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Arithmetic Operations AML provides the usual op-
erations for integer and real arithmetic:

+ addition
&horbar; subtraction
* multiplication
/ real division
IDIV integer division

If both operands are integers and the result can be
represented as an integer, then the resulting value is
an integer. Otherwise, both operands are coerced to
real values and the resulting value is real. The two
division operators are exceptions to this rule; their
operands are coerced to the appropriate type (real or
integer respectively) before the operation is per-
formed. Reals are coerced to integers by rounding to
the nearest integer value.

Relational Operators Comparisons between any of
the scalar types may be made with the relational op-
erators : EQ, NE, LT, LE, GE, GT, and VS. The
first six operators correspond to the usual compari-
son operators of any programming language. They
evaluate to - 1 if the relation is &dquo;true&dquo; and to 0 if
the relation is &dquo;false.&dquo; The VS operator evaluates to
-1, 0, or 1, depending on whether its first operand
is LT, EQ, or GT than its second operand.
Comparisons may be made between strings or be-

tween any of the arithmetic data objects. Coercion
of an integer to real occurs if the comparison is be-
tween operands of different arithmetic types.

Logical Operators AML does not have distinct
Boolean data objects, using instead zero values to
represent &dquo;false&dquo; and non-zero values to represent
&dquo;true.&dquo; The AML logical operators AND, OR,
NOT, and XOR are defined for integer operands and
return integer values equal to the logical operations
applied to corresponding bits of the operands. The
NOT operator performs the ones complement of its
operand. The predefined integer constants TRUE
and FALSE have values - 1 and 0, corresponding to
twos-complement integers with all bits on and off re-
spectively.
The extended definition of the Boolean operators

to all of the bits in an integer representation provides
a concise, though implementation-dependent, means
for performing the bit manipulation that is often re-
quired in robotics applications.
Another &dquo;logical&dquo; operator for bit manipulation,

ROTL, coerces both operands to integers and then
rotates its left operand circularly left by the number
of bits equal to the value of its right operand.

Assignment In expression languages such as AML,
assignment, _, is treated like any other operator;
that is, it evaluates to the value assigned. The prece-
dence of the assignment operator is asymmetric,
having a higher precedence to its left than to its
right. Thus, an expression

assigns 3 to the variable Y then doubles that value
and assigns the result, 6, to X. Values are coerced
into the type of the target variable before being
stored. The value of the assignment expression is the
value of the target variable after the assignment is
made.

Often, it is useful to specify that a value be
coerced to a specific type without carrying out the
assignment. The coercion operator, IS, evaluates its
left operand to determine a type and then evaluates
its right operand and coerces the value to the type of
the left operand. For example, the value of

is 11. ’, -

Miscellaneous Scalar Operations The string concat-
enation operator, 1, specifies that its two operands,
both strings, are to be concatenated together into a
single string.
The reference expression,

& variable

produces a reference to the AML object bound to
the variable. Similarly, the expressions
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$ identifier ,

$ operator

produce primitive objects of type identifier and oper-
ator respectively.
The dereference operator, !, undoes the effects of

the reference operator. That is, it converts refer-
ences into values. For example, the AML code se-
quence

X: NEW 3; Y: NEW X; P: NEW &X;

declares X and Y to be integer variables with initial
value 3 and P to be a reference variable initially
pointing at X’s value (see Section 4.3.3). The value
of Y is set to 7, the value of X is set to 10, and the
value of P is set to a reference to Y’s value.
The type-determination operator, ?, returns a

value corresponding to the kind of language object
that follows it. Data objects are distinguished by
data type and, in the case of variables, by whether
or not they are bound to some value. Other language
objects include operators and function names.

4.2.3. Aggregate Operations

Aggregate Construction The bracketing symbols,
< and >, and the comma separator are the explicit
construction operators for aggregates. The evalua-
tion of the expression

yields the k-element aggregate containing the values
of el through ek.

