Markov Decision Processes

Philipp Koehn

1 April 2025

Outline

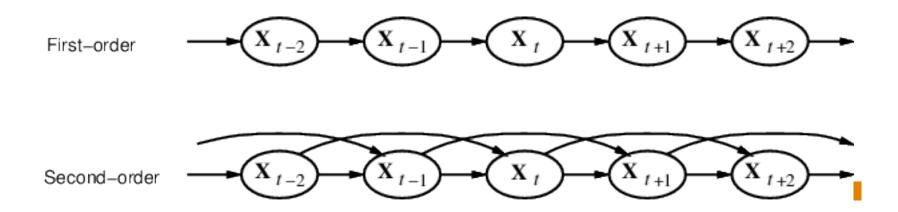
- Hidden Markov models
- Inference: filtering, smoothing, best sequence
- Dynamic Bayesian networks
- Speech recognition

Time and Uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: sequence of state and evidence variables
- X_t = set of unobservable state variables at time t e.g., $BloodSugar_t$, $StomachContents_t$, etc.
- \mathbf{E}_t = set of observable evidence variables at time t e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$
- This assumes **discrete time**; step size depends on problem
- Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

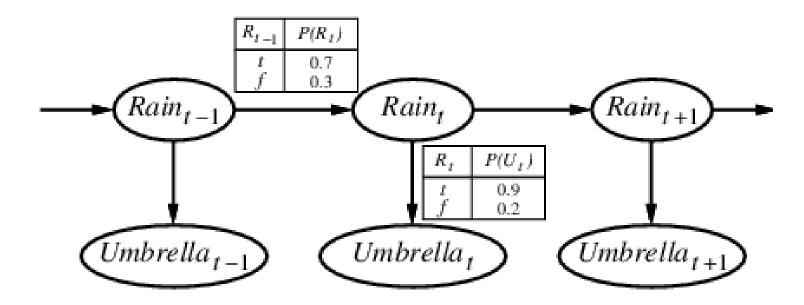
Markov Processes (Markov Chains)

- Construct a Bayes net from these variables: parents?
- Markov assumption: X_t depends on bounded subset of $X_{0:t-1}$
- First-order Markov process: $P(X_t|X_{0:t-1}) \simeq P(X_t|X_{t-1})$ Second-order Markov process: $P(X_t|X_{0:t-1}) \simeq P(X_t|X_{t-2},X_{t-1})$



- Sensor Markov assumption: $P(E_t|X_{0:t}, E_{0:t-1}) \simeq P(E_t|X_t)$
- **Stationary** process: transition model $P(X_t|X_{t-1})$ and sensor model $P(E_t|X_t)$ fixed for all t

Example



- First-order Markov assumption not exactly true in real world!
- Possible fixes:
 - 1. **Increase order** of Markov process
 - 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

inference

Inference Tasks

- **Filtering**: $P(X_t|e_{1:t})$ probability for current time step
- **Smoothing**: $P(X_k|e_{1:t})$ for $0 \le k < t$ probability for current time step, using evidence from the full sequence, essential for learning
- Most likely explanation: $\arg\max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$ e.g., used in speech recognition, decoding with a noisy channel

Filtering

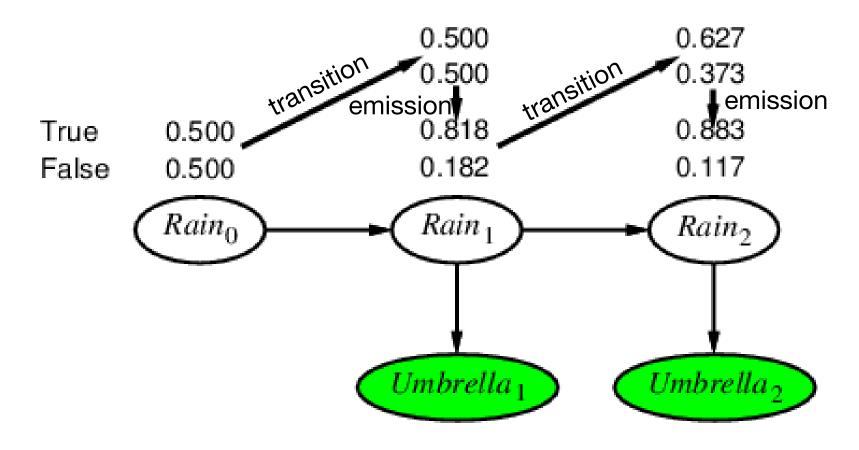
• Aim: devise a **recursive** state estimation algorithm

$$\begin{aligned} & \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1}) \\ & = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) \quad (Bayes\ rule) \\ & \simeq \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) \quad (Sensor\ Markov\ assumption) \\ & = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{X}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t,\mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \quad (multiplying\ out) \\ & \simeq \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{X}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \quad (first\ order\ Markov\ model) \end{aligned}$$

