Ildentification In Missing Data Models Represented By Directed Acylic Graphs

Rohit Bhattacharya'™, Razieh Nabi'™, llya Shpitser’, James M. Robins?  [Z=x_ mmm
{rbhattacharya@, rnabi@, ilyas@cs. }jhu.edu, robins@hsph.harvard.edu ,~!»’ JO[IJ_I gsv Ilj{(?II)IT<£NS

* Equal contribution; T Dept. of Computer Science, Johns Hopkins University; * Harvard T. H. Chan School of Public Health

» Many popular missing data models can be expressed as » (a) and (d) are examples of DAGs where existing theory is
factorizations according to a DAG. sufficient for identification of the target law.

» Recent work [2, 4] proposed identification strategies for these
models based on causal inference methods.

» We show that these methods are unable to identify a large space
of identifiable target distributions. We propose, and illustrate via
examples, a new method that fixes based on a partial order, uses
selection bias on missingness, and treats missing variables as
hidden.
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Figure: (a) A DAG where the fixing operator must be performed on a set of vertices.
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Missing Data Models of a DAG @ 1= 0mld) = 0al) ( (b) A latent projection of a subproblem used for identification of p(l—'ﬁ\Xf)).

Figure: (a), (b), (c) are intermediate graphs obtained in identification of a
block-sequential model by fixing { Ry, A2, Rs} in sequence. (d) is an MNAR model that
is identifiable by fixing all Rs in parallel.

» Target law p(X(1). O) over
» Potentially missing random variables {Xf” . ,X,ﬁ”}
- Observed random variables {0, ..., On}. » The target law in (a) is obtained by fixing on a partial order where

>~ Nuisance law p(R|X"), O) over Ry, R, are incompatible and R, < Rs. X _’03‘\_‘ X" Os > s Os
. Missingness indicators R = {Ry, ..., Rx}. e | A, \l /l\
N\

Fixing Variables Other Than As

- Deterministic factors p(X|X(!), R)
. X;= X" if Rj=1and X; =7 if R; = 0.
» Missing data models of a DAG ¢
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» By chain rule of probability, (@) g () 0(9) (a) (b) ()
o(X,0.R = 1) Figure: (a) A DAG where Rs are fixed according to a partial order. (b) The CADMG
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» Consider a graph G with random variables V, fixed variables W XV X — XY U X3 — X3! : | : | ° :
. V ¢ Vis fixable if deg(V) N disg(V) = { V} x >< 1 | |
- Graphical fixing operator ¢(G) = CADMG G/(V \ {V}|W U {V}) R Mg R Y Mg X A2 X A2 A2
with edges into V removed. l l l l ) e) o
~ Probabilistic fixing operator ¢v(qv; G) yields a new kernel X; X X X X X Figure: A DAG where variables besides Rs are required to be fixed.
: qu(VIW)
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Fixability And Fixing In Missing Data X! — x5V Xo— X3 . s the algorithm complete?

/ x / » |s there a polynomial time formulation?
R

- ForZ C Dz € D(G), let Rz = {R| X" € ZUmbg(2), R; ¢ Z}, anc

mbg(Z) = (Dz U pag(Dz)) \ Z. We say Z is fixable in G(V \ X{), W) i l | |
> deg(Z) fa DZ g Z!
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