Fast Arithmetic

Philipp Koehn

27 September 2019

arithmetic

Addition (Immediate)

• Load immediately one number (s0 = 2)

li \$s0, 2

• Add 4 (\$s1 = \$s0 + 4 = 6)

addi \$s1, \$s0, 4

• Subtract 3 (\$s2 = \$s1 - 3 = 3)

addi \$s2, \$s1, -3

Addition (Register)

• Load immediately one number (s0 = 2)

li \$s0, 2

• Add value from \$s5 (\$s1 = \$s0 + \$s5)

add \$s1, \$s0, \$s5

• Subtract value from \$s6 (\$s2 = \$s1 - \$s6)

sub \$s2, \$s1, \$s6

Overflow

- Signed integers operations: add, addi, and sub
 - overflow triggers exceptions
 - similar to interrupt
 - register \$mfc0 contains address of exception program

- Unsigned integers operations: addu, addiu, and subu
 - no overflow handling (as in C programming language)

Code for Detecting Overflow

- Overflow for unsigned integers operations can be detected from result
- Actual detection code is a bit intricate
- If you are interested
 - → consult Section 3.2 in Patterson/Hennessy textbook

fast addition

11

+11

1+1 = 0, carry the 1


```
11
+11
---
11
---
10
```

1+1+1 = 1, carry the 1

11

+11

11

110

copy carry bit

Fast Addition

- We defined n-bit adding as a sequential process
- ullet More bits o addition takes longer
- 32 bit addition gets very slow

• Faster addition: Carry Lookahead

Problem: Carry Propagation

• 1+1 addition always causes a carry

$$1+1 + carry1 = 1$$
, carry 1
 $1+1 + carry0 = 0$, carry 1

• 0+0 addition never causes a carry

$$0+0 + carry1 = 1$$
, carry 0
 $0+0 + carry0 = 0$, carry 0

• 0+1 and 1+0 addition may cause a carry

$$0+1 + carry1 = 0$$
, carry 1 $0+1 + carry0 = 1$, carry 0

Generate and Propagate

• Compute for each bit, if it generates or propagates carry

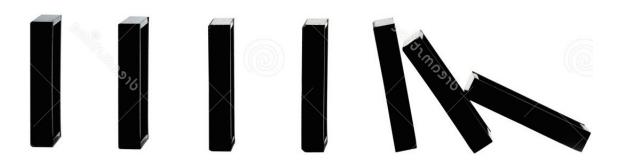
• Example

Operand A	0100 1111
Operand B	0110 0001
Generate	0100 0001
Propagate	0110 1111
Carry	1001 111-

• Generate: a_i AND b_i

• Propagate: a_i OR b_i

• Carry: ?



4-Bit Adder

- First compute generate and propagate for all bits
 - generate: $g_i = a_i \text{ AND } b_i$
 - propagate: $p_i = a_i \text{ OR } b_i$
- Compute carries for each bit
 - $-c_1 = g_0 \text{ OR } (p_0 \text{ AND } c_0)$
 - $-c_2 = g_1 \text{ OR } (p_1 \text{ AND } g_0) \text{ OR } (p_1 \text{ AND } p_0 \text{ AND } c_0)$
 - $-\ c_3 = g_2 \ \mathrm{OR}\ (p_2 \ \mathrm{AND}\ g_1) \ \mathrm{OR}\ (p_2 \ \mathrm{AND}\ p_1 \ \mathrm{AND}\ g_1) \ \mathrm{OR}\ (p_2 \ \mathrm{AND}\ p_0 \ \mathrm{AND}\ c_0)$
 - $\begin{array}{l} \textbf{-} \ c_4 = g_3 \ \mathrm{OR} \ (p_3 \ \mathrm{AND} \ g_2) \ \mathrm{OR} \ (p_3 \ \mathrm{AND} \ p_2 \ \mathrm{AND} \ g_2) \ \mathrm{OR} \ (p_3 \ \mathrm{AND} \ p_2 \ \mathrm{AND} \ p_1 \ \mathrm{AND} \ g_1) \\ \mathrm{OR} \ (p_3 \ \mathrm{AND} \ p_2 \ \mathrm{AND} \ p_1 \ \mathrm{AND} \ p_0 \ \mathrm{AND} \ c_0) \end{array}$
- The carry computations require no recursion
 - --- but use a lot of gates
- We may want to stop at 4 bits with this idea

16-Bit Adder

- Combine 4 4-bit adders
- For each 4-bit adder, compute
 - "super" propagate = $P = p_0$ AND p_1 AND p_2 AND p_3
 - "super" generate = g_3 OR $(p_3$ AND $g_2)$ OR $(p_3$ AND p_2 AND $g_1)$ OR $(p_3$ AND p_2 AND p_1 AND $g_0)$
- \bullet Compute super carry \mathtt{C}_j from super propagate \mathtt{P}_j and super generate \mathtt{G}_j
- Use C_j as input carry to the 4-bit adders

Cycles

- 1. compute propagate p_i and generate g_i
- 2. compute carry $c_{\rm i}$ compute super propagate $P_{\rm j}$ and super generate $G_{\rm j}$
- 3. compute super carry C_j
- 4. carry out all bitwise additions