Aggregate Concatenation Two aggregates may be
concatenated to form a third with the binary opera-
tor #. Thus, < 1,2,3 > # <4,<5,6» produces the
aggregate value < 1,2,3,4,<5,6».

Replication The replication operator, OF, evaluates
its left operand to determine the size of the aggre-
gate to be constructed and evaluates its right

operand to determine the value of each of its ele-
ments. For example,

3 OF ’X’ evaluates to <’XB’X’/X>
2 OF 3 OF .5 evaluates to «.5,.5,.5>,<.5,.5,.5».

Aggregate Assignment Assignments into aggregate
variables are performed &dquo;element-wise.&dquo; Thus, if u
is an m-element aggregate variable, the assignment
expression,

is equivalent to the aggregate expression

Similarly,

u = scalar

is equivalent to

and

is equivalent to 
’

scalar = ul

if m = 1 and is undefined otherwise.

,

Parallel Assignment Parallel assignment is the ex-
tension of the aggregate assignment rules to expres-
sions containing explicitly constructed aggregates for
the left-hand side of the assignment operator. The
expression

where & is the reference operator, causes element-
wise assignment to each of the variables of the left-
hand side according to the rules given above.
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Examples of parallel assignment are the following:

<&A, &B> = <B, A>;
-- Exchange values of A and B

< &X, &Y, &Z> = QPOSITION(< 1,2,3»;
-- Break up aggregate of position
-- values into its component parts.

These examples illustrate the two principal uses of
parallel assignment: elimination of extraneous tem-
porary variables and decomposition of an aggregate
into its constituent elements.

Element Selection AML provides generalized in-
dexing for referencing substuctures in aggregates.
The rules are recursively defined as follows.

Expression Elements Selected

If a variable data object, XX, has the associated
value of

the following index operations will correspond to the
values shown.

Expression Elements Selected

4.2.4. Mapping of Scalar Operators over Aggregate
Operands -

A fundamental and powerful characteristic of AML
is the definition of a simple semantics for defining

the extension of operators from scalar data objects
to aggregate objects. The rules for a binary scalar
operator, o, are shown below.

Expression Value - ,

where 
. 

I

sl , s2 = scalars;
ul , ... ,uk = arbitrary values; and 

’

vl , ... ,vk = arbitrary values.

The rules for unary operators are similar.

Expression Value 
’ 

I 

z

The following examples illustrate these rules.

4.2.5. Control Expressions

The control elements of AML include the normal
constructs of structured programming, as shown in
Fig. 3, and subroutines, which are described in Sec-
tion 4.3. The rules used to determine the truth of ex-

pression values are shown in Fig. 4.
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Fig. 3. AML control expres-
sions.

4.3. SUBROUTINES

Subroutines may be used or called from within any
expression. Although all subroutines are called the
same way, they may exist either as user-written
AML code or as primitive elements of the base
system.

4.3.1. Subroutine Calls

All subroutines are called in the following way

sname (expression/, ... , expressionk),

where sname is a subroutine name and expressionl
through expressionk are AML expressions whose
values are to be passed as actual parameters to the
subroutine. If no actual parameters are to be passed,
the parentheses may be omitted, unless they are
needed to distinguish actual parameters from aggre-
gate indices applied to a returned value.
The value of the subroutine call expression is the

value passed to a RETURN command executed by
the subroutine.

Examples of subroutine calls are the following.

MOVE(< 1,2>, POSITION + <0.5, 1.7>) 
.

SQRT(X*X+Y*Y+Z*Z) 
’

CABLEAUTOMATIONCfUe’,l+SQRT(16.), <15.55, 6.723>)

Recursive subroutine calls, that is, calls to subrou-
tines that are already active, are permitted.

Fig. 4. Truth values used in
AML conditional expres-
sions : any value not

&dquo;false&dquo; is &dquo;true.&dquo;

4.3.2. Subroutine Declarations

AML subroutines are declared as follows:

subrm: SUBR (formal ,..., formalk);
statementl ;
statement2 ; 

z

statementk;
END;

where subrnm is any nonreserved name in the lan-

guage, formall through formaln are formal parame-
ters (described below), and statementl through
statementn may be executable statements (i.e., AML
expressions), variable declarations, or subroutine
definitions. Optional labels may precede any execut-
able statement.

