Informed Search

Philipp Koehn

13 February 2025

Heuristic

From Wikipedia:

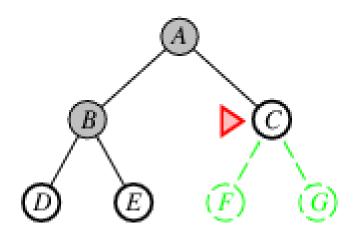
any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect but sufficient for the immediate goals

Outline

- Best-first search
- A* search
- Iterative improvement algorithms
 - hill-climbing
 - simulated annealing
 - genetic algorithms

best-first search

Review: Tree Search

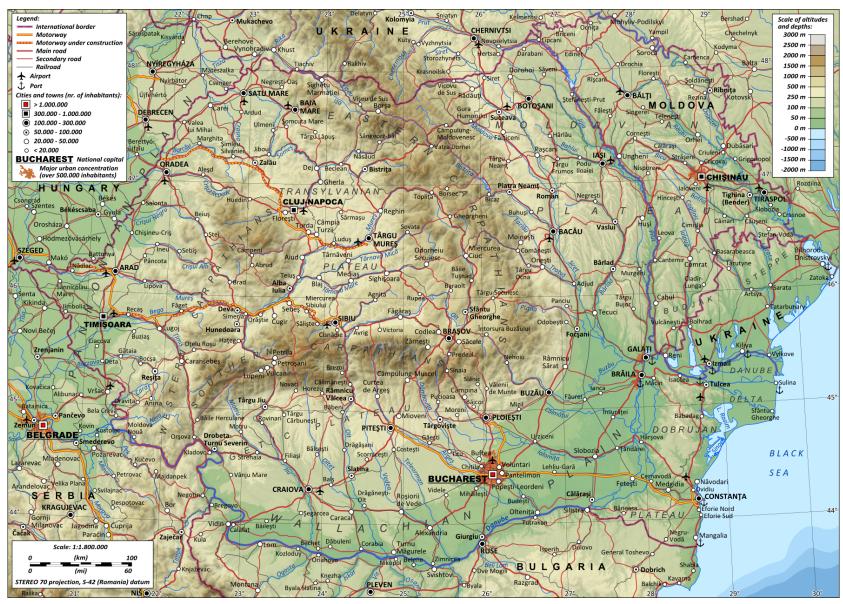


- Search space is in form of a tree
- Strategy is defined by picking the **order of node expansion**

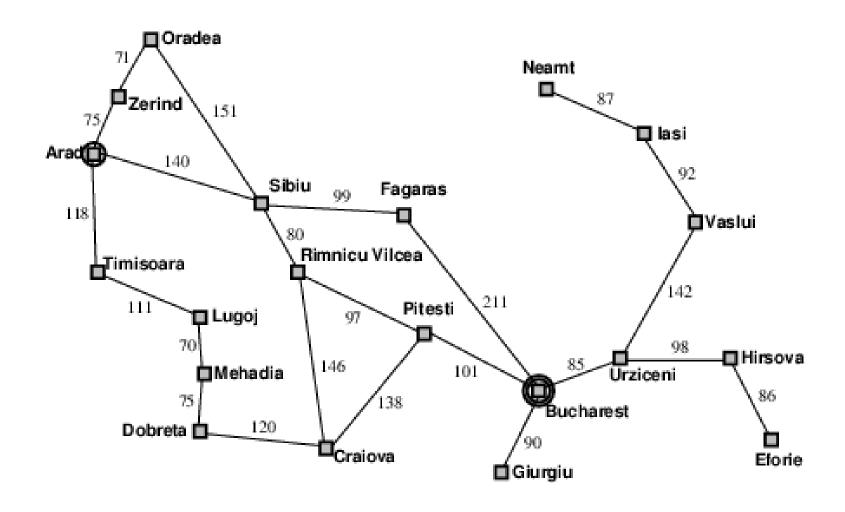
Best-First Search

- Idea: use an evaluation function for each node
 - estimate of "desirability"
- ⇒ Expand most desirable unexpanded node
 - Implementation: fringe is a queue sorted in decreasing order of desirability
 - Special cases
 - greedy search
 - A* search

