
Language in 10 minutes
• http://mt-class.org/jhu/lin10.html 

• By Friday: Group up (optional, max size 2), choose 
a language (not one y’all speak) and a date 

• First presentation: Yuan on Thursday 

• Yuan will start assigning groups and people who 
miss the deadline



Brief review

!

• Last week: language modeling: p(e) 

• This week: translation modeling: p(f | e) 

• In particular, alignment

p(e | f) = �D�U�J�P�D�[
e

p(f | e)p(e)



Brief review: language 
modeling

• Modeling P(e) 

• Dumb idea: maintain a huge table of complete sentences 
and relative frequencies 

• Better idea: n-grams 

• Chain rule and conditional independence for an n–1 
word history 

• Problems remain, but they work pretty well 

• Not discussed: smoothing



Alignments

• How to model p(f | e)? 

• What’s the dumb idea?

p(e | f) = �D�U�J�P�D�[
e

p(f | e)p(e)



Alignments
• Each French word f is generated by exactly one 

English word e

• Alignment vector a = 2,3,4,5,6,6,6

NULL And the program has been implemented

Le programme a ete mis en application



Alignments
• Each French word f is generated by exactly one 

English word e

• Alignment vector a = 0,0,0,0,2,2,2

NULL And the program has been implemented

Le programme a ete mis en application



Alignments

• How many possible alignments? 

• Each of m French word has l=|E|+1 choices, so 
ml+1



A bit more formally

• Define a conditional model projecting the 
translations through the alignments 

• We also introduce a conditional independence 
assumption: every word is translated independently

p(f1, f2, . . . , fm | e1, e2, . . . , el, m)

=
!

a�A

p(f1, . . . , fm, a1, . . . , am | e1, . . . , el, m)



Brainstorm

• Is this idea a good one? 

• What are some of its limitations? 

• What else should be modeled?

5 minutes, with a neighbor or two



IBM Alignment Models

• Proposed by IBM researchers (under CLSP’s Fred 
Jelinek) in the late 80s / early 90s 

• Aside: “Rip Van Winkle” event 

• Transcript at cs.jhu.edu/~post/bitext



IBM Model 1

• Input: English words, e1 … el, French length m 

• For each French word position i !  1…m 

• Choose an English source index 

• Choose a translation

q(j | i, l, m) =
1

l + 1

t(fi | eai )



IBM Model 1

• t(f | e) is just a table

f e p(f | e)

le the 0.42

la the 0.4

programme the 0.001

a has 0.78

… … …



IBM Model 1
• Important notes 

• Alignment is based on word positions, not word 
identities 

• Alignment probabilities are uniform 
 

!

• Words are translated independently



IBM Model 1

• On board: p(f, a | e) = ?

NULL And the program has been implemented

Le programme a ete mis en application



IBM Model 2

• Input: English words, e1 … el, French length m 

• For each French word position i !  1..m 

• Choose an English source index 

• Choose a translation

q(j | i, l, m )

t(fi | eai )



IBM Model 2
• Only difference:  

q(j | i, l, m) is now a table 
instead of uniform 

• What do you think of this 
model?  

• How many parameters are 
there?

j q(j | 1, 6, 7)

1 0.27

2 0.14

… …

48 1E-75



Tasks
• The models tell us how (we pretend) the data came 

to be 

• There are now two tasks we care about 

• Inference: given a sentence pair (e,f), what is the 
most probable alignment? 

• Estimation: how do we get the parameters t(f | e) 
and q(j | i, l, m)?



Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and 
q(•)) 

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application
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Task 1: Inference

• Input: a sentence pair (e,f), the model (t(•) and 
q(•)) 

• Knowledge: target words generated independently

NULL And the program has been implemented

Le programme a ete mis en application



Homework 1
• The inference task is what you’re doing in 

Homework 1 

• The metric is Alignment Error Rate (AER) 

• Alignment links are labeled as one of (S)ure or 
(P)ossible, S !  P 

• Precision:      Recall: |A � P |
|P |

|A � S|
|S|



Homework 1
• Precision:      Recall:  

|A � P |
|P |

|A � S|
|S|

�$�(�5(A | S, P ) =
|A � S| + |A � P |

|A| + |S|

NULL And the program has been implemented

Le programme a ete mis en application



Task 2: Parameter 
Estimation

• Computing alignments is useful as an intermediate 
test of new alignment methods, but we actually 
don’t care about the alignments themselves 

• What we really need is to compute the parameters 
of the model: t(f | e) and q(j | i, l, m)



Estimation
• Easy! Just like n-grams: count and normalize 

(forget smoothing) 

• Board exercise: what are the equations and values 
if this were our corpus?