4.3.3. Variable Declarations

An AML subroutine may contain declaration expres-
sions to define, allocate, and initialize data variables
to be used by the subroutine. The form of a declara-
tion is

vname: mode expression;

where vname is the name of the variable being de-
clared, mode specifies how and when storage is to
be allocated, and expression is any AML expression
(except for a declaration) whose value determines

’ the type and initial value of the variable.

New Storage A mode of NEW indicates that a new
copy of storage should be allocated for the variable

upon each entry into the subroutine and deallocated
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when the subroutine returns. The expression is eval-
uated on each allocation to determine a type and ini-
tial value.

Static Storage Variables declared wtih STATIC
mode have their storage allocated and initial values
determined during the initial entry into the subrou-
tine. During subsequent entries the variable values
are retained from the previous call.

4.3.4. Formal Parameters

Formal parameters may be variable names, reference
parameters, or aggregates of formal parameters.

Value Parameters The use of a simple variable
name as a formal parameter means that the corre-
sponding actual parameter expression is to be evalu-
ated. When the subroutine is entered, the variable
name is bound to temporary storage holding that
value.
For example, consider the subroutine

SQUAREIT: SUBR(V);
V-V~V;
RETURN(V);
END;

If the value of the variable is 3, then
SQUAREIT(X) would return 9 but would not mod-
ify X.

Reference Parameters Typically, reference parame-
ters are used to pass structures whose values are to
be modified as a side effect of subroutine calls or
that are too large to be passed efficiently as values.

Placing the dereferencing operator, !, in front of a
variable name in a formal parameter list specifies
that the corresponding parameter is to be passed by
reference rather than by value. This means that if
the corresponding actual parameter value is a refer-
ence, the formal parameter variable name will be
bound to the object referred to rather than to the ref-
erence value.
For example, consider the subroutine

SETV: SUBR(!P,Q);

P = Q;
END; .

Then SETV(&X,3) would set the value of X to 3.
The AML interpreter evaluates actual parameters

corresponding to reference formals as if they are the
left-hand sides of assignment expressions. In other
words, simple variable names and index expressions
produce references to the corresponding values
rather than the values themselves. Consequently,

SETV(X,Y) is equivalent to X = Y

SETV(&X,Y) is equivalent to X = Y

SETV(X(I),3) is equivalent to X(I) = 3.

Aggregate Parameters A formal parameter may be
an aggregate of formal parameters. The aggregate as-
signment rules are used to associate the elements of
the aggregate being passed to the subroutine with the
elements of the formal parameter aggregate. For ex-

ample,

where GIANT is defined as

GIANT: SUBR(<a,b,c,d>);

END;

would bind a to ‘fee’, b to ’fie’, and so on.

Optional and Excess Parameters Any formal pa-
rameters for which there are no corresponding actual
parameter values are unbound upon entry to the sub-
routine. Similarly, any excess actual parameters are
ignored.
The ? operator is often used to determine if an op-

tional parameter has been specified in a particular
call. For example,

OUTPUT-SUBR: SUBR(STUFF,OUT-CHAN);
OUT-CHAN: NEW IF ?OUT-CHAN

THEN OUT_CHAN
-- Specified ~ use it
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ELSE DEFAULT-OUT-CHAN;

~ 

- unspecified # default

WRITE(OUT_CHAN, STUFF);

END;

PARMS On entry to any subroutine, the variable
PARMS is always bound to an aggregate consisting
of all actual parameter values passed to the subrou-
tine. No implicit dereferencing is done. Thus, in the
call SETV(X,3,4), PARMS would be bound to the
aggregate < &X,3,4 >.