Romania



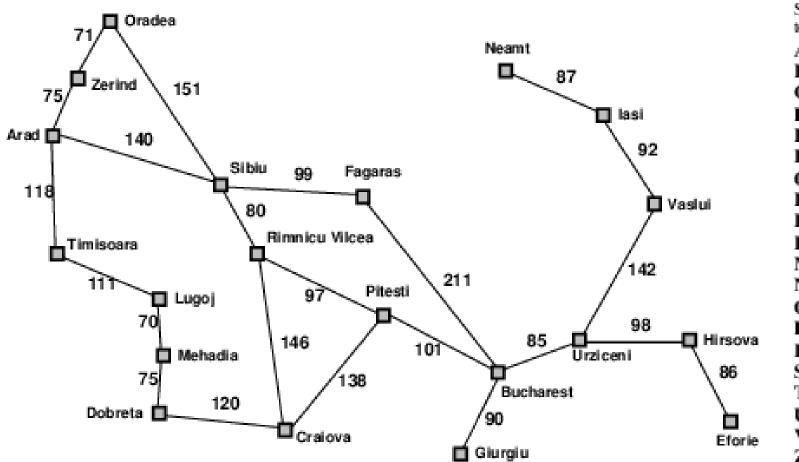
Romania



Greedy Search

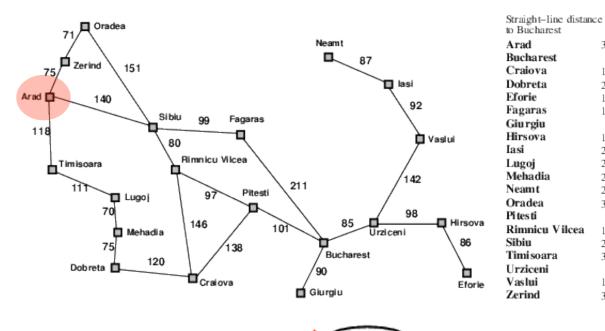
- State evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal
- E.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Greedy search expands the node that **appears** to be closest to goal

Romania with Step Costs in km



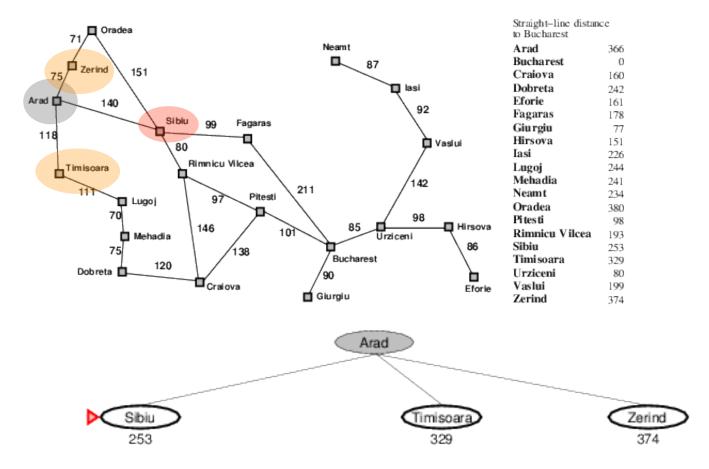
Straight-line distance to Bucharest

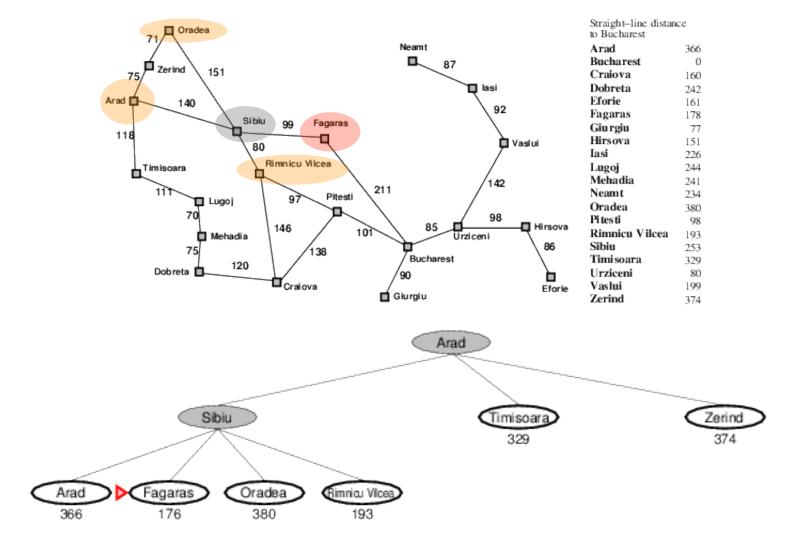
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