• Summary:
$$P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) \simeq \alpha \underbrace{P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})}_{\text{emission}} \underbrace{\sum_{\mathbf{X}_t} P(\mathbf{X}_{t+1}|\mathbf{x}_t)}_{\text{transition}} \underbrace{P(\mathbf{x}_t|\mathbf{e}_{1:t})}_{\text{recursive call}}$$

• Time and space **constant** (independent of *t*)

Filtering Example

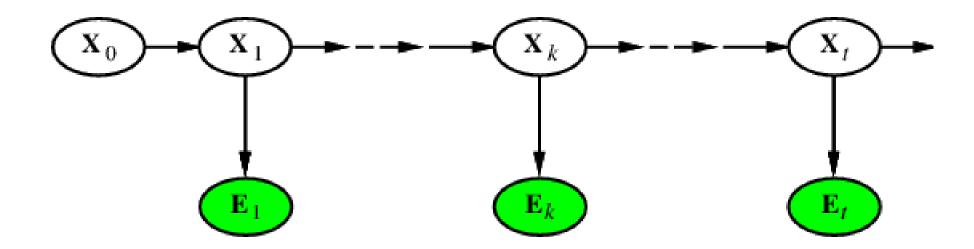


$$P(Rain_t|Rain_{t-1}) = 0.7$$
 $P(Umbrella_t|Rain_t) = 0.9$

$$P(Rain_t|\overline{Rain}_{t-1}) = 0.3$$
 $P(Umbrella_t|\overline{Rain}_t) = 0.2$

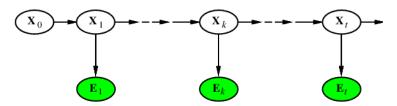
$$\alpha < 0.9 \times (0.7 \times 0.5 + 0.3 \times 0.5), 0.2 \times (0.7 \times 0.5 + 0.3 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5 + 0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.182 > 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0.00 \times (0.00 \times 0.5) > = < 0.818, 0$$

Smoothing



- If evidence for full sequence is known
 - \Rightarrow what is the state probability $P(X_k|e_{1:t})$?
- Smoothing: sum over all paths

Smoothing



• Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t})\mathbf{I}$$

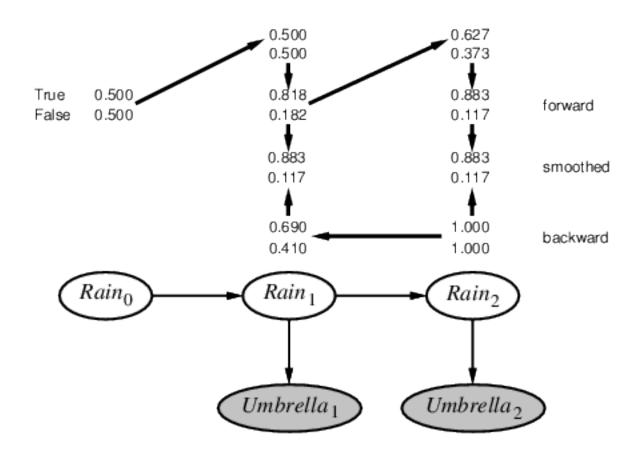
$$= \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k},\mathbf{e}_{1:k})$$

$$\simeq \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})\mathbf{I}$$
forward backward

• Backward message computed by a backwards recursion

$$\begin{split} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) &= \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k,\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &\simeq \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} \underbrace{\mathbf{P}(\mathbf{e}_{k+1}|\mathbf{x}_{k+1})}_{\mathbf{emission}} \underbrace{\mathbf{P}(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1})}_{\mathbf{recursion}} \underbrace{\mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)}_{\mathbf{transition}} \end{split}$$