4.3.5. Returning Values

Subroutines return values to their calling environ-
ment by calling the fundamental subroutine,
RETURN:

RETURN( expression ),

where expression is any AML expression. The value
produced is returned as the value of the subroutine
calling RETURN. If the expression is omitted, the
null aggregate is returned. Similarly, if the subrou-
tine evaluation reaches the END statement, the null
aggregate is returned.

4.3.6. Subroutine Execution

After all actual parameters have been evaluated, the
subroutine is evaluated as follows:

1. The variable PARMS is bound to an aggre-
gate of all actual parameters.

2. All formal parameters are bound left-to-right.
3. All local variable declarations, statement

labels, and local subroutine definitions are
processed in the order they appear in the
subroutine body.

4. The executable statements (i.e., the AML ex-
pressions) in the subroutine body are evalu-
ated in the order they appear in the subrou-
tine body.

When the subroutine returns, or control passes out
of the subroutine because of a nonlocal BRANCH or

QUIT command, the following steps are performed:

1. If a CLEANUP command has been executed
for this subroutine activation, the subroutine
specified by the command is called.

2. All bindings performed in steps 1-3 are un-
done, and the previous bindings are restored.

3. Any temporary storage allocated for NEW
variables and actual parameters is relin-

quished.
4. Control is passed to the calling AML expres-

sion or to a labeled statement, as appropri-
ate.

5. AML Commands 
z

AML commands are simply predefined subroutines
that define the semantic functions for robotics, math-
ematical calculation, I/O, and so on. No syntactic
distinction is made between these routines and any
other subroutine in the system (see Section 4.3).
These functions may exist either as system-defined
primitives written in the implementation language of
the system or as AML subroutines that are almost

always defined as part of the base system.
The semantic environment in which a user’s AML

program executes is thus defined by the semantics of
these routines, together with any additional AML li-
braries that may have been selected by the user.
Once an AML subroutine is loaded into the user

workspace, it effectively becomes part of the sys-
tem. Thus, a GRASP subroutine could be used by a
naive user in exactly the same manner as the more
primitive MOVE command. This transparency pro-
vides a natural growth path for extensions to the
system through the use of functional subroutine li-
braries.

Commands can be classified, roughly, into several
categories:

Fundamental subroutines
Calculational subroutines
Robot and sensor I/O commands
System interface commands
Data processing commands

 at JOHNS HOPKINS UNIVERSITY on September 9, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


30

Fig. 5. Fundamental
subroutines.

Each category is discussed further below.
The list of AML commands is not complete. We

expect continuing research and practical experience
to help us identify new and different functions. As
this happens, the research AML system should
evolve to include additional commands.
New commands usually have their initial imple-

mentation as AML subroutines. When greater com-

putational efficiency is required, these routines are
often recoded in the underlying system implementa-
tion language without changing their functional be-
havior. The migration of new functions from AML
libraries to built-in system commands was antici-

pated in the original design and has already occurred
for several functions in our research system.

5.1. FUNDAMENTAL SUBROUTINES

Fundamental subroutines (Fig. 5) are an essential
part of the AML language definition, although they
are called just like any other subroutine. Generally,
they are concerned with the flow of control within
the language interpreter. For example,

RETURN is used to return a value from a subrou-
tine.

BRANCH is used to cause an unconditional trans-
fer of control.

QUIT is used to cause a return to a specified level
of invocation of the interpreter.

CLEANUP is used to set a subroutine exit trap.
ERRTRAP is used to set a subroutine error

handler.
APPLY is used to call a subroutine with a pro-

gram-generated set of arguments.

MAP is used to apply a subroutine element-wise
to aggregates.

Several of these subroutines, especially RETURN
and BRANCH, are used extensively even by naive
users of the language. Others are used primarily by
application writers in building subroutine libraries or
packages.

5.2. CALCULATIONAL SUBROUTINES

Figure 6 illustrates subroutines that perform data
transformations on their arguments. Several subcate-

gories may be recognized.
First, there are mathematical functions that oper-

ate on numbers, such as absolute value, square root,
trigonometric subroutines, and so on. They all follow
the standard AML mapping rules for aggregate and
scalar operations. For example,

the value of

SQRT(< 1.0,4.0,<9.0,1~.0»)
is 

’

< 1.0,2.0,<3.0,4.0».
Similarly, the value of

AT AN(SQRT( <1.,3.»* 10, 10)
is <45.,60.>.

