Logical Agents

Philipp Koehn

27 February 2024
The world is everything that is the case.

Wittgenstein, Tractatus
Outline

- Knowledge-based agents
- Logic in general—models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution
knowledge-based agents
Knowledge-Based Agent

- **Knowledge base** = set of sentences in a **formal** language

- **Declarative** approach to building an agent (or other system):

 TELL it what it needs to know

- Then it can **ASK** itself what to do—answers should follow from the **KB**

- Agents can be viewed at the **knowledge level**
 i.e., **what they know**, regardless of how implemented

- Or at the **implementation level**
 i.e., data structures in KB and algorithms that manipulate them
A Simple Knowledge-Based Agent

function \textbf{KB-Agent}(\textit{percept}) \textbf{returns} an \textit{action}

\begin{itemize}
\item \textbf{static}: \textit{KB}, a knowledge base
\item \quad \textit{t}, a counter, initially 0, indicating time
\end{itemize}

\textbf{Tell}((\textit{KB}, \textit{Make-Percept-Sentence}(\textit{percept}, \textit{t}))

\textit{action} \leftarrow \textbf{Ask}((\textit{KB}, \textit{Make-Action-Query}(\textit{t}))

\textbf{Tell}((\textit{KB}, \textit{Make-Action-Sentence}(\textit{action}, \textit{t}))

\textit{t} \leftarrow \textit{t} + 1

\textbf{return} \textit{action}

\begin{itemize}
\item The agent must be able to
\begin{itemize}
\item represent states, actions, etc.
\item incorporate new percepts
\item update internal representations of the world
\item deduce hidden properties of the world
\item deduce appropriate actions
\end{itemize}
\end{itemize}
example
Hunt the Wumpus

Computer game from 1972
Wumpus World PEAS Description

- **Performance measure**
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - squares adjacent to wumpus are smelly
 - squares adjacent to pit are breezy
 - glitter iff gold is in the same square
 - shooting kills wumpus if you are facing it
 - shooting uses up the only arrow
 - grabbing picks up gold if in same square
 - releasing drops the gold in same square

- **Actuators** Left turn, Right turn,
 Forward, Grab, Release, Shoot

- **Sensors** Breeze, Glitter, Smell
Wumpus World Characterization

- Observable? No—only local perception
- Deterministic? Yes—outcomes exactly specified
- Episodic? No—sequential at the level of actions
- Static? Yes—Wumpus and Pits do not move
- Discrete? Yes
- Single-agent? Yes—Wumpus is essentially a natural feature
Exploring a Wumpus World
Tight Spot

- Breeze in (1,2) and (2,1) \[\implies\] no safe actions

- Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31
Tight Spot

- Smell in (1,1) \(\rightarrow\) cannot move

- Can use a strategy of coercione shoot straight ahead
 - wumpus was there \(\rightarrow\) dead \(\rightarrow\) safe
 - wumpus wasn’t there \(\rightarrow\) safe
logic in general
Logic in General

- **Logics** are formal languages for representing information such that conclusions can be drawn.

- **Syntax** defines the sentences in the language.

- **Semantics** define the “meaning” of sentences; i.e., define truth of a sentence in a world.

- **E.g.**, the language of arithmetic
 - $x + 2 \geq y$ is a sentence; $x^2 + y >$ is not a sentence.
 - $x + 2 \geq y$ is true iff the number $x + 2$ is no less than the number y.
 - $x + 2 \geq y$ is true in a world where $x = 7, y = 1$.
 - $x + 2 \geq y$ is false in a world where $x = 0, y = 6$.
Entailment

- **Entailment** means that one thing follows from another:

\[KB \models \alpha \]

- Knowledge base \(KB \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where \(KB \) is true.

- E.g., the KB containing “the Ravens won” and “the Jays won” entails “the Ravens won or the Jays won”.

- E.g., \(x + y = 4 \) entails \(4 = x + y \).

- Entailment is a relationship between sentences (i.e., syntax) that is based on **semantics**.

- Note: brains process **syntax** (of some sort)
Logicians typically think in terms of **models**, which are formally structured worlds with respect to which truth can be evaluated.

- We say m is a model of a sentence α if α is true in m.