Smoothing Example



Forward-backward algorithm: cache forward messages along the way

Most Likely Explanation

- Most likely sequence # sequence of most likely states
- Most likely path to each \mathbf{x}_{t+1}
 - = most likely path to **some** x_t plus one more step

$$\max_{\mathbf{x}_1...\mathbf{x}_t} \mathbf{P}(\mathbf{x}_1, ..., \mathbf{x}_t, \mathbf{X}_{t+1} | \mathbf{e}_{1:t+1})$$

$$= \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} P(\mathbf{x}_1, ..., \mathbf{x}_{t-1}, \mathbf{x}_t | \mathbf{e}_{1:t}) \right) \mathbf{I}$$

• Identical to filtering, except summing over all paths is replaced by max

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1,\ldots,\mathbf{x}_{t-1},\mathbf{X}_t|\mathbf{e}_{1:t})$$

i.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state i.

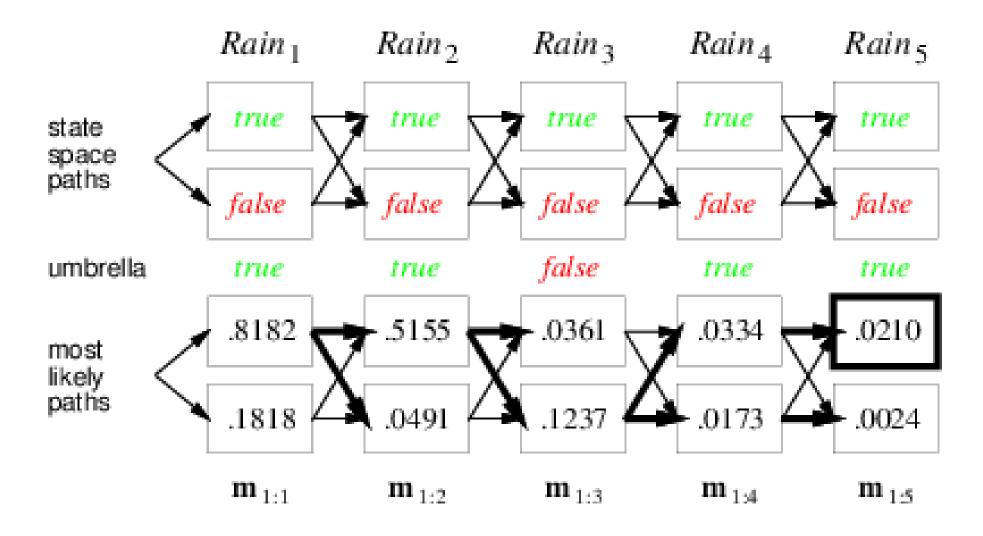
• Update has sum replaced by max, giving the Viterbi algorithm:

$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t}) \mathbf{I}$$

Also requires back-pointers for backward pass to retrieve best sequence

$$\mathbf{b}_{\mathbf{X}_{t+1},t+1} = \operatorname{argmax}_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$$

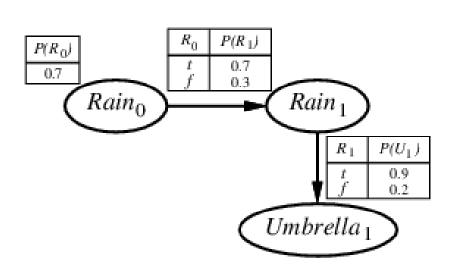
Viterbi Example

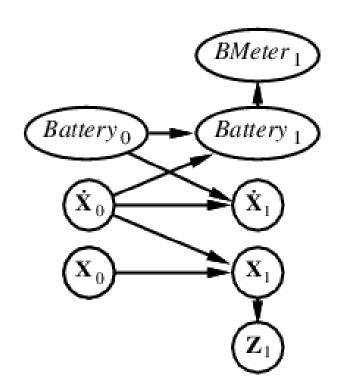


dynamic baysian networks

Dynamic Bayesian Networks

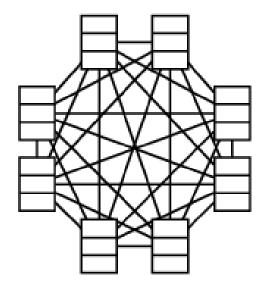
• X_t , E_t contain arbitrarily many variables in a sequentialized Bayes net





