Language in 10 minutes

- http://mt-class.org/jhu/lin10.html
- **By Friday**: Group up (optional, max size 2), choose a language (not one y'all speak) and a date
- First presentation: Yuan on Thursday
- Yuan will start assigning groups and people who miss the deadline

Brief review

$$p(e \mid f) = \underset{e}{\operatorname{argmax}} \ p(f \mid e)p(e)$$

- Last week: language modeling: p(e)
- This week: translation modeling: p(f | e)
 - In particular, alignment

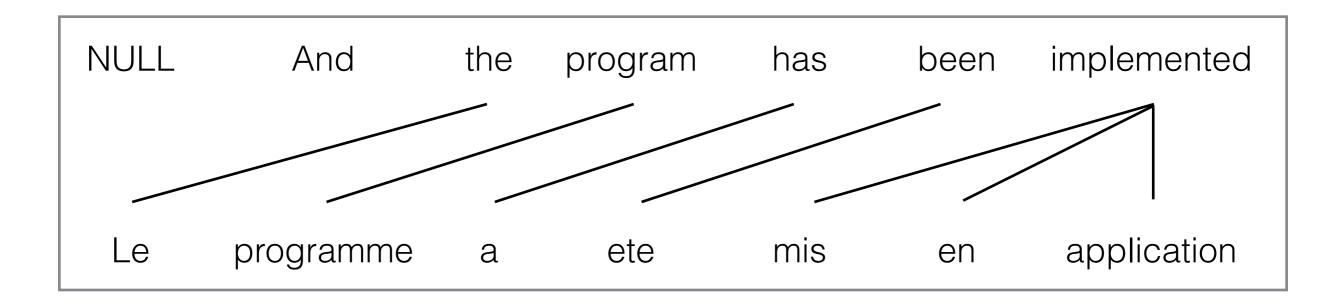
Brief review: language modeling

- Modeling P(e)
- Dumb idea: maintain a huge table of complete sentences and relative frequencies
- Better idea: **n-grams**
 - Chain rule and conditional independence for an n-1 word history
- Problems remain, but they work pretty well
- Not discussed: smoothing

$$p(e \mid f) = \underset{e}{\operatorname{argmax}} \ p(f \mid e) p(e)$$

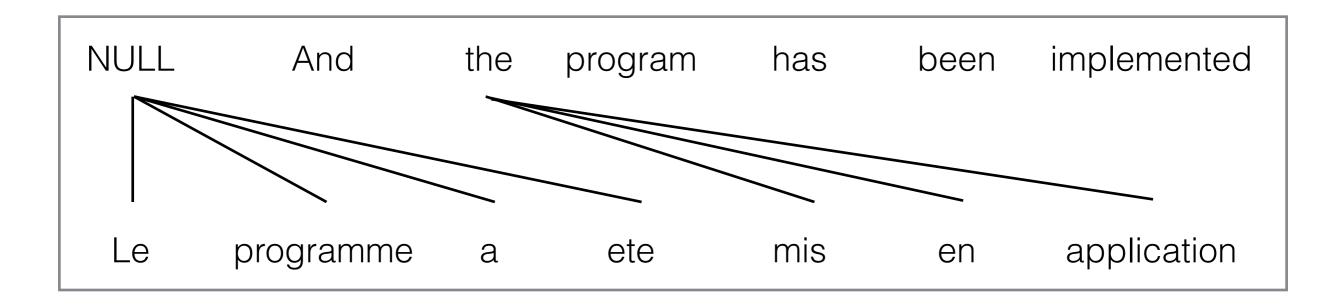
- How to model p(f | e)?
- What's the dumb idea?

 Each French word f is generated by exactly one English word e



• Alignment vector $a = \langle 2,3,4,5,6,6,6 \rangle$

 Each French word f is generated by exactly one English word e



• Alignment vector $a = \langle 0,0,0,0,2,2,2 \rangle$

- How many possible alignments?
 - Each of *m* French word has I = |E| + 1 choices, so m^{l+1}

A bit more formally

$$p(f_1, f_2, \dots, f_m \mid e_1, e_2, \dots, e_l, m)$$

$$= \sum_{a \in A} p(f_1, \dots, f_m, a_1, \dots, a_m \mid e_1, \dots, e_l, m)$$

- Define a conditional model projecting the translations through the alignments
- We also introduce a conditional independence assumption: every word is translated independently

Brainstorm

5 minutes, with a neighbor or two

- Is this idea a good one?
- What are some of its limitations?
- What else should be modeled?