- $M(\alpha)$ is the set of all models of α.

\[KB \models \alpha \text{ if and only if } M(KB) \subseteq M(\alpha) \]

- E.g. $KB = \text{Ravens won and Jays won}$, $\alpha = \text{Ravens won}$.
Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for all ?, assuming only pits
- 3 Boolean choices \implies 8 possible models
Possible Wumpus Models
\(KB = \) wumpus-world rules + observations
Entailment

$KB = \text{wumpus-world rules + observations}$

$\alpha_1 = \text{“[1,2] is safe”, } KB \models \alpha_1$, proved by model checking
Valid Wumpus Models

\[KB = \text{wumpus-world rules} + \text{observations} \]
\(KB = \text{wumpus-world rules + observations} \)

\(\alpha_2 = \text{“[2,2] is safe”, } KB \not\models \alpha_2 \)
Inference

- $KB \vdash_i \alpha$ = sentence α can be derived from KB by procedure i.

- Consequences of KB are a haystack; α is a needle. Entailment = needle in haystack; inference = finding it.

- **Soundness**: i is sound if

 whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$.

- **Completeness**: i is complete if

 whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$.

- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

- That is, the procedure will answer any question whose answer follows from what is known by the KB.
propositional logic
Propositional Logic: Syntax

• Propositional logic is the simplest logic—illustrates basic ideas

• The proposition symbols P_1, P_2 etc are sentences

• If P is a sentence, $\neg P$ is a sentence (negation)

• If P_1 and P_2 are sentences, $P_1 \land P_2$ is a sentence (conjunction)

• If P_1 and P_2 are sentences, $P_1 \lor P_2$ is a sentence (disjunction)

• If P_1 and P_2 are sentences, $P_1 \implies P_2$ is a sentence (implication)

• If P_1 and P_2 are sentences, $P_1 \iff P_2$ is a sentence (biconditional)
Propositional Logic: Semantics

- Each model specifies true/false for each proposition symbol

 E.g. $P_{1,2} \quad P_{2,2} \quad P_{3,1}$

 $\begin{align*}
 \text{false} & \quad \text{true} & \quad \text{false}
 \end{align*}$

 (with these symbols, 8 possible models, can be enumerated automatically)

- Rules for evaluating truth with respect to a model m:

 $\begin{align*}
 \neg P & \quad \text{is true iff} & \quad P & \quad \text{is false} \\
 P_1 \land P_2 & \quad \text{is true iff} & \quad P_1 & \quad \text{is true and} & \quad P_2 & \quad \text{is true} \\
 P_1 \lor P_2 & \quad \text{is true iff} & \quad P_1 & \quad \text{is true or} & \quad P_2 & \quad \text{is true} \\
 P_1 \implies P_2 & \quad \text{is true iff} & \quad P_1 & \quad \text{is false or} & \quad P_2 & \quad \text{is true} \\
 \text{i.e.,} & \quad \text{is false iff} & \quad P_1 & \quad \text{is true and} & \quad P_2 & \quad \text{is false} \\
 P_1 \iff P_2 & \quad \text{is true iff} & \quad P_1 & \quad \text{is true and} & \quad P_2 \implies P_1 & \quad \text{is true}
 \end{align*}$

- Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$
Truth Tables for Connectives

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>~P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P ⇔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>f</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>t</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>t</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Philipp Koehn Artificial Intelligence: Logical Agents 27 February 2024
Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in $[i,j]$.
 - observation $R_1 : \neg P_{1,1}$

- Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

- “Pits cause breezes in adjacent squares”
 - rule $R_2 : B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
 - rule $R_3 : B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - observation $R_4 : \neg B_{1,1}$
 - observation $R_5 : B_{2,1}$

- What can we infer about $P_{1,2}, P_{2,1}, P_{2,2}$, etc.?
Truth Tables for Inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

- Enumerate rows (different assignments to symbols $P_{i,j}$)
- Check if rules are satisfied (R_i)
- Valid model (KB) if all rules satisfied
Inference by Enumeration

- Depth-first enumeration of all models is sound and complete

```plaintext
function TT-ENTAILS?(KB, \( \alpha \)) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
\( \alpha \), the query, a sentence in propositional logic
symbols ← a list of the proposition symbols in KB and \( \alpha \)
return TT-CHECK-ALL(KB, \( \alpha \), symbols, [])
```

```plaintext
function TT-CHECK-ALL(KB, \( \alpha \), symbols, model) returns true or false
if EMPTY?(symbols) then
    if PL-TRUE?(KB, model) then return PL-TRUE?(\( \alpha \), model)
    else return true
else do
    P ← FIRST(symbols); rest ← REST(symbols)
    return TT-CHECK-ALL(KB, \( \alpha \), rest, EXTEND(P, true, model)) and
    TT-CHECK-ALL(KB, \( \alpha \), rest, EXTEND(P, false, model))
```