A second class of calculational commands is used
to extract attribute information about data objects.
For example, LENGTH returns the number of char-
acters in a string, and AGGSIZE returns the number
of elements in an aggregate.
A third class provides a set of routines for ma-

nipulating strings, such as locating and extracting
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Fig. 6. Typical calculational
subroutines in research
AML system. Note that
only a subset of available
functions is shown.

substrings from a longer string. In addition, it in-
cludes routines for packing and unpacking binary
data into and out of AML strings and converting be-
tween numeric and corresponding string representa-
tions.
A fourth class implements various matrix and vec-

tor operations. A number of these functions have
been borrowed from APL. For example, IOTA {n)
generates an aggregate of ascending integers from 1
to n. Similarly, SELECT extracts a masked subset
of elements from an aggregate. Other members of
this class implement standard operations (such as
inner products and transpose of a matrix) from linear
algebra. Still others provide conversions among vari-
ous ways of representing rotations.

5.3. ROBOT AND SENSOR I/O COMMANDS

Figure 7 illustrates subroutines that specialize the
system for robotics applications. In accord with the

language philosophy, system primitives mainly pro-
vide low-level functions; higher-level functions are
provided by AML subroutines that use these primi-
tives.
As with calculational commands, several sub-

classes may be recognized. The first and perhaps
most obvious class is concerned with kinematic con-
trol of the robot. The primitive MOVE statement
specifies a coordinated motion of a specified joint or
set of joints to a specified goal or goals. Joints are
specified by small integers and goals are specified by
numbers giving inches for linear joints and degrees
for revolute joints. For example,

MOVE(1,10.2); -- Moves joint 1 to 10.2
MOVE (<1,2>,0); -- Moves joints 1 and 2 to 0.0

MOVE( <4,5>, <30,90»; -- Moves joints <4,5> to <30,90>.

Each MOVE produces a coordinated trajectory con-
sisting of acceleration, constant-speed travel, decel-
eration, and an optional wait for final settling. All
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Fig. 7. Typical robot and
sensor I/O commands.

joints accelerate and decelerate together and arrive
at their final goal simultaneously. The user can con-
trol each phase of the trajectory through parameters
to the motion statement or through global context
commands (SPEED, ACCEL, DECEL). An optional
set of sensor monitor numbers may be specified with
the motion command (see discussion of MONITOR,
below). If any of these monitors &dquo;trips&dquo; before the
motion is complete, the trajectory is halted at that
point, and the motion enters its settling phase.
The MOVE command returns once the motion is

completed. The AMOVE command returns control
as soon as the motion is started, thus allowing
the user to overlap computation with motion.
WAITMOVE may be used to wait for completion of
a motion. Thus, MOVE could (in principle) have
been implemented as

MOVE: SUBR;

APPLY($AMOVE,PARMS);
WAITMOVE;
END;

but was common enough to justify having a separate
instance. Similarly, DMOVE, which makes an incre-
mental motion of joints, and GUIDE, which places
joints under teleoperator control, could have been
implemented in AML but are supplied as system
routines for convenience and efficiency.
STOPMOVE causes the currently active motion to

be suspended and returns an aggregate of parameters
that can be APPLY’d to AMOVE to restart the mo-

tion, as illustrated in Section 5.4.
The QGOAL command returns the most recent

joint goal(s) computed by the real-time, trajectory-
generation software and passed on to the joint con-
trollers, and QPOSITION returns the present actual
position of a joint or set of joints.
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Fig. 8. Typical system inter-
face commands.

Code listing I. The atten-
tion key service.