IBM Alignment Models

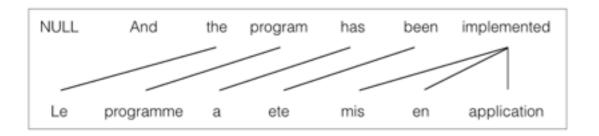
- Proposed by IBM researchers (under CLSP's Fred Jelinek) in the late 80s / early 90s
- Aside: "Rip Van Winkle" event
 - Transcript at cs.jhu.edu/~post/bitext

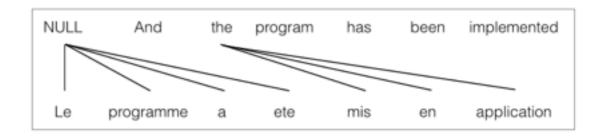
- Input: English words, e₁ ... e_l, French length m
- For each French word position *i* ∈ 1...m
 - Choose an English source index $q(j \mid i, l, m) = \frac{1}{l+1}$
 - Choose a translation $t(f_i \mid e_{a_i})$

t(f | e) is just a table

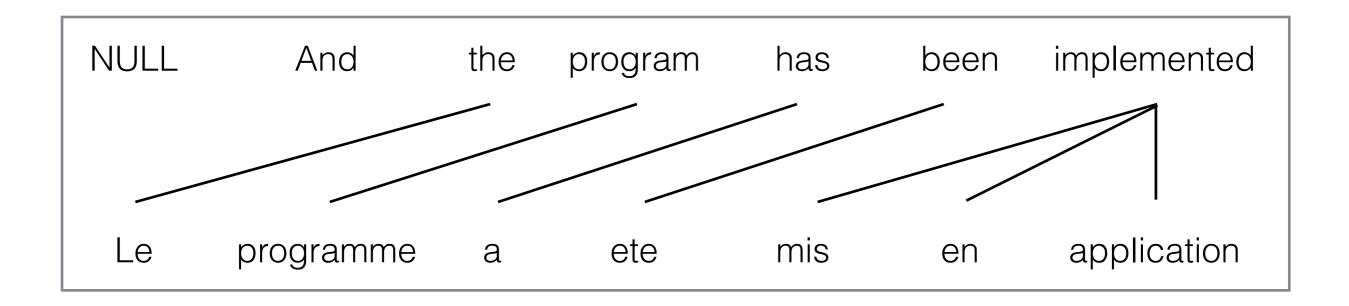
f	е	p(f e)
le	the	0.42
la	the	0.4
programme	the	0.001
a	has	0.78

- Important notes
 - Alignment is based on word positions, not word identities
 - Alignment probabilities are uniform





Words are translated independently



On board: p(f, a | e) = ?

- Input: English words, e₁ ... e_l, French length m
- For each French word position i ∈ 1..m
 - Choose an English source index q(j | i, l, m)
 - Choose a translation $t(f_i \mid e_{a_i})$

- Only difference:
 q(j | i, l, m) is now a table instead of uniform
- What do you think of this model?
- How many parameters are there?