DBNs vs. HMMs

• Every HMM is a single-variable DBN; every discrete DBN is an HMM



- Sparse dependencies ⇒ exponentially fewer parameters;
 - e.g., 20 Boolean state variables, three parents each
 - \rightarrow HMM has $2^{20} \times 2^{20} \approx 10^{12}$ (2²⁰ possible values for the set of variables)
 - \rightarrow DBN has $20 \times 2^3 = 160$ parameters

speech recognition

Speech as Probabilistic Inference

It's not easy to wreck a nice beach

- Speech signals are noisy, variable, ambiguous
- What is the **most likely** word sequence, given the speech signal? I.e., choose Words to maximize P(Words|signal)
- Use Bayes' rule:

 $P(Words|signal) = \alpha P(signal|Words)P(Words)$

i.e., decomposes into acoustic model + language model

• *Words* are the hidden state sequence, *signal* is the observation sequence

Phones

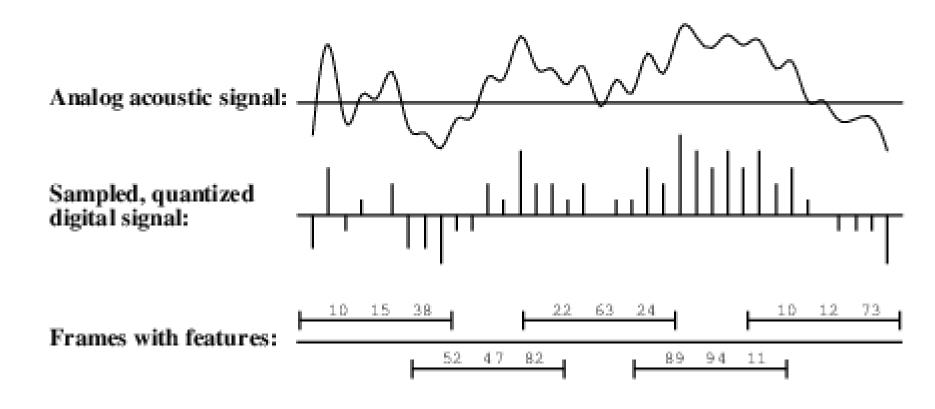
- All human speech is composed from 40-50 **phones**, determined by the configuration of **articulators** (lips, teeth, tongue, vocal cords, air flow)
- Form an intermediate level of hidden states between words and signal ⇒ acoustic model = pronunciation model + phone model
- ARPAbet designed for American English

[iy]	b <u>ea</u> t	[b]	b et	[p]	p et
[ih]	b <u>i</u> t	[ch]	Ch et	[r]	<u>r</u> at
[ey]	b e t	[d]	<u>d</u> ebt	[s]	<u>s</u> et
[ao]	b ough t	[hh]	<u>h</u> at	[th]	<u>th</u> ick
[ow]	b <u>oa</u> t	[hv]	<u>h</u> igh	[dh]	<u>th</u> at
[er]	B <u>er</u> t	[1]	<u>l</u> et	[w]	<u>w</u> et
[ix]	ros <u>e</u> s	[ng]	si ng	[en]	butt on
:	:	:	:	:	• •

e.g., "ceiling" is [s iy l ih ng] / [s iy l ix ng] / [s iy l en]

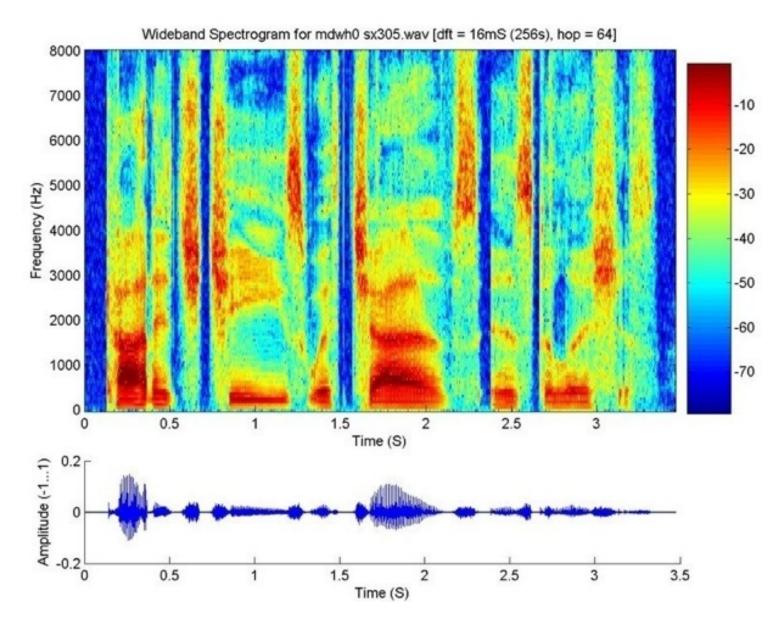
Speech Sounds

• Raw signal is the microphone displacement as a function of time; processed into overlapping 30ms **frames**, each described by **features**