A second subclass is concerned with the robot
state as a whole. For example, STARTUP instructs
the real-time system to turn on arm power, and
SHUTDOWN instructs it to turn it off. Similarly,
FREEZE instructs the real-time system to prohibit
all motion and tightens the acceptable tolerances
used by the real-time safety monitoring.
A third subclass deals with sensor inputs and out-

puts. The DEFIO command defines logical &dquo;sen-
sors&dquo; and &dquo;drivers&dquo; as contiguous subfields of 16-bit
input and output hardware registers in the system
controller and returns small integers that may be
used to refer to the entities defined. The user can

optionally define scale and offset factors that may be
used to convert between hardware values (which are
all integers) and floating-point numbers correspond-
ing to engineering units.
The SENSIO command is used to perform I/O of

values under direct control of AML programs.
A final subclass allows the user to specify real-

time monitoring of sensor values. The MONITOR
command tells the real-time system to begin reading
a specific sensor or set of sensors at regular time in-
tervals and returns a small integer or set of integers

identifying the monitor(s). A specified test, such as
checking to see if the value is outside user-specified
limits, is performed. If the test succeeds, the
monitor is tripped and a flag set. The QMONITOR
command is used to query the flag and the
REMONITOR command provides an atomic query-
with-reset capability. An optional subroutine may be
specified with the MONITOR command. If this sub-
routine is specified, the transition from untripped to
tripped state causes the AML program to be inter-
rupted by a call to the specified subroutine.

5.4. SYSTEM INTERFACE COMMANDS

Figure 8 illustrates subroutines that provide control
over the interactive interface of the AML execution

environment. Examples include BREAK, which in-
vokes the terminal command processor; LOAD and

UNLOAD, which control what objects are in the
AML program space; KEY, which allows the user to
associate interrupt subroutines with console key
events, and so on. For example, the console &dquo;atten-
tion&dquo; key service is provided by an AML subroutine
as shown in Code Listing 1.
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Fig. 9. Typical data pro-
cessing 1/0 subroutines.

Fig. 10. Matrix and vector
product.

The call

KEY(2,$ATTN);

associates ATTN with console key number two.

5.5. DATA PROCESSING COMMANDS

Figure 9 illustrates subroutines that provide access
to the terminal and other data processing peripher-
als. The basic model for all I/O is a stream-oriented
transfer of bytes to or from a logical port called a
channel. A physical device or file is associated with
a channel through the use of an OPEN command;
subsequent transfers are performed in an essentially
device-independent manner. This permits a great
deal of flexibility in constructing application pro-
grams and reduces the number of special utilities
that must be written. (For example, listing a text file
to a terminal or printer can be accomplished by a
single COPY utility). It also makes application pro-
grams and (more important) system packages rela-
tively independent of the quirks of individual de-

vices. A POINT command is used to position a
read/write cursor associated with each logical chan-
nel, thus allowing random access to files. An attempt
to POINT the cursor of a channel associated with a

serial device (such as a printer) causes an error.

6. Examples

A key notion in the design of AML was that specific
application programs would make extensive use of
previously written subroutine libraries. The exam-
ples given in this section are drawn from packages
designed for light assembly and materials-handling
applications. The subroutines shown have been sim-
plified somewhat for ease of understanding. Enough
detail is shown, however, to illustrate the nature of

typical AML packages and application codes.

f .1. MATRIX AND VECTOR PRODUCT

Figure 10 is a routine for implementing the normal
matrix and vector product functions of linear alge-
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Fig. I]. eartesian frame of
robot’s gripper.

bra. Vectors are represented by aggregates of num-
bers, and matrices are represented by aggregates of
vectors corresponding to the rows of the matrix.
IS--MATRIX is a simple AML subroutine that uses
AGGSIZE to decide whether an aggregate is a vec-
tor or a matrix.

6.2. CARTESIAN FRAME OF ROBOT’S GRIPPER

The subroutine shown in Fig. 11 computes a
&dquo;frame&dquo; transformation giving the coordinate system
of a defined point in the Research robot’s gripper.
This frame is represented as an aggregate

<p,<Rx,Ry,Rz»

in which p is a vector giving the displacement of a
point in the fingers relative to the robot’s coordinate
system, and < Rx,Ry,Rz > is a matrix giving the ori-
entation of the wrist. (Rz gives the direction from
the fingers back up to the wrist, and Ry gives the di-
rection between the fingers.)