j	q(j 1, 6, 7)		
1	0.27		
2	0.14		
48	1E-75		

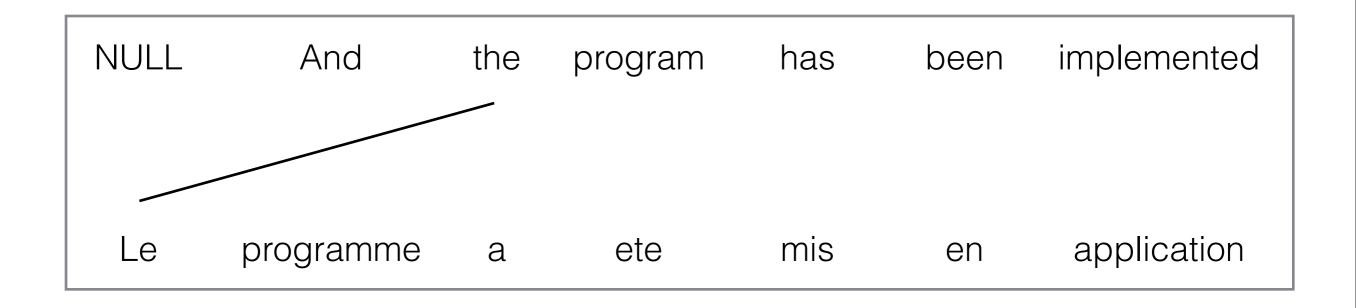
Tasks

- The models tell us how (we pretend) the data came to be
- There are now two tasks we care about
 - Inference: given a sentence pair (e,f), what is the most probable alignment?
 - Estimation: how do we get the parameters t(f | e) and q(j | i, l, m)?

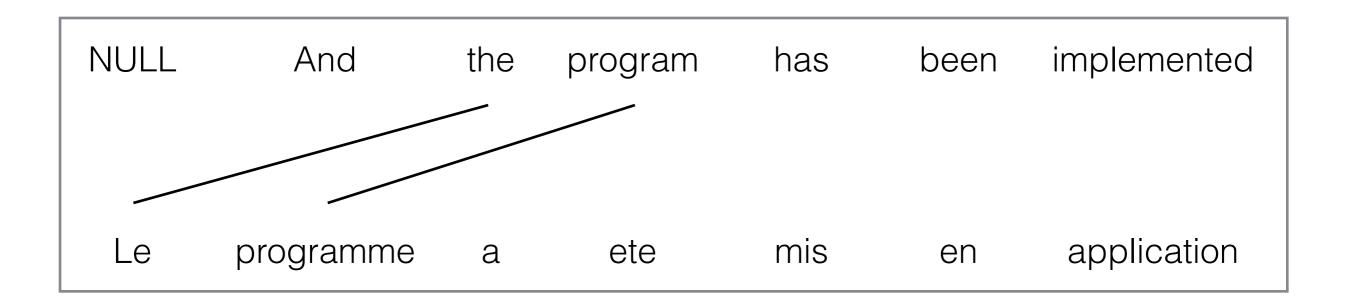
NULL And the program has been implemented

Le programme a ete mis en application

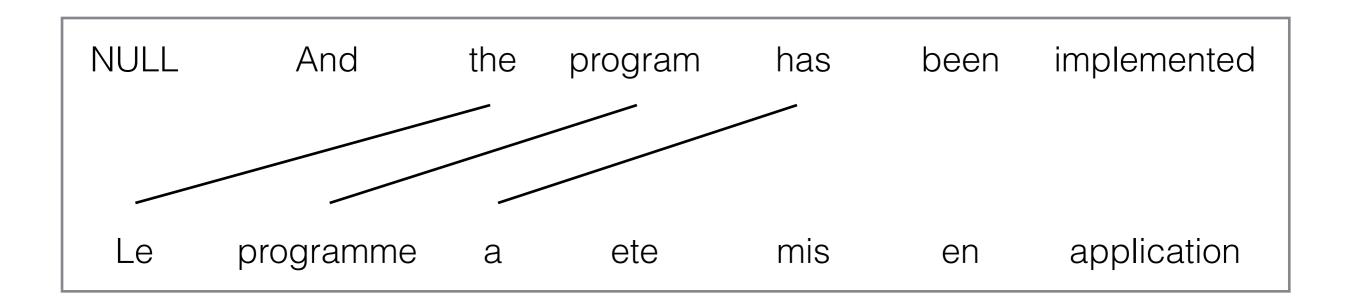
- Input: a sentence pair (e,f), the model (t(●) and q(●))
- Knowledge: target words generated independently



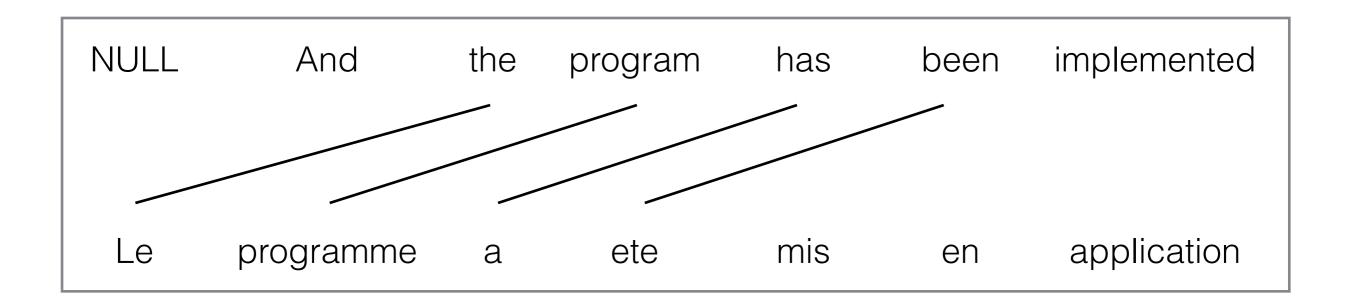
- Input: a sentence pair (e,f), the model (t(●) and q(●))
- Knowledge: target words generated independently



