THE (NEW) TURING OMNIBLIS

will be no pairs left to process, and each equival
new label. At this point, the algorithm could o
labels (two in the cat-and-mouse example).
The third stage of the component-finding al
quad tree one more time, assigning the new lab
the old labels encountered during the traversal.

ence class will now receive a
utput the number of such new

gorithm simply traverses the
el that is equivalent to each of

Problems

1. Write analgorithm that conver

k tsa binary image matrix to the corresponding
quad tree.

2. Although most images requires less stora

g€ in quad tree form than in matrix
form, there is one definite exception. Find t

he worst case in this respect.

References

Hanan Samet. 7he Design and Ana

lysis of Spatial Data § fructures. Addison-
Wesley, Reading, Mass., 1989.

Hanan Samet, Applications of Spatial Data Structures: Computer Grapbics,
Image Processing, and GIs. Addison-Wesley, Reading, Mass., 1989.

THE SCRAM

A Simplified Computer

he principles governing the design and operatic?f: ot: a real computer ca::
be illustrated by the complete description of a toy” computer. No (?m.
would seriously suggest that the computer shown in F:gure 48.1 be man-
ufactured (for one thing, its very small memory rentflers ituseless f;)fl mosi
practical computations). But it does have all the major features E zrg;}
and more sophisticated machines; only input and output hardwan;e1 has be
omitted. In short, it is a Simple but Complete Random z_\ccess l\r!ag ine. ;
Before we plunge into the details of the SCRAM machine, a bnle' ;;rev;ex ée
its major components is in order. The acronym MU.X stands fo.r multip exef ,:; ¢
Chapter 28). This is a device that routes information from dllferlenlt soilrf,;:wr‘
a single destination. The choice of source depemfls on a contro s-;_ina :;re e
ated by the control logic. Seven register§ appear in the cllat‘:{rarg(.:i ey ke
program counter (PC), instruction register (IR), memory a rgsshr gd.d(‘r
(MAR), memory buffer register (MBR), the accurpulatoF (AC? and t(:lau) A
(AD). The last register is incorporated imt? the arlthmet.lc loglfs ur'}:fl . : ;uq
timer 7°generates pulses that are decoded into separate input lines for various

THE (NEW) TURING OMNIBLIS

READ/
WRITE
IR(0)
{ LOAD
L= B — MBR ;‘ 0
=== X
Decoder]
F I =
2 b4 4 de G 4 q5 g g i 0 M LOAD
] N
X4 | U AC
" 2 x .
2 xp2 3
L
X
—— Conrrol X” M o
Iogic 1 ALU u
*3 unic Xy LOAD X! i
AD
g

Decoder

Figure 48.1 Layout of the SCRAM

destinations within the control logi

: C unit
program instructions in the IR for u OLL ity decoder translates

se by the CLU.

FIE SCRAM
a general rule, each word of memory will contain either a number or a program
instruction. The number can be up to 8 bits in length, but the instruction must
share these bits between an operation code (4 bits) and an operand (4 bits). In

normal 8-bit machines, operations and operands are stored in alternate memory
locations, but the circuitry must be more complex. The SCRAM is too simple for
such sophistication, and the result is that only 4-bit numbers can be stored in the
operand for any instruction.

The heart of the SCRAM computer is the CLU. We will follow one complete
cycle of operation for each instruction of the low-level programming language
described in Chapter 17. These instructions are listed below.

The cycle has two parts. They are called fetch and execute. The fetch cycle
gets the next executable instruction in the program currently running and loads
it into the instruction register. This cycle itself is written as a special sequence of
elementary machine operations called a microprogram. Each line of the micro-
program is called a micro-operation and is written in a special replacement
notation called register-transfer language:

to: MAR < PC
t;: MBR < M, PC < PC + 1
t,: IR < MBR

All SCRAM micro-operations are set in motion by a timer 7 that feeds time
signals via a decoder into the CLU. When the line labeled ¢, contains a 1, the
contents of the PC are transferred to the MAR. In other words, the program
counter contains the address in memory of the next executable instruction, and
this address is transferred to the memory address register. When £, drops back
to 0, #; contains a 1 and this signal initiates the next micro-operation; the
contents of memory at the address contained in the MAR are transferred to the
memory buffer register (see Chapter 38). At the same time, the program
counter is incremented. This ensures that unless the instruction about to be
executed is a JUMP command, the next instruction to be executed is the one
following the current instruction in the program stored in memory. The current
instruction consists of an operation code and an operand. Both are transferred at
time ¢, into the instruction register from the MBR. The 4 high-order bits of the
IR comprise a kind of subregister that we may call IR(C). The 4 low-order bits
are called IR(0). IR(C) contains the instruction code, and IR(0) contains the
operand.