6.3. CENTERING GRASP

Figure 12 illustrates a typical AML library subrou-
tine for centering the gripper on an object and grasp-
ing it with a specified pinching force. The technique
used is similar to one developed by R. Paul and used
in the Stanford WAVE (Bolles and Paul 1973) and
AL (Mujtaba and Goldman 1979) systems.
On entry, the MONITOR command is APPLY’d

to an actual parameter list generated by

PINCH_FORCE(F) (see Section 6.4). This command
instructs the real-time system to begin monitoring
the gripper-finger pinch sensors. The variable
FMONS is bound to a set of small integers identify-
ing the monitoring activity required. A CLEANUP
command is then used to tell the AML interpreter
that subroutine CLN is to be called whenever
GRASP is exited, ensuring that the monitoring activ-
ity will be terminated.
The MOVE command is then used to close the

gripper until (1) one of the monitors identified by
FMONS is tripped, or (2) the gripper reaches the
minimum specified opening.

If one of the force monitors has tripped, then the
corresponding finger has contacted the object. The
subroutine then moves the robot so that that finger
remains in contact while the gripper closes. When
both monitors trip, the gripper has been centered on
the object.

If the gripper closes to the minimum specified dis-
tance without encountering the object or if the final
gripper opening exceeds the allowed maximum, ap-
propriate error codes are returned. Otherwise, the
string ’OK’ is returned to indicate success.

6.4. SENSOR-MONITORING SPECIFICATIONS

The declarations illustrated in Fig. 13 are taken from
the same AML library that includes GRASP. They
are intended to facilitate specification of sensor-mon-
itoring conditions to be used by other subroutines in
the package. For example, consider the AML code,
shown in Code Listing 2.
APPROACH-MOVE and FINAL-Q4OVE are AML
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Code Listing 2. Code to
move the gripper to a speci-
fied target position while
spacing it to 3.5 in.

subroutines that move the gripper to a specified off-
set relative to a target frame coordinate system; the
principal difference between them is that the latter
performs more careful nulling of position errors be-
fore returning. The sequence above moves the grip-
per to a specified target position while opening it to
3.5 in. Motion is stopped as soon as the electric eye
built into the fingers is obstructed. The gripper is
then moved down along the finger axis for another
inch until the gripper force sensors detect a force in
excess of 3.0 oz. (SLOWLY is an aggregate speci-
fying speed and acceleration parameters.) Finally,
the gripper is backed off 0.1 in. and the object be-
tween the fingers is grasped.

6.5. PALLET BOOKEEPING PACKAGE

Figure 14 illustrates AML subroutines for use with
&dquo;palletizing&dquo; applications such as the one illustrated
in Section 6.6.
The PALLET subroutine is used to create and ini-

tialize a data structure for use by other routines in
the package. The subroutine examines the optional
PLACE parameter to determine the initial coordinate
system of the pallet and then returns an aggregate
containing the relevant data.
The PALLET-GOAL subroutine returns the coor-

dinate system of the presently indexed pallet ele-
ment. The INDEX-PALLET subroutine advances
the pallet indices. If all pallet positions have been
exhausted, it returns ’FULL’; otherwise, it updates
the goal value stored in the data structure and re-
turns ’OK’. Note that a different implementation of
these subroutines might compute the pallet goal each
time it was required, rather than storing it. Such
changes would be transparent to the user.

The RESET-PALLET subroutine sets the pallet

indices to initial values and (optionally) updates the
coordinate system of the pallet.