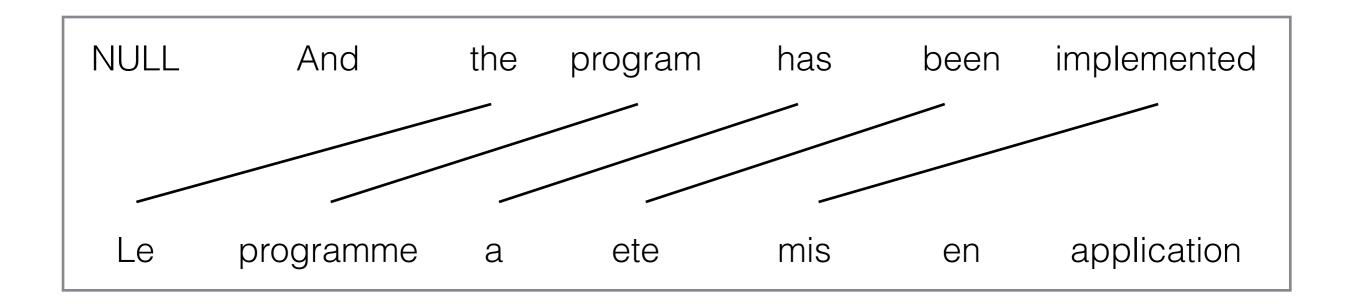
- Input: a sentence pair (e,f), the model (t(●) and q(●))
- Knowledge: target words generated independently



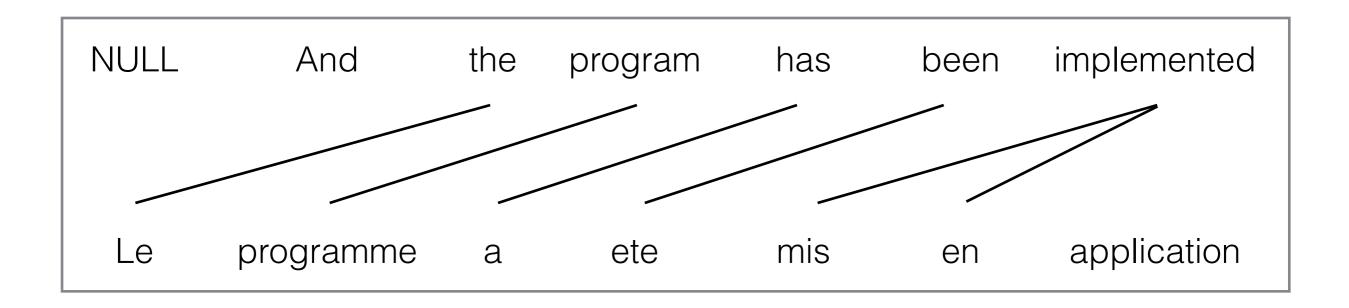
- Input: a sentence pair (e,f), the model (t(●) and q(●))
- Knowledge: target words generated independently