NULL And the program has been implemented

Le programme a ete mis en application
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Estimation
• Easy! Just like n-grams: count and normalize 

(forget smoothing) 

• Board exercise: what are the equations and values 
if this were our corpus?

NULL And the program has been implemented
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Estimation from (e,f,a)
• Easy! Just like n-grams: count and normalize 

(forget smoothing) 

• Board exercise: what are the equations and values 
if this were our corpus?

t(f | e) =
c(e, f )
c(e)

q(j | i, l, m) =
c(j, i, l, m)
c(i, l, m)



Estimation from (e,f)
• Unfortunately, we don’t have alignments! 

• (Even more unfortunately, alignments are a fuzzy 
concept) 

• Chicken and egg problem 

• If we had the alignments, we could compute 
parameters 

• If we had the parameters, we could compute the 
alignments (how?)



Estimation from (e,f)
• This suggests an iterative solution:

Al
go

rit
hm

 1
 (h

ar
d 

EM
)

initialize parameters t and q to something 
repeat until convergence 
 for every sentence  
  for every target position j 
   for every source position i 
    if aligned(i, j) 
     count(fj | ei) += 1 
     count(ei) += 1 
     count(j, i, l, m) += 1 
     count(i, l, m) += 1 
 t(f | e) = count(f, e) / count(e) 
 q(j | i, l, m) = count(j, i, l, m) / count(i, l, m)



Estimation
• A few problems 

• We don’t actually care about the alignments 

• Bad init. might set us off in the wrong direction 

• A “softer” approach: compute expectations over all 
alignments 

• Weight the accumulated counts by the alignment 
probability



Estimation
• Each alignment link has a weight  
 
 
 

• Counts now use this “soft” value instead of a hard 
count (1 or 0) 

• Any issues here?

P (ai = j | ei , fj ) =
q(j | i, l, m) · t(fi | ej )

! l
j ! =1 q(j� | i, l, m) · t(fi | ej ! )



Estimation from (e,f)
• Old solution

initialize parameters t and q to something 
repeat until convergence 
 for every sentence  
  for every target position j 
   for every source position i 
    if aligned(i, j) 
     count(fj | ei) += 1 
     count(ei) += 1 
     count(j, i, l, m) += 1 
     count(i, l, m) += 1 
 t(f | e) = count(f, e) / count(e) 
 q(j | i, l, m) = count(j, i, l, m) / count(i, l, m)
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Estimation from (e,f)
• New solution

initialize parameters t and q to something 
repeat until convergence 
 for every sentence  
  for every target position j 
   for every source position i 
    count(fj, ei) += P(ai = j | ei, fj) 
    count(ei) += P(ai = j | ei, fj) 
    count(j, i, l, m) += P(ai = j | ei, fj) 
    count(i, l, m) += P(ai = j | ei, fj) 
 t(f | e) = count(f, e) / count(e) 
 q(j | i, l, m) = count(j, i, l, m) / count(i, l, m)Al
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Estimation with EM
• Why does this work? 

• We are accumulating evidence (soft counts) for 
totally bogus alignments: all pairs of words that co-
occur, e.g., t(streetcar | le) 

• It works for the same reason you were able to solve 
the alignment exercise from the first day of class 

• Words that co-occur frequently continually steal 
probability mass from pairs that co-occur less often



Properties of EM
• The EM algorithm guarantees that data likelihood 

does not decrease across iterations  
 
 
 
 
 

• EM can get stuck in local optima: subprime peaks 
in the global likelihood function

ORJL(t, q | E, F ) = ORJ
N!

n =1

"
p(f (n ) | e(n ) )

=
N"

n =1

ORJ
"

a�A

p(f (n ) , a | e(n ) )



Assorted notes

• There are many known problems with these 
alignment models (garbage collection, initialization) 

• Despite all this blabbing about modeling p(f | e), 
the IBM models are not actually used for 
translation! 

• Who cares about alignment?



Thursday’s Agenda
• Read: Collins’ notes on Models 1 and 2, Koehn 

Chapter 4, Knight’s MT workbook 

• We’ll cover new models 

• IBM Model 3, HMM model 

• Time for questions on Homework 1 (due Feb. 17) 

• Language in 10 minutes (Yuan)


