
Language in 10 minutes
• http://mt-class.org/jhu/lin10.html

• By Friday: Group up (optional, max size 2), choose
a language (not one y’all speak) and a date

• First presentation: Yuan on Thursday

• Yuan will start assigning groups and people who
miss the deadline

Brief review

!

• Last week: language modeling: p(e)

• This week: translation modeling: p(f | e)

• In particular, alignment

p(e | f) = �D�U�J�P�D�[
e

p(f | e)p(e)

Brief review: language
modeling

• Modeling P(e)

• Dumb idea: maintain a huge table of complete sentences
and relative frequencies

• Better idea: n-grams

• Chain rule and conditional independence for an n–1
word history

• Problems remain, but they work pretty well

• Not discussed: smoothing

Alignments

• How to model p(f | e)?

• What’s the dumb idea?

p(e | f) = �D�U�J�P�D�[
e

p(f | e)p(e)

Alignments
• Each French word f is generated by exactly one

English word e

• Alignment vector a = 2,3,4,5,6,6,6

NULL And the program has been implemented

Le programme a ete mis en application

Alignments
• Each French word f is generated by exactly one

English word e

• Alignment vector a = 0,0,0,0,2,2,2

NULL And the program has been implemented

Le programme a ete mis en application

Alignments

• How many possible alignments?

• Each of m French word has l=|E|+1 choices, so
ml+1

A bit more formally

• Define a conditional model projecting the
translations through the alignments

• We also introduce a conditional independence
assumption: every word is translated independently

p(f1, f2, . . . , fm | e1, e2, . . . , el, m)

=
!

a�A

p(f1, . . . , fm, a1, . . . , am | e1, . . . , el, m)

Brainstorm

• Is this idea a good one?

• What are some of its limitations?

• What else should be modeled?

5 minutes, with a neighbor or two

IBM Alignment Models

• Proposed by IBM researchers (under CLSP’s Fred
Jelinek) in the late 80s / early 90s

• Aside: “Rip Van Winkle” event

• Transcript at cs.jhu.edu/~post/bitext

IBM Model 1

• Input: English words, e1 … el, French length m

• For each French word position i ! 1…m

• Choose an English source index

• Choose a translation

q(j | i, l, m) =
1

l + 1

t(fi | eai)

IBM Model 1

• t(f | e) is just a table

f e p(f | e)

le the 0.42

la the 0.4

programme the 0.001

a has 0.78

… … …

IBM Model 1
• Important notes

• Alignment is based on word positions, not word
identities

• Alignment probabilities are uniform 
 

!

• Words are translated independently

IBM Model 1

• On board: p(f, a | e) = ?

NULL And the program has been implemented

Le programme a ete mis en application

IBM Model 2

• Input: English words, e1 … el, French length m

• For each French word position i ! 1..m

• Choose an English source index

• Choose a translation

q(j | i, l, m)

t(fi | eai)

IBM Model 2
• Only difference:  

q(j | i, l, m) is now a table
instead of uniform

• What do you think of this
model?

• How many parameters are
there?

j q(j | 1, 6, 7)

1 0.27

2 0.14

… …

48 1E-75

Tasks
• The models tell us how (we pretend) the data came

to be

• There are now two tasks we care about

• Inference: given a sentence pair (e,f), what is the
most probable alignment?

• Estimation: how do we get the parameters t(f | e)
and q(j | i, l, m)?

Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and
q(•))

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application

Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and
q(•))

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application

Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and
q(•))

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application

Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and
q(•))

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application

Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and
q(•))

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application

Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and
q(•))

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application

Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and
q(•))

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application

Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and
q(•))

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application

Homework 1
• The inference task is what you’re doing in

Homework 1

• The metric is Alignment Error Rate (AER)

• Alignment links are labeled as one of (S)ure or
(P)ossible, S ! P

• Precision: Recall: |A � P |
|P |

|A � S|
|S|

Homework 1
• Precision: Recall:  

|A � P |
|P |

|A � S|
|S|

�$�(�5(A | S, P) =
|A � S| + |A � P |

|A| + |S|

NULL And the program has been implemented

Le programme a ete mis en application

Task 2: Parameter
Estimation

• Computing alignments is useful as an intermediate
test of new alignment methods, but we actually
don’t care about the alignments themselves