- \(O(2^n) \) for \(n \) symbols; problem is co-NP-complete
equivalence, validity, satisfiability
Logical Equivalence

- Two sentences are **logically equivalent** iff true in same models:
 \[\alpha \equiv \beta \text{ if and only if } \alpha \models \beta \text{ and } \beta \models \alpha \]

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \implies \beta) & \equiv (\neg \beta \implies \neg \alpha) \quad \text{contraposition} \\
(\alpha \implies \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \iff \beta) & \equiv ((\alpha \implies \beta) \land (\beta \implies \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{De Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and Satisfiability

• A sentence is **valid** if it is true in **all** models,
 e.g., `True, A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B`

• A sentence is **satisfiable** if it is true in **some** model
 e.g., `A ∨ B, C`

• A sentence is **unsatisfiable** if it is true in **no** models
 e.g., `A ∧ ¬A`

• Satisfiability is connected to inference via the following:
 `KB ⊨ α` if and only if `KB ∧ ¬α` is unsatisfiable
 i.e., prove `α` by *reductio ad absurdum*
inference
Proof Methods

• Proof methods divide into (roughly) two kinds

• Application of inference rules
 – Legitimate (sound) generation of new sentences from old
 – Proof = a sequence of inference rule applications
 Can use inference rules as operators in a standard search alg.
 – Typically require translation of sentences into a normal form

• Model checking
 – truth table enumeration (always exponential in n)
 – improved backtracking
 – heuristic search in model space (sound but incomplete)
 e.g., min-conflicts-like hill-climbing algorithms
Forward and Backward Chaining

- **Horn Form** (restricted)
 \[KB = \text{conjunction of Horn clauses} \]

- Horn clause =
 - proposition symbol; or
 - (conjunction of symbols) \(\implies \) symbol

 e.g., \(C, \quad B \implies A, \quad C \land D \implies B \)

- **Modus Ponens** (for Horn Form): complete for Horn KBs

 \[
 \frac{\alpha_1, \ldots, \alpha_n, \quad \alpha_1 \land \cdots \land \alpha_n \implies \beta}{\beta}
 \]

- Can be used with **forward chaining** or **backward chaining**

- These algorithms are very natural and run in **linear** time
Example

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

\[
P \implies Q
\]
\[
L \land M \implies P
\]
\[
B \land L \implies M
\]
\[
A \land P \implies L
\]
\[
A \land B \implies L
\]
\[
A
\]
\[
B
\]
forward chaining
Forward Chaining

- Start with given proposition symbols (atomic sentence)
 e.g., A and B

- Iteratively try to infer truth of additional proposition symbols
 e.g., $A \land B \implies C$, therefore we establish C is true

- Continue until
 - no more inference can be carried out, or
 - goal is reached
Forward Chaining Example

- Given
 \[P \implies Q \]
 \[L \land M \implies P \]
 \[B \land L \implies M \]
 \[A \land P \implies L \]
 \[A \land B \implies L \]
 \[A \]
 \[B \]

- Agenda: \(A, B \)

- Annotate horn clauses with number of premises
Forward Chaining Example

- Process agenda item A
- Decrease count for horn clauses in which A is premise
Forward Chaining Example

- Process agenda item B
- Decrease count for horn clauses in which B is premise
 - $A \land B \implies L$ has now fulfilled premise
- Add L to agenda
Forward Chaining Example

- Process agenda item L
- Decrease count for horn clauses in which L is premise
- $B \land L \implies M$ has now fulfilled premise
- Add M to agenda
Forward Chaining Example

- Process agenda item M
- Decrease count for horn clauses in which M is premise
- $L \land M \implies P$ has now fulfilled premise
- Add P to agenda
Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \implies Q$ has now fulfilled premise
- Add Q to agenda
- $A \land P \implies L$ has now fulfilled premise
Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \implies Q$ has now fulfilled premise
- Add Q to agenda
- $A \land P \implies L$ has now fulfilled premise
- But L is already inferred
Forward Chaining Example

