_next_offset+v5))==v7]))) *
...

Coq DPLL invariant fragment

This code removes the most recent assignment. Proving
that the invariant above is correct for each clause involved the
following cases for each clause:

1) Two watch variables are assigned before
2) All but one variable is assigned but the assignment
 removed does not appear in the clause
3) All but one variable is assigned and the assignemnt
 removed does appear in the clause
4) At least one of the assignments satisfies the clause.
 The one and only satisfying assignment is the variable
 being removed
5) At least one of the assignments satisfies the clause.
 The one assignment removed is not a satisfying
 assignment.
6) At least two of the assignments satisfies the clause.
 The one assignment removed is a satisfying
 assignment.

The proof that the invariant holds after this code took
over 2000 lines of Coq proof script code.

* Prover productivity ratio

Time to verify code
Time to develop code

* Currently, this ratio is well
 over 100/1 for any interactive
 theorem based verification
* At 10/1, a fairly valuable
 software development
 tool could be produced

CoqPIE: Improving proof development
productivity
Our strategy for improving proof development productivity is to introduce a
new IDE addressing these issues:

(1) One often finds errors in the statement of a theorem while developing a
 proof. Changing the statement often require the proof script to be updated
(2) Often it is useful to quickly review earlier goal/hypothesis states. Existing
 IDEs require the Coq prover itself to backup or move forward in a script. On
 a complex proof each step can take 30 seconds to backup or reevaluate.
(3) LTac--the scripting langauge for Coq has many holes. Many simple rules
 cannot be expressed
(4) Navigating to specific definition declarations can be difficult if there is a large
 amount of proof script code.

CoqPIE is about 13000 lines of Python source code
Windowing implemented with TkInter

Key Features of CoqPIE
* CoqPIE saves Coq output after each proof step
* CoqPIE maintains an AST parse tree of the source code
 and Coq output
* AST incrementally updated as edits are made
* The relationship between AST nodes and source
 text is maintained.
* Complex tactics such as replay and lemma extraction
 built on top of AST representation
* CoqPIE manages the entire project--not just one file
* Treeview shows summary of all files and definitions
* Definitions and proofs that need to be recompiled
 due to changes to dependent definitions are highlighted
* Diference highlighting allows one to quickly see changes
 after each proof step

Dependency information
When a definition or lemma is edited, it can impact the
validity of other declarations that depend on it.
* CoqPIE automatically marks declarations that have
 been invalidated.

Mitigating Coq performance
One of the biggest sources of productivity problems is the
speed of the Coq theorem prover. Complex proofs can
take hours (or even days) to fully verify. A single step
can take a minute to process in a long proof.
(1) All intermediate goals are cached. Simply reviewing
 a proof does not invoke Coq.
(2) CoqPIE provides tactics to break up large proofs into
 lemmas--this often improves the performance of Coq
(3) CoqPIE will replace a proof script with admit if you are
 simply jumping over an entire theorem

Replay
Often the process of developing a theorem reveals
errors in the statement of a theorem. When that
statement is changed, the script needs to be adapted.
Changes may involve the following:
(1) Removing proofs for subgoals that vanish
(2) Creating stubs for new subgoals
 Often the error discovered in a theorem declaration
 is a missing antecedant
(3) Updating hypothesis names in tactics. Adding an
 antecedant may shift down hypothesis numbers. eg.
 “inversion H10” may need to become “inversion H11”
Replay works by having both the old and new output at
each step. CoqPIE can then analyze differences to find
what needs to change in the tactic.

Gray marks declarations
processed by Coq

Currently selected
proof step

treeview
shows
�les and
decls

Source �le text

Goal after selected proof step
changes in yellow

The Challenge of
Prover Productivity