• What we really need is to compute the parameters
of the model: t(f | e) and q(j | i, l, m)

Estimation
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application

Estimation
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application

Estimation
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application

Estimation
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application

Estimation
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application

Estimation
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application

Estimation
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application

Estimation
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application

Estimation from (e,f,a)
• Easy! Just like n-grams: count and normalize

(forget smoothing)

• Board exercise: what are the equations and values
if this were our corpus?

t(f | e) =
c(e, f)
c(e)

q(j | i, l, m) =
c(j, i, l, m)
c(i, l, m)

Estimation from (e,f)
• Unfortunately, we don’t have alignments!

• (Even more unfortunately, alignments are a fuzzy
concept)

• Chicken and egg problem

• If we had the alignments, we could compute
parameters

• If we had the parameters, we could compute the
alignments (how?)

Estimation from (e,f)
• This suggests an iterative solution:

Al
go

rit
hm

 1
 (h

ar
d

EM
)

initialize parameters t and q to something
repeat until convergence
 for every sentence
 for every target position j
 for every source position i
 if aligned(i, j)
 count(fj | ei) += 1
 count(ei) += 1
 count(j, i, l, m) += 1
 count(i, l, m) += 1
 t(f | e) = count(f, e) / count(e)
 q(j | i, l, m) = count(j, i, l, m) / count(i, l, m)

Estimation
• A few problems

• We don’t actually care about the alignments

• Bad init. might set us off in the wrong direction

• A “softer” approach: compute expectations over all
alignments

• Weight the accumulated counts by the alignment
probability

Estimation
• Each alignment link has a weight  
 
 
 

• Counts now use this “soft” value instead of a hard
count (1 or 0)

• Any issues here?

P (ai = j | ei , fj) =
q(j | i, l, m) · t(fi | ej)

! l
j ! =1 q(j� | i, l, m) · t(fi | ej !)

Estimation from (e,f)
• Old solution

initialize parameters t and q to something
repeat until convergence
 for every sentence
 for every target position j
 for every source position i
 if aligned(i, j)
 count(fj | ei) += 1
 count(ei) += 1
 count(j, i, l, m) += 1
 count(i, l, m) += 1
 t(f | e) = count(f, e) / count(e)
 q(j | i, l, m) = count(j, i, l, m) / count(i, l, m)

Al
go

rit
hm

 1
 (h

ar
d

EM
)

Estimation from (e,f)
• New solution

initialize parameters t and q to something
repeat until convergence
 for every sentence
 for every target position j
 for every source position i
 count(fj, ei) += P(ai = j | ei, fj)
 count(ei) += P(ai = j | ei, fj)
 count(j, i, l, m) += P(ai = j | ei, fj)
 count(i, l, m) += P(ai = j | ei, fj)
 t(f | e) = count(f, e) / count(e)
 q(j | i, l, m) = count(j, i, l, m) / count(i, l, m)Al

go
rit

hm
 1

 (s
of

t E
M

)

Estimation with EM
• Why does this work?

• We are accumulating evidence (soft counts) for
totally bogus alignments: all pairs of words that co-
occur, e.g., t(streetcar | le)

• It works for the same reason you were able to solve
the alignment exercise from the first day of class

• Words that co-occur frequently continually steal
probability mass from pairs that co-occur less often

Properties of EM
• The EM algorithm guarantees that data likelihood

does not decrease across iterations  
 
 
 
 
 

• EM can get stuck in local optima: subprime peaks
in the global likelihood function

ORJL(t, q | E, F) = ORJ
N!

n =1

"
p(f (n) | e(n))

=
N"

n =1

ORJ
"

a�A

p(f (n) , a | e(n))

Assorted notes

• There are many known problems with these
alignment models (garbage collection, initialization)

• Despite all this blabbing about modeling p(f | e),
the IBM models are not actually used for
translation!

• Who cares about alignment?

Thursday’s Agenda
• Read: Collins’ notes on Models 1 and 2, Koehn

Chapter 4, Knight’s MT workbook

• We’ll cover new models

• IBM Model 3, HMM model

• Time for questions on Homework 1 (due Feb. 17)

• Language in 10 minutes (Yuan)