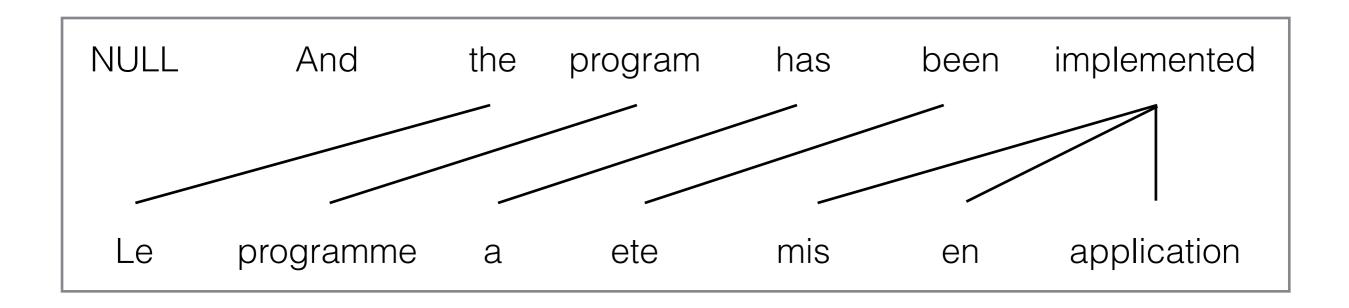
- Input: a sentence pair (e,f), the model (t(●) and q(●))
- Knowledge: target words generated independently



- Input: a sentence pair (e,f), the model (t(●) and q(●))
- Knowledge: target words generated independently



- Input: a sentence pair (e,f), the model (t(●) and q(●))
- Knowledge: target words generated independently



- Input: a sentence pair (e,f), the model (t(●) and q(●))
- Knowledge: target words generated independently

Homework 1

- The inference task is what you're doing in Homework 1
- The metric is Alignment Error Rate (AER)
 - Alignment links are labeled as one of (S)ure or (P)ossible, S ⊆ P

• Precision:
$$\frac{|A\cap P|}{|P|}$$
 Recall: $\frac{|A\cap S|}{|S|}$

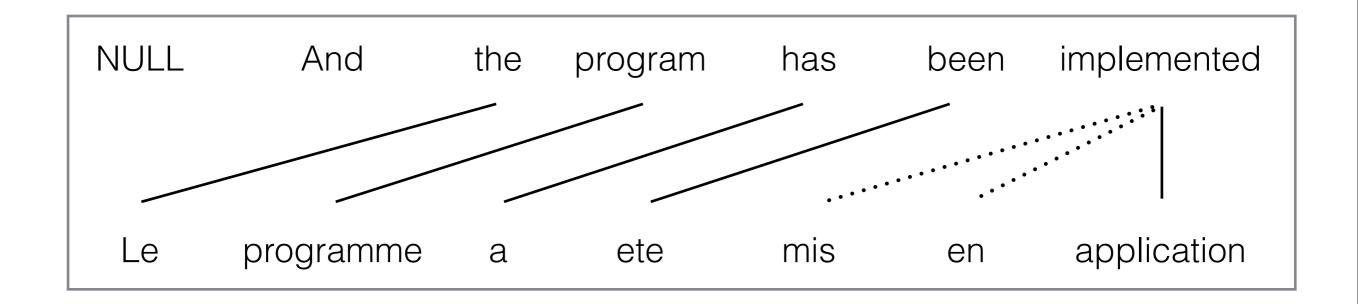
Homework 1

Precision:

$$\frac{|A \cap P|}{|P|}$$

Recall:
$$\frac{|A \cap S|}{|S|}$$

$$\mathsf{AER}(A \mid S, P) = \frac{|A \cap S| + |A \cap P|}{|A| + |S|}$$



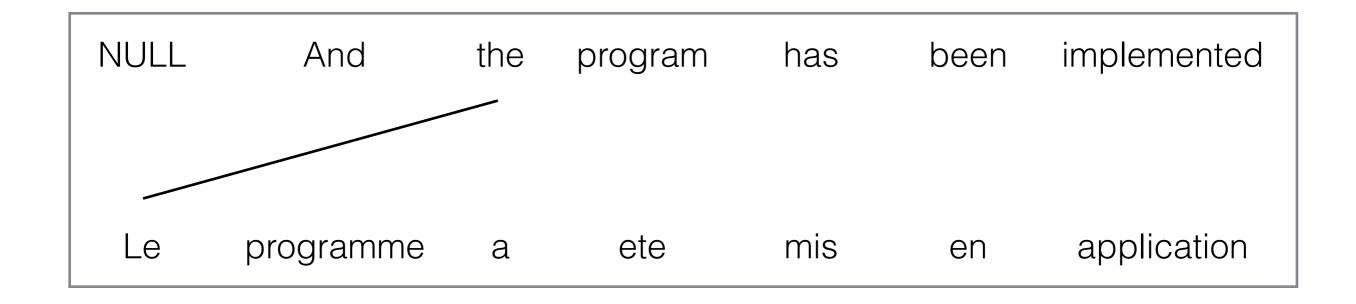
Task 2: Parameter Estimation

- Computing alignments is useful as an intermediate test of new alignment methods, but we actually don't care about the alignments themselves
- What we really need is to compute the parameters of the model: $t(f \mid e)$ and $q(j \mid i, l, m)$