6.6. INTELLIGENT PICK-AND-PLACE PROGRAM

The simplified program shown in Fig. 15 illustrates
the use of AML library functions to perform a typi-
cal palletizing application. Many details (such as
code for operator communication, system calibra-
tion, and additional error recovery) that would prob-
ably be present in a production program have been
omitted. The code shown, however, gives an idea of
what an application programmer might have to write.
The problem is to transfer objects from input pal-

lets to output pallets of a different size. Only objects
whose diameters are larger than 1.8 in. and smaller
than 2.2 in. are to be moved. The input pallets are
assumed to be placed manually into the robot’s work
area. The output pallets are assumed to be fed on a
shuttle. ,

The program starts by declaring variables for the
pallets and some I/O points for controlling the shut-
tle. It then displays a message to the operator asking
whether to calibrate the pallet locations, and
prompts the operator with the expected reply
(’YES’). If calibration is requested, then the appro-
priate sensing and computation is performed.
The program then begins the main production

cycle. First, it calls INDEX-PALLET to increment
the indices of the output pallet. If the pallet is full
(exhausted), the operator is requested to replace it
with an empty pallet. The FREEZE command is
used to disable robot motion while the operator is

replacing the pallet. This command prevents the sys-
tem software from changing the robot position goals
under any circumstances and tightens the position
tolerances used by the real-time safety monitoring.

 at JOHNS HOPKINS UNIVERSITY on September 9, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


38
 at JOHNS HOPKINS UNIVERSITY on September 9, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


39
 at JOHNS HOPKINS UNIVERSITY on September 9, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


40

The AML program busy-waits for the operator to
push the &dquo;run&dquo; button to remove the robot from
FREEZE mode and then calls RESET-PALLET to
set the pallet indices back to < 1,1 >.
The input pallet indices are then incremented. If

all pallet positions have been exhausted, then a con-
trol sequence is generated to activate the shuttle.
Once a new pallet has been fetched, the pallet in-
dices are reset.
The program then moves the gripper to the current

input pallet goal and grasps the object. If the grasp-
ing sequence fails, the program opens the gripper,
moves the robot clear, and branches back to try the
next pallet position. Real production programs would
possibly use more sensing on the approach moves
and would probably include additional program logic
to detect repeated grasping failures and initiate some
other error recovery.
Once the object has been successfully grasped, the

program moves it to the destination pallet, releases
it, and branches back to restart the cycle. Note that
it would be relatively simple to add additional pro-
cessing or inspection steps, such as using the gripper
force sensor to weigh the objects being moved.

7. Experience and Conclusions

This paper has described an enhanced version of the
AML language presently in use at the IBM T. J.
Watson Research Center. Although the language de-
scribed is very similar to the language used to con-
trol the IBM RS 1 Manufacturing System, it has
been enhanced to support our present research activ-
ities. Since these enhancements are experimental,
they may never be part of any IBM product.

Earlier versions of AML have been operational for
four years at the IBM Research Center and at se-
lected IBM manufacturing sites around the world.
More recently, the RS 1 version of the language has
been used in a limited number of non-IBM sites as
well. The language has been used to program a num-
ber of applications, including assembly, intelligent
materials movement, inspection, and testing. It has
been used successfully by a variety of people, in-
cluding researchers, professional programmers, man-

ufacturing engineers, and (through very simplified in-
terfaces) direct manufacturing personnel.
The experience gained has shown that AML has

the power and flexibility to allow development of
simple programs in a matter of hours. More sophisti-
cated applications, complete with operator inter-
faces, calibration packages, and data base links,
have been developed in periods ranging from a few
days to several months. In all cases, the interactive
debugging facilities of the language system have
proved especially important.
We have observed that the availability of canned

subroutines for difficult or sophisticated program ele-
ments significantly reduces the time required to
produce a working program. Users often load pack-
ages of such subroutines and call them exactly like
system primitives, thus confirming a major design as-
sumption of the language. However, many users are
also willing to customize previously defined pack-
ages to meet their particular needs. On several occa-
sions, manufacturing engineers with limited prior
programming experience have gradually developed
considerable programming skill, in part by copying
the coding style exhibited by expertly written AML
programs. This experience confirms our original de-
sign hypothesis that a robot language should be a
powerful and modular general-purpose programming
language that can be used by a continuum of users.
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