The instructions, their codes, operands, and meanings are listed in the table
at the top of the next page

FHE CNEW) TURING OMNIBLUS

Operation Code Operand

Meaning
LDA 0001 X Load contents of memory address X
into the AC.
LDI 0010 b.¢ Indirectly load contents of address
X into the AC.
STA 0011 X Store contents of AC at memory
address X,
STI 0100 X Indirectly store contents of AC at
address X.
ADD 0101 X Add contents of address X to the AC.
SUB 0110 X Subtract contents of address X from
the AC.
JMP 0111 X Jump to the instruction labeled X,
IMZ 1000 X Jump to instruction X if the AC

contains 0.

The code subregister IR(C) is connected by four parallel lines (shown in the
diagram as a single line) to a decoder which produces a 1 on exactly one of the
nine input lines to the CLU. Each of the nine possible instruction types has its
own characteristic binary pattern, and the decoder activates the appropriate line
to the CLU in consequence (see Chapter 28).

The execution phase of the basic cycle immediately follows the fetch phase.
At this point the 75 input line carries a 1. At this and at subsequent times in the
execution cycle, various micro-operations are performed, depending on the
instruction type being executed. Each instruction has its own microprogram.
For example, LDA has the following microprogram:

LDA gt3; MAR < IR(0)
Gits: MBR «<— M
Gils: AC < MBR

During the fetch cycle, all that was needed to trigger each of the three
micro-operations was 1s appearing sequentially on the timing lines ¢y, t,, ¢,.
Now more complicated triggers are required: If IR(C) contains the LDA code
0001, the decoder converts this to a 1 on line g,, with the other glines all

'HE SCRAM

i 5i aning, in effect, "if
s. The expression ¢y £ is a logical expression meaning,

e " We will see later how the trigger is implemented by the

g, and t3, then . . .

AND gate. .
Ou’;ll)ll::s(;frl?:n q antl t5 are both 1, the SCRAM loads the operand portion of the

i i tep, the
instruction register into the memory address register. At the next glrg:rsreg;ster
:::Icliltents of that address in memory are loaded into the memory bu

i tor. o
d then into the accumula _ e

anThe operational cycle of the SCRAM may require up to ‘J:.IO. colréiec:}l]n:nd -

eriods. The periods are each, let us say, a microsecon 1tr)1 dgon BB e
peneratéd by a timing register 7. The CLU increments T(asemﬁonal s s
ﬁlock) between micro-operations and clears 7'when a new ope
i begin. _ _ . el
N tTohe fext example of microcoding of program mst‘ructlons is more comp
cated. The LDI command requires five micro-operations:

LDI X gotys MAR < IR(0)
qzt4: MBR < M
Gotss MAR < MBR
datss MBR<—M
daty. AC<— MBR

indi is that the
The only difference between direct and indirect LOAD ?omm;lrllgsi;sbecause
latter requires an additional set of memory mfcro-operagons. g s o
indirection requires two separate memory retrievals, thef ;sr;t{g % i o
the micro-programs fo .
second. Shown below are . . g
fO;ti'lllll-:.:tions Readers should not find it difficult, after this, to construct sa
ln) . - . -
tory microprograms for the remaining instruction types.

ADD X: gsts MAR < IR(0)
gsts: MBR < M
gstss AD < MBR
gsts. AD < AD +AC
gsty; AC <« AD

P X: ty AC<PC
grts: AC < IR(0)
gqle: AD «— AD + AC
q-;t-‘r: AC - AD
Gg-ta: PC < AC

FHE (NEW) TURING OMNIBLIS

Note that the ADD command first retrieves the number stored at memory
address Xand then loads it in the special arithmetic register AD (not shown in
the diagram). After the contents of the accumulator are added to the AD, the
result is placed back in the AC.

The second microprogram uses the same operation to increment the pro-
gram counter. This register contains the address of the next program instruction
to be executed. If the current instruction is not a JUMP, the CLU will merely
increment the PC sometime during its operational cycle.