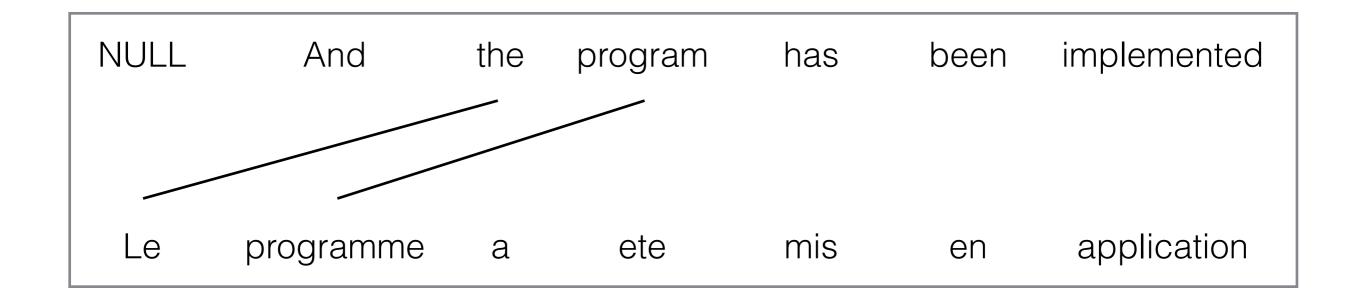
- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?

NULL	And	the	program	has	been	implemented
Le	programme	а	ete	mis	en	application

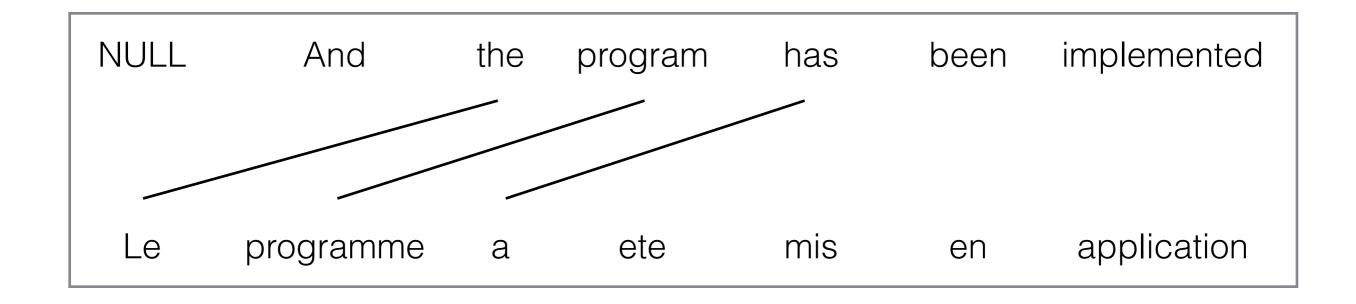
- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?



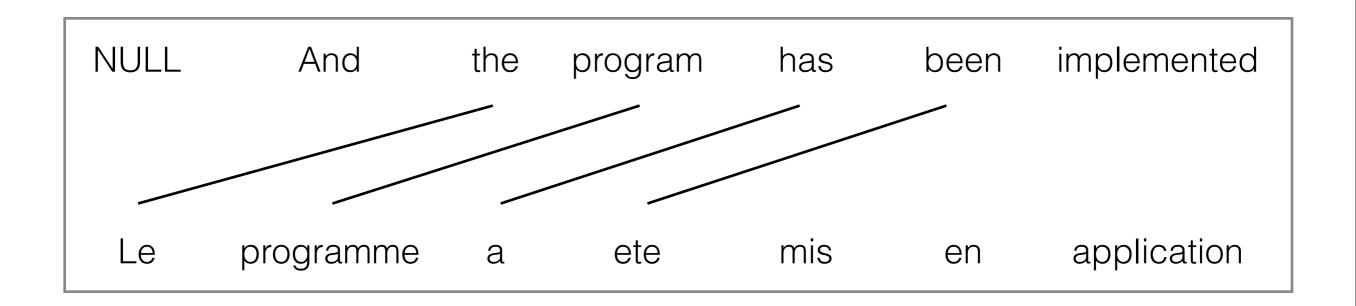
- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?