• Frame features are typically **formants**—peaks in the power spectrum

Speech Spectrogram

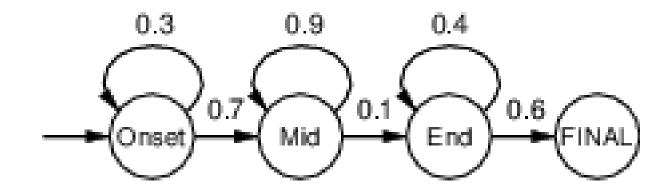


Phone Models

- Frame features in P(features|phone) summarized by
 - an integer in [0...255] (using **vector quantization**); or
 - the parameters of a mixture of Gaussians
- **Three-state phones**: each phone has three phases (Onset, Mid, End) E.g., [t] has silent Onset, explosive Mid, hissing End $\Rightarrow P(features|phone, phase)$
- **Triphone context**: each phone becomes n^2 distinct phones, depending on the phones to its left and right E.g., [t] in "star" is written [t(s,aa)] (different from "tar"!)
- Triphonographyl for handling coerticulation offects, the outical stars he
- Triphones useful for handling **coarticulation** effects: the articulators have inertia and cannot switch instantaneously between positions
 - E.g., [t] in "eighth" has tongue against front teeth

Phone Model Example

Phone HMM for [m]:

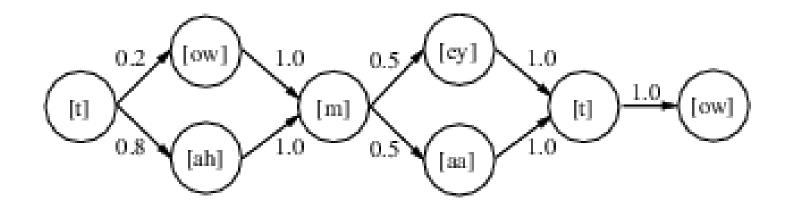


Output probabilities for the phone HMM:

Onset:	Mid:	End:
C1: 0.5	C3:0.2	C4: 0.1
C2: 0.2	C4:0.7	C6: 0.5
C3: 0.3	C5:0.1	C7:04

Word Pronunciation Models

- Each word is described as a distribution over phone sequences
- Distribution represented as an HMM transition model



```
P([towmeytow]|"tomato") = P([towmaatow]|"tomato") = 0.1
P([tahmeytow]|"tomato") = P([tahmaatow]|"tomato") = 0.4
```

• Structure is created manually, transition probabilities learned from data

Recognition of Isolated Words

• Phone models + word models fix likelihood $P(e_{1:t}|word)$ for **isolated word**

$$P(word|e_{1:t}) = \alpha P(e_{1:t}|word)P(word)$$

• Prior probability P(word) obtained simply by counting word frequencies $P(e_{1:t}|word)$ can be computed recursively: define

$$\mathbf{A}_{1:t} = \mathbf{P}(\mathbf{X}_t, \mathbf{e}_{1:t})$$

and use the recursive update

$$\mathbf{A}_{1:t+1} = \mathsf{FORWARD}(\ell_{1:t}, \mathbf{e}_{t+1})$$

and then $P(e_{1:t}|word) = \sum_{\mathbf{X}_t} \mathbf{A}_{1:t}(\mathbf{X}_t)$

Continuous Speech

- Not just a sequence of isolated-word recognition problems!
 - adjacent words highly correlated
 - sequence of most likely words ≠ most likely sequence of words
 - segmentation: there are few gaps in speech
 - cross-word coarticulation—e.g., "next thing"
- Complications
 - mismatch between speaker in training and test
 - noise
 - crosstalk
 - bad microphone position

Language Model

• Prior probability of a word sequence is given by chain rule:

$$P(w_1 \cdots w_n) = \prod_{i=1}^n P(w_i | w_1 \cdots w_{i-1})$$

• Bigram model:

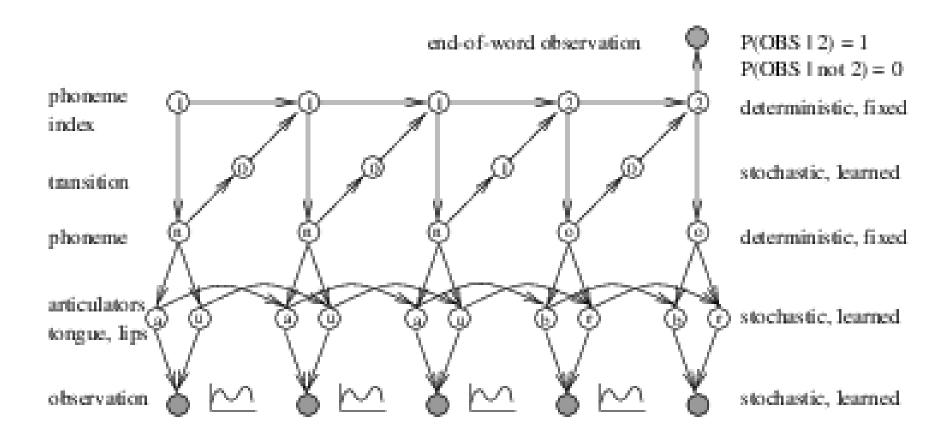
$$P(w_i|w_1\cdots w_{i-1})\approx P(w_i|w_{i-1})$$

- Train by counting all word pairs in a large text corpus
- More sophisticated models (trigrams, grammars, etc.) help

Combined HMM

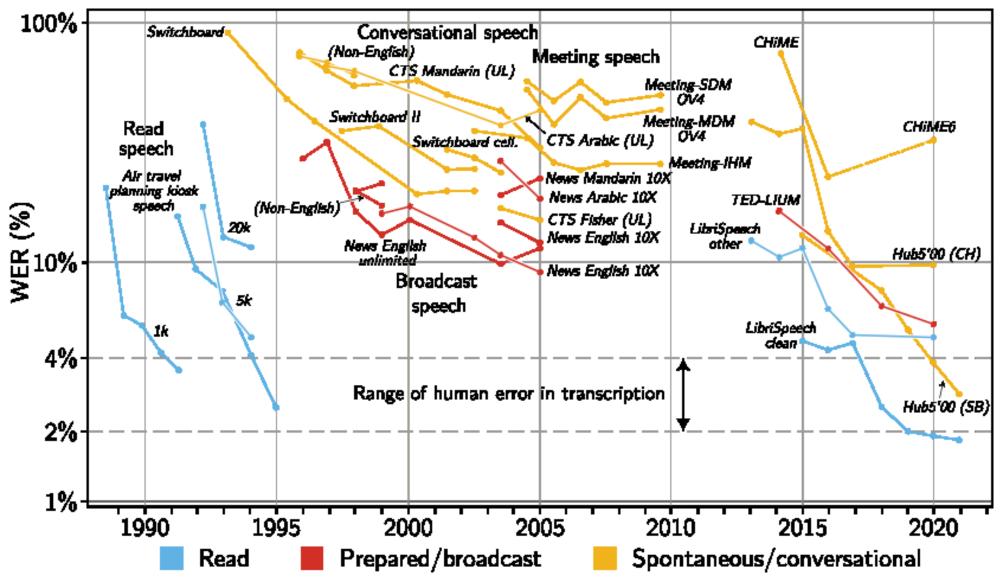
- States of the combined language+word+phone model are labelled by
 - the word we are in
 - the phone in that word
 - the phone state in that phone
- Viterbi algorithm finds the most likely phone state sequence
- Segmentation by considering all possible word sequences and boundaries
- Does not always give the most likely word sequence because each word sequence is the sum over many state sequences

DBNs for Speech Recognition



• Also easy to add variables for, e.g., gender, accent, speed

Progress



Summary

- Temporal models use state and sensor variables replicated over time
- Markov assumptions and stationarity assumption, so we need
 - transition model $P(X_t|X_{t-1})$
 - sensor model $P(\mathbf{E}_t|\mathbf{X}_t)$
- Tasks are filtering, smoothing, most likely sequence;
 all done recursively with constant cost per time step
- Hidden Markov models have a single discrete state variable; used for speech recognition
- Dynamic Bayes nets subsume HMMs
- Speech recognition