At this point the question naturally arises of just how the nine different
microprograms are implemented in actual logic circuits. Here again, we follow
time-honored pedagogic practice by employing standard logic gates for the
purpose. In any event, it is a relatively simple exercise to convert these circuits
to any logically complete set of gates (see Chapter 3).

It is a relatively easy matter to implement the fetch cycle and the nine possi-
ble versions of the execution cycle in individual logic circuits.

The fetch cycle is shown in Figure 48.2. For the time being, we pretend that
the line x,, is doubled; after all, x,, operates a multiplexer (MUX) with two
control inputs. When ¢, is 1, both X0 linesare tobe 0, causing the MUX to select
input line 0 from the PC for transmission tothe MAR. The x, line causes the MAR
to be loaded in accordance with a register design appearing in Chapter 38.
When ¢, is 1, x, is 0 and x5 and Xy3are both 1. This means that the MUX serving
the MBR selects memory input, the read /write line to memory carries a read (0)
signal, and the PC is incremented. When t,is 1, the instruction registeris loaded
with the current contents of the MBR.

A circuit that implements the LDA instruction is shown in Figure 48.3.

When it is considered in isolation, the operation of this circuitis also straight-
forward. First, the paired x,, lines control the MUX selecting input for the MAR.
When #; and g, are 1, x10is01. When 24is 1,the x, line sendsa 0 control signal to
the MUX selecting input to the MBR. In this case, 0 means memory. Finally,

H = {: -

5] -

Figure 48.2 Logic for the fetch cycle

'HE SCRAM

MAR = [R(()

4y

UL
|

{>c x7 MBR = M

Xn
£ AC ~ MBR
X1

Figure 48.3 Logic for loading the accumulator

when ts is 1, both control lines to the MUX selecting input for the AC are 0. In

i is selected.
this case 00 means that the MBR is ; _ s
Readers may have noticed a problem at this point; son;e of “:f f(f)utpt:l I:' ::c:
i i i ircuits. Since outputs of two different gate:
ust discussed appear in both circu diferent gate
Lannot be tied directly together, more gates must be used to effect this purpose

(See the problems that follow.)

Problems

1. Write microprograms for STA, STI, and JMZ. Implement the micropro
grams in standard logic.
2. Design that portion of the CLU that determines the two output lines labeled

X10. Input to this subcircuit will be one or both of the lines pre\Tinusly'lalzcIL;d
xm ‘in the individual circuits for LDA, LDI, and the circuits designed in Prob-
10

lem 1.

3. Convert the following program to the equivalent set of binary W()[I‘f.]::; (n)-;
indicated in this chapter. This is called machine code. Trace thehexe(:l; 1(; s
the program by listing the g, #, and x variables across fhe top of a sb lee:) o “I?ri : in .
For each step in the SCRAM’s operation, fill in one line of the table by g

down the value of each input and output variable:

LDA 1
ADD 2
STA3

328

THE (NEW) TURING OMNIBUS

References

Richard S. Sandige. Data Concepts Usi
: ng Standard Integrated Circui
McGraw-Hill, New York, 1978. ¢ e

Ronald J. Tocci and Lester P. Laskowski. Microprocessors and Microcomputers,
2d ed. Prentice-Hall, Englewood Cliffs, N.J., 1982.)

|

SHANNON'S THEORY

The Elusive Codes

ny message consisting of words can be encoded as a sec

1s. The latter symbols can be transmitted by wire, ra

variety of other means. Inall cases the message Is Hable

can inadvertently be changed to a 1, or vice versa. Wh
source of interference or “‘noise,” as information theorists call
of abitto change can be laid at the doorstep of a creature I call t
With a certain probability, say p, the noise demon alters each bi
ted (Figure 49.1).

One way to fool the demon is to transmit three Os for each (
replace a 1 by three 1s. Assuming the receiver is in synchrony
so that the start of each triad is known, the decoding rule i
shown in the table at the top of the next page. What is the
message being corrupted under this scheme? It is the probabi
bits out of 3 get changed. Thus if 000 is sent, it can become 110
with respective probabilities p2q, pgp, gp?, or p?, where g = 1
probabilities yields the formula 3p% — 2p3, which means that i
the new scheme of triples guarantees a much lower probabilit