- Process agenda item Q
- Q is inferred
- Done
Forward Chaining Algorithm

function PL-FC-ENTAILS?\((KB, q)\) returns \text{true} or \text{false}

inputs: \(KB\), the knowledge base, a set of propositional Horn clauses
\(q\), the query, a proposition symbol

local variables: \textit{count}, a table, indexed by clause, init. number of premises
\textit{inferred}, a table, indexed by symbol, each entry initially \text{false}
\textit{agenda}, a list of symbols, initially the symbols known in \(KB\)

while \text{agenda} is not empty do
 \(p \leftarrow \text{POP}(\text{agenda})\)
 unless \textit{inferred}[p] do
 \textit{inferred}[p] \leftarrow \text{true}
 for each Horn clause \(c\) in whose premise \(p\) appears do
 decrement \textit{count}[c]
 if \(\textit{count}[c] = 0\) then do
 if \text{HEAD}[c] = q then return \text{true}
 \text{PUSH}\,(\text{HEAD}[c], \text{agenda})
 return \text{false}
backward chaining
Backward Chaining

- Idea: work backwards from the query Q:
 to prove Q by BC,
 check if Q is known already, or
 prove by BC all premises of some rule concluding q

- Avoid loops: check if new subgoal is already on the goal stack

- Avoid repeated work: check if new subgoal
 1. has already been proved true, or
 2. has already failed
Backward Chaining Example

- A and B are known to be true
- Q needs to be proven
Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \implies Q$
- P needs to be proven
Backward Chaining Example

- Current goal: \(P \)
- \(P \) can be inferred by \(L \land M \implies P \)
- \(L \) and \(M \) need to be proven
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land P \implies L$
- A is already true
- P is already a goal

\Rightarrow repeated subgoal
Backward Chaining Example

- Current goal: L
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true

$\Rightarrow L$ is true
Backward Chaining Example

- Current goal: M
Backward Chaining Example

- Current goal: M

- M can be inferred by $B \land L \implies M$
Backward Chaining Example

- Current goal: M
- M can be inferred by $B \land L \implies M$
- Both are true

$\Rightarrow M$ is true
Backward Chaining Example

- Current goal: P
- P can be inferred by $L \land M \implies P$
- Both are true

$\Rightarrow P$ is true
Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \implies Q$
- P is true

$\Rightarrow Q$ is true
Forward vs. Backward Chaining

- FC is **data-driven**, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is **goal-driven**, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be **much less** than linear in size of KB
resolution
Resolution

- **Conjunctive Normal Form (CNF—universal)**

 conjunction of disjunctions of literals

 E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

- **Resolution** inference rule (for CNF): complete for propositional logic

 \[
 \ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n
 \]

 \[
 \ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n
 \]

 where \(\ell_i\) and \(m_j\) are complementary literals. E.g.,

 \[
 P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2}
 \]

 \[
 P_{1,3}
 \]

- Resolution is sound and complete for propositional logic
- Rules such as: “If breeze, then a pit adjacent.”

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha) \).
 \[
 (B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1})
 \]

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).
 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1})
 \]

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation:
 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})
 \]

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten:
 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})
 \]
Resolution Example

- $KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1}))$

 reformulated as:

 $$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

- Observation: $\neg B_{1,1}$

- Goal: disprove: $\alpha = \neg P_{1,2}$

 (we add $P_{1,2}$ to the KB and check for contraction)

- Resolution

 \[
 \begin{array}{c}
 \neg P_{1,2} \lor B_{1,1} \\
 \hline
 \neg B_{1,1} \\
 \hline
 \neg P_{1,2}
 \end{array}
 \]

- Resolution

 \[
 \begin{array}{c}
 \neg P_{1,2} \quad P_{1,2} \\
 \hline
 \text{false}
 \end{array}
 \]
Resolution Example

- In practice: all resolvable pairs of clauses are combined
Resolution Algorithm

- Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

```plaintext
function PL-RESOLUTION($KB, \alpha$) returns true or false
  inputs: $KB$, the knowledge base, a sentence in propositional logic
           $\alpha$, the query, a sentence in propositional logic
   clauses ← the set of clauses in the CNF representation of $KB \land \neg \alpha$
   new ← {}
   loop do
     for each $C_i, C_j$ in clauses do
       resolvents ← PL-RESOLVE($C_i, C_j$)
       if resolvents contains the empty clause then return true
       new ← new ∪ resolvents
     if new ⊆ clauses then return false
   clauses ← clauses ∪ new
```

Logical Agent

- Logical agent for Wumpus world explores actions
 - observe glitter → done
 - unexplored safe spot → plan route to it
 - if Wampus in possible spot → shoot arrow
 - take a risk to go possibly risky spot

- Propositional logic to infer state of the world

- Heuristic search to decide which action to take
Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions.

- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences with respect to models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences

- Wumpus world requires the ability to represent partial and negated information, inference to determine state of the world, etc.

- Forward, backward chaining are linear-time, complete for Horn clauses.

- Resolution is complete for propositional logic.