Trade-Off

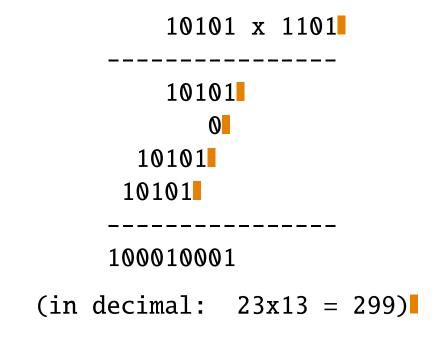
- ullet Higher n in n-bit adders
 - more gates in circuit
 - faster computation

- Modern CPUs can pack more gates on a chip
 - \Rightarrow speed-up at same clock speed

multiplication

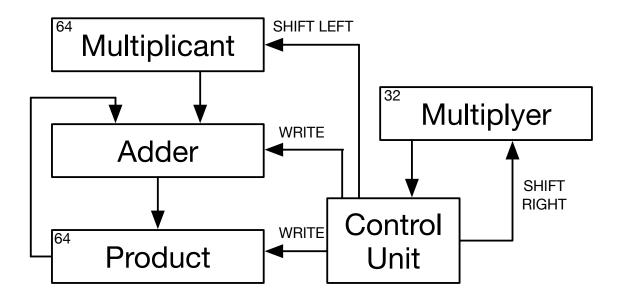
Recall Method

• Elementary school multiplication:



- Idea
 - shift second operand to right (get last bit)
 - if carry: add second operand to sum
 - rotate first operand to left (multiply with binary 10)

Multiplication in Hardware



• Control unit runs microprogram

loop 32 times:

if lowest bit of multiplyer=1
 add multiplicant to product
shift multiplicant left
shift multiplyer right

- Speed
 - 32 iterations
 - 3 operations each
 (add + shift + shift)
 - ightarrow almost 100 operations

• Note: multiplying 32 bit numbers may result in 64 bit product

Parallelize the 3 Operations

• The 3 operations in each loop affect different registers

- add: product

- shift left: multiplicant

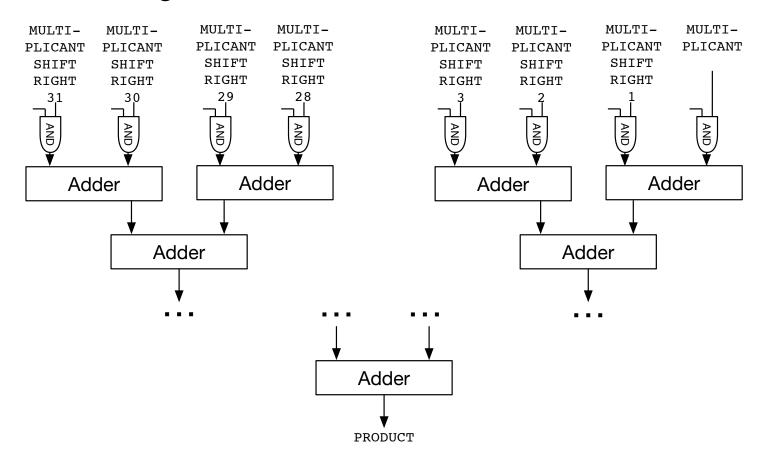
- shift right: multiplyer

 \Rightarrow These can be executed in parallel

(note: read is executed before write)

Parallelize the Iterations

- Sum of 32 independently computed values
- ullet More adders o some summing can be done in parallel
- Binary tree $\rightarrow \log_2 32 = 5$ cycles



MIPS Instructions

• 32 bit multiplication results in 64 bit product

• Special 64 bit register holds result

- hi: high word

- lo: low word

• Low word has to be retrieved by another instruction

• Since this is the typical usage, pseudo-instruction

More on that later

division

Elementary School Division

1011 / 10 = 101
10
0
01
011
10
1 Remainder

• Algorithm

- 1. shift divisor sufficiently to the left
- 2. check if subtraction is possible yes \rightarrow add result bit 1, carry out subtraction no \rightarrow add result bit 0
- 3. pull down bit from dividend
- 4. shift divisor to the right not possible \rightarrow done, note remainder otherwise go to step 2

Algorithm Refinement

- 1. Shift divisor sufficiently to the left
 - hard for machine to determine
 - \rightarrow shift to maximum left
 - 32 bit division: use 64 register, push 32 positions
- 2. Check if subtraction is possible yes \to add result bit 1, carry out subtraction no \to add result bit 0
 - we always carry out subtraction
 - if overflow, do not use result
- 3. Pull down bit from dividend
- 4. Shift divisor to the right not possible \rightarrow done, note remainder otherwise go to step 2

Division in Hardware

- Operations similar to multiplication
 - shift divisor
 - subtraction
 - indication if subtraction should be accepted
- These operations can be parallelized
- But: iterations cannot be parallelized the same way
 (sophisticated prediction methods guess outcome of subtractions)

MIPS Instructions

• 32 bit division results in 32 bit quotient and 32 bit remainder

- hi: remainder

- lo: quotient

• Quotient has to be retrieved by another instruction

div \$s1, \$s2 mflo \$s0