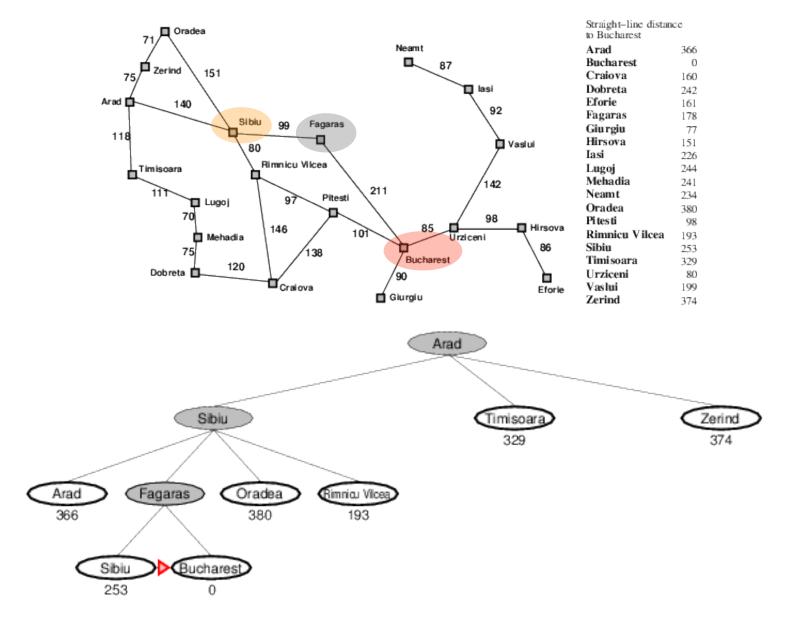


magne mic uistan	~~
o Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
lirsova	151
asi	226
_ugoj	244
Mehadia	241
Neam t	234
Oradea	380
Pi tes ti	98
Rimnicu Vilcea	193
Sibiu	253
l'imi soara	329
Jrziceni	80
Vaslui	199
Zerind	374

Arad 366

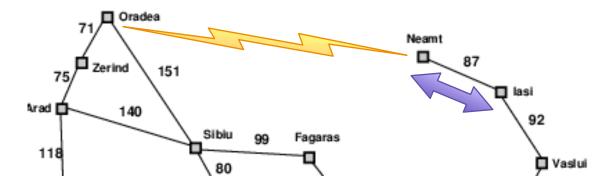






Properties of Greedy Search

Complete? No, can get stuck in loops, e.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →



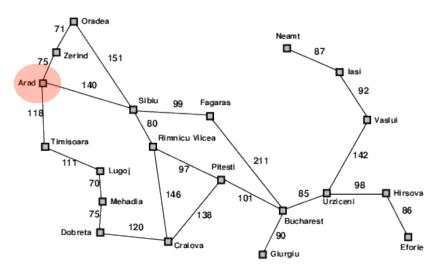
Complete in finite space with repeated-state checking

- Time? $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? $O(b^m)$ —keeps all nodes in memory
- Optimal? No