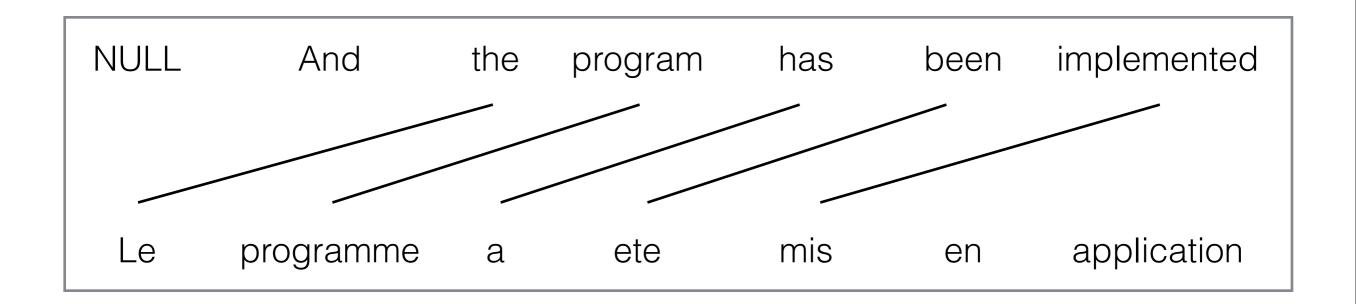
- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?



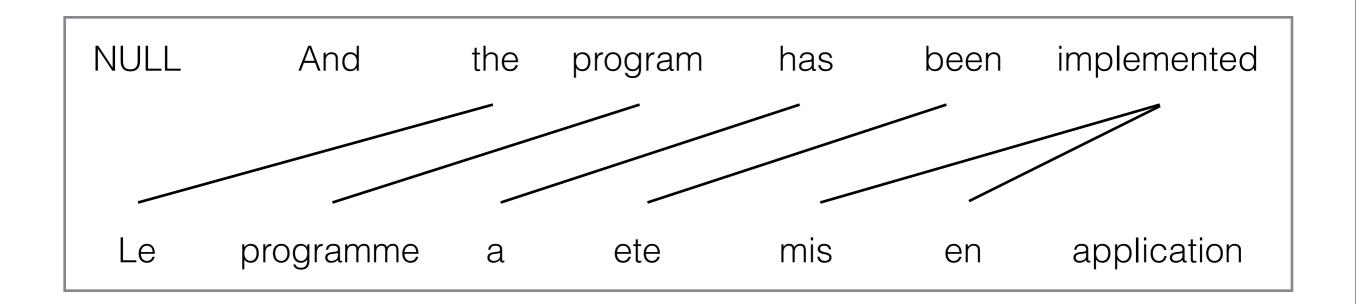
- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?



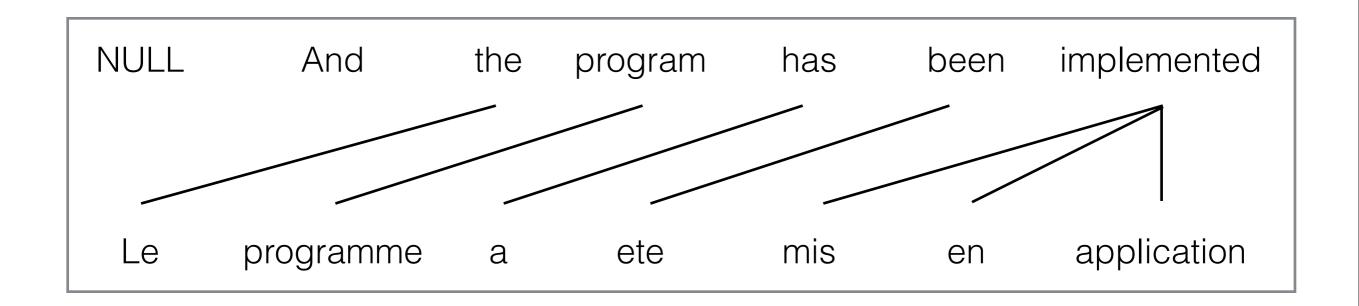
- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?



- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?



- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?



Estimation from (e,f,a)

- Easy! Just like n-grams: count and normalize (forget smoothing)
- Board exercise: what are the equations and values if this were our corpus?

$$t(f \mid e) = \frac{c(e, f)}{c(e)}$$
$$q(j \mid i, l, m) = \frac{c(j, i, l, m)}{c(i, l, m)}$$

Estimation from (e,f)

- Unfortunately, we don't have alignments!
- (Even more unfortunately, alignments are a fuzzy concept)
- Chicken and egg problem
 - If we had the alignments, we could compute parameters
 - If we had the parameters, we could compute the alignments (how?)

Algorithm 1 (hard EM)

Estimation from (e,f)

This suggests an iterative solution:

```
initialize parameters t and q to something
repeat until convergence
   for every sentence
       for every target position j
           for every source position i
               if aligned(i, j)
                   count(f_i \mid e_i) += 1
                   count(e_i) += 1
                   count(j, i, l, m) += 1
                   count(i, l, m) += 1
   t(f | e) = count(f, e) / count(e)
    q(j | i, l, m) = count(j, i, l, m) / count(i, l, m)
```

- A few problems
 - We don't actually care about the alignments
 - Bad init. might set us off in the wrong direction
- A "softer" approach: compute expectations over all alignments
- Weight the accumulated counts by the alignment probability

Each alignment link has a weight

$$P(a_i = j \mid e_i, f_j) = \frac{q(j \mid i, l, m) \cdot t(f_i \mid e_j)}{\sum_{j'=1}^{l} q(j' \mid i, l, m) \cdot t(f_i \mid e_{j'})}$$

- Counts now use this "soft" value instead of a hard count (1 or 0)
- Any issues here?

Algorithm 1 (hard EM)

Estimation from (e,f)

Old solution

```
initialize parameters t and q to something
repeat until convergence
   for every sentence
       for every target position j
           for every source position i
               if aligned(i, j)
                   count(f_i \mid e_i) += 1
                   count(e_i) += 1
                   count(j, i, l, m) += 1
                   count(i, l, m) += 1
   t(f | e) = count(f, e) / count(e)
    q(j | i, l, m) = count(j, i, l, m) / count(i, l, m)
```

Algorithm 1 (soft EM)

Estimation from (e,f)

New solution

```
initialize parameters t and q to something
repeat until convergence
    for every sentence
        for every target position j
            for every source position i
                count(f_i, e_i) += P(a_i = j \mid e_i, f_i)
                count(e_i) += P(a_i = j \mid e_i, f_i)
                count(j, i, l, m) += P(a_i = j | e_i, f_i)
                count(i, l, m) += P(a_i = j | e_i, f_i)
   t(f | e) = count(f, e) / count(e)
    q(j \mid i, l, m) = count(j, i, l, m) / count(i, l, m)
```

Estimation with EM

- Why does this work?
 - We are accumulating evidence (soft counts) for totally bogus alignments: all pairs of words that cooccur, e.g., t(streetcar | le)
- It works for the same reason you were able to solve the alignment exercise from the first day of class
 - Words that co-occur frequently continually steal probability mass from pairs that co-occur less often

Properties of EM

 The EM algorithm guarantees that data likelihood does not decrease across iterations

$$\log \mathcal{L}(t, q \mid E, F) = \log \prod_{n=1}^{N} \sum_{n=1} p(f^{(n)} \mid e^{(n)})$$

$$= \sum_{n=1}^{N} \log \sum_{a \in A} p(f^{(n)}, a \mid e^{(n)})$$

 EM can get stuck in *local optima*: subprime peaks in the global likelihood function

Assorted notes

- There are many known problems with these alignment models (garbage collection, initialization)
- Despite all this blabbing about modeling p(f | e), the IBM models are not actually used for translation!
- Who cares about alignment?

Thursday's Agenda

- Read: Collins' notes on Models 1 and 2, Koehn Chapter 4, Knight's MT workbook
- We'll cover new models
 - IBM Model 3, HMM model
- Time for questions on Homework 1 (due Feb. 17)
- Language in 10 minutes (Yuan)