a* search

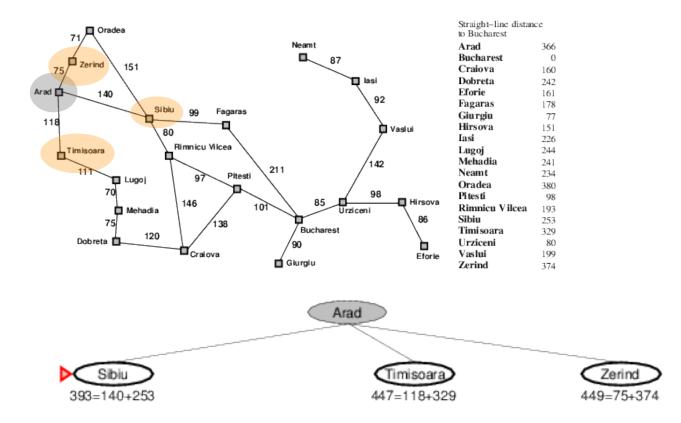
A* Search

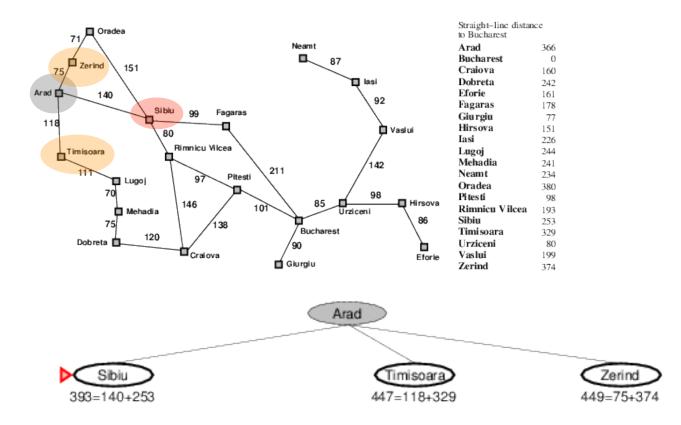
- Idea: avoid expanding paths that are already expensive
- State evaluation function f(n) = g(n) + h(n)
 - $-g(n) = \cos t$ so far to reach n
 - h(n) = estimated cost to goal from n
 - f(n) = estimated total cost of path through n to goal
- A* search uses an **admissible** heuristic
 - i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n
 - also require h(n) ≥ 0, so h(G) = 0 for any goal G
- E.g., $h_{SLD}(n)$ never overestimates the actual road distance
- Theorem: A* search is optimal

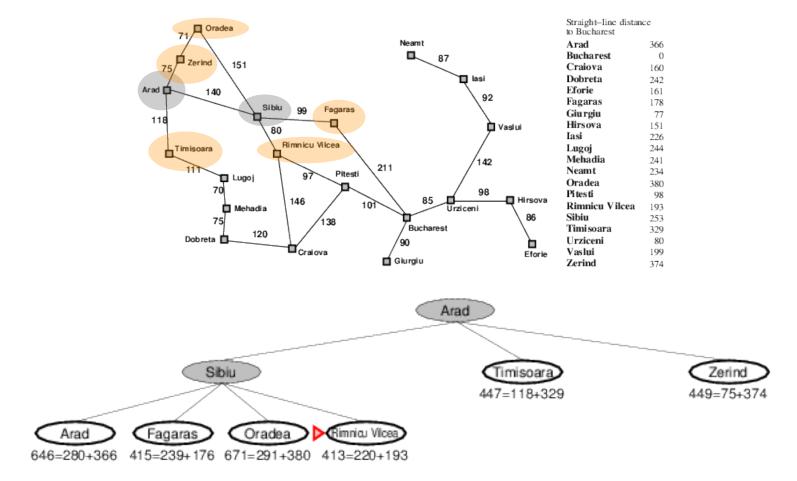


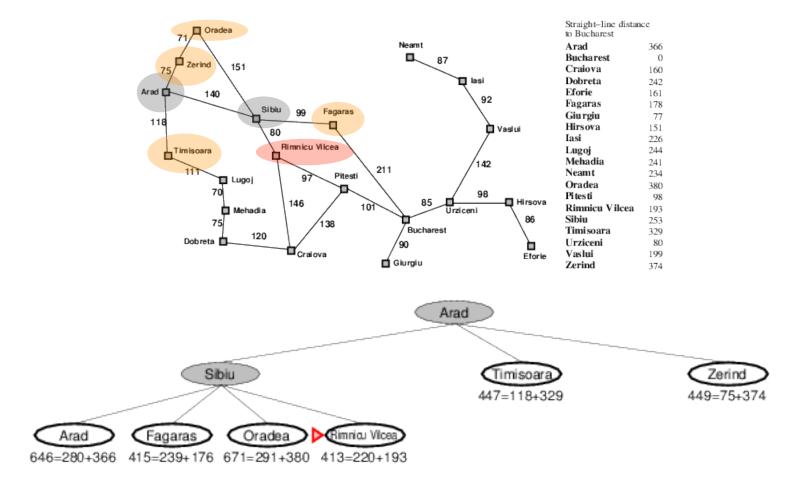
Straight-line distan	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

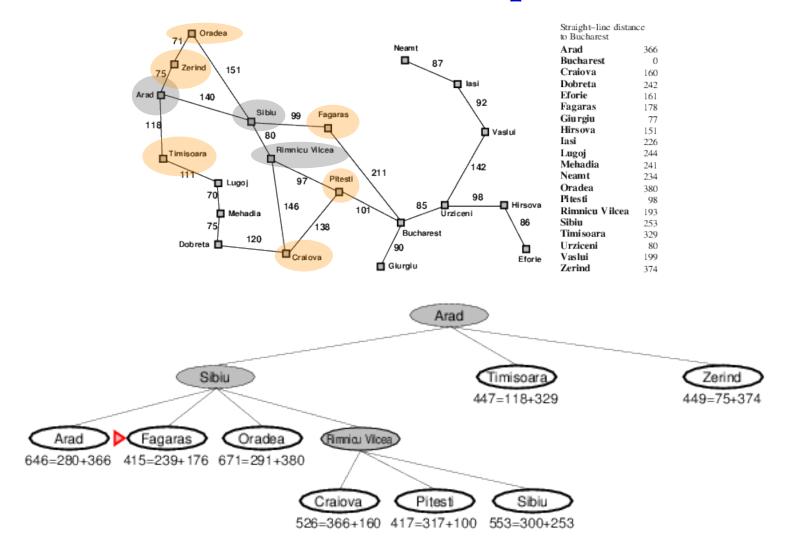


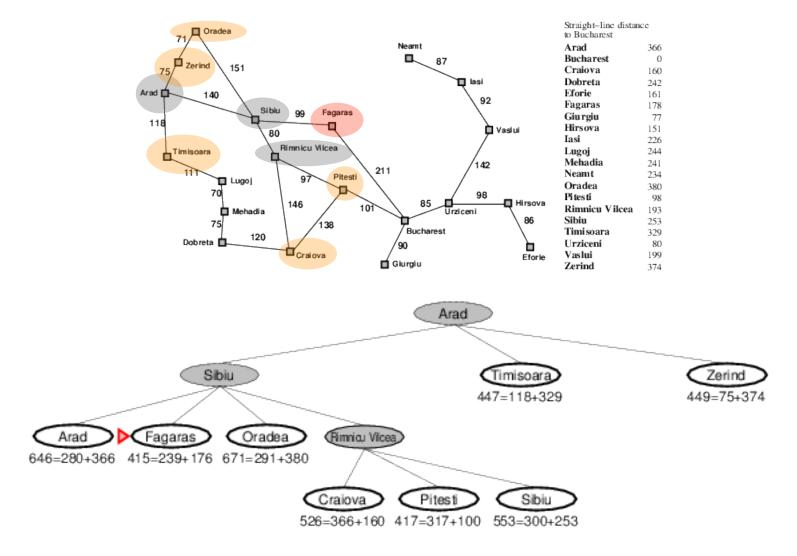


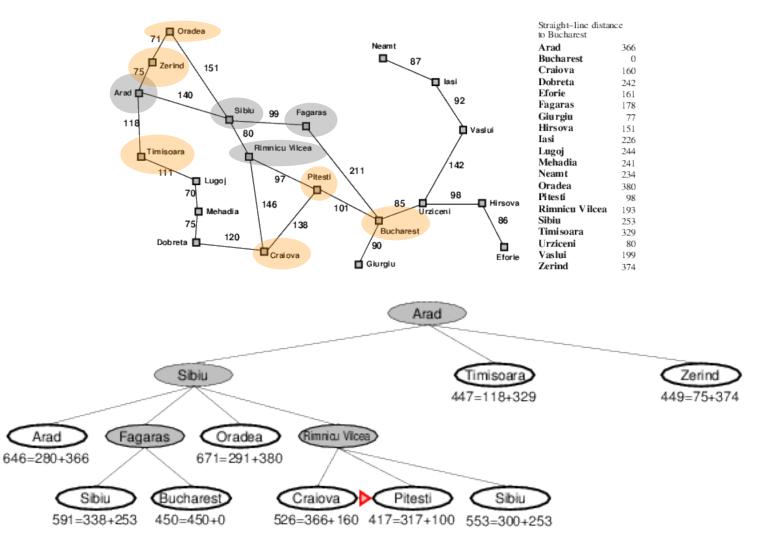


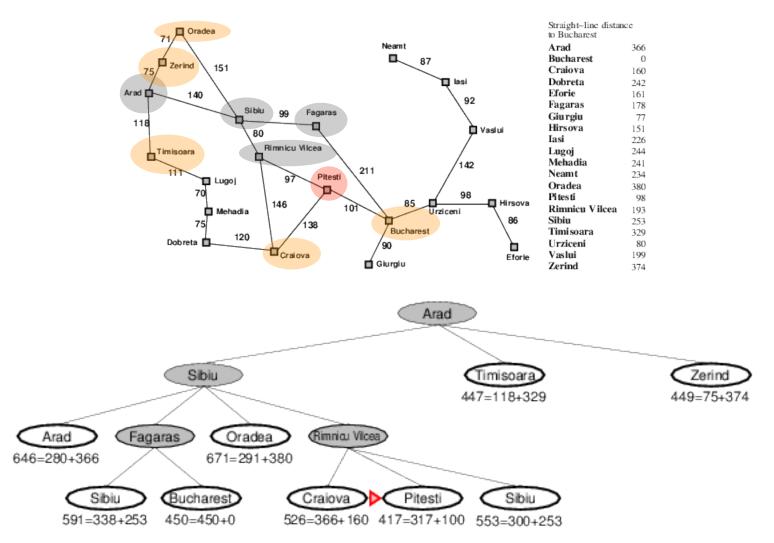


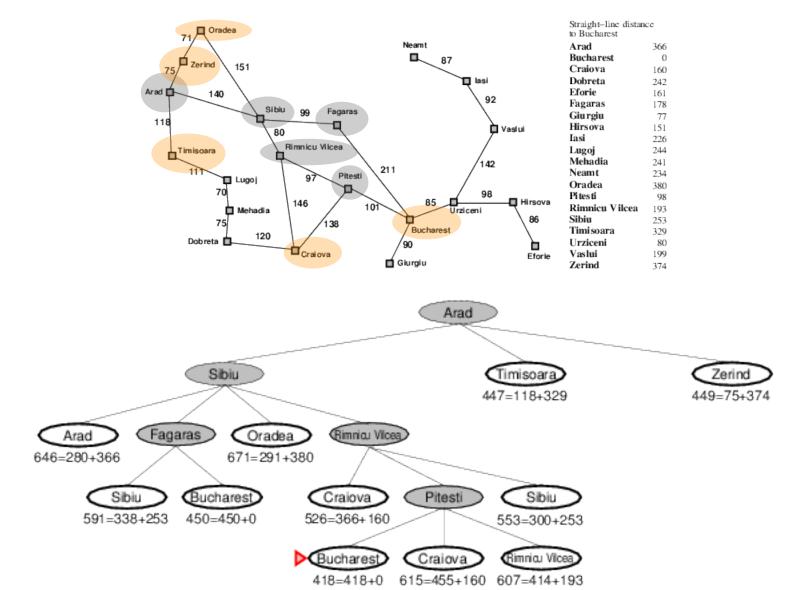


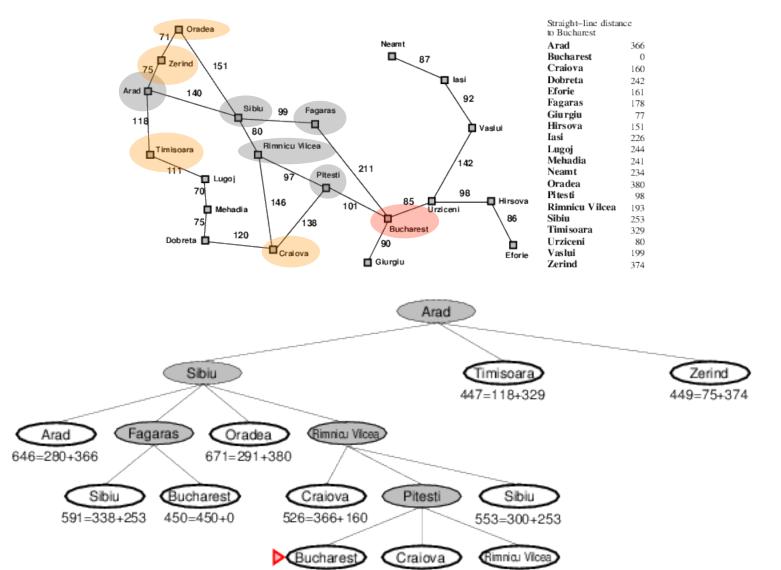








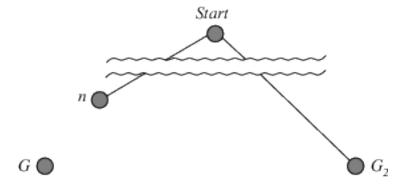




615=455+160 607=414+193

Optimality of A*

- Suppose some suboptimal goal G_2 has been generated and is in the queue
- Let *n* be an unexpanded node on a shortest path to an optimal goal *G*



$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G)$ since G_2 is suboptimal
 $g(G_2) = 0$
> $g(G)$ since $g(G_2)$ is admissible

• Since $f(G_2) > f(n)$, A* will never terminate at G_2

Properties of A*

- Complete? Yes, unless there are infinitely many nodes with $f \leq f(G)$
- Time? Exponential in [relative error in $h \times length$ of solution]
- Space? Keeps all nodes in memory
- Optimal? Yes—cannot expand f_{i+1} until f_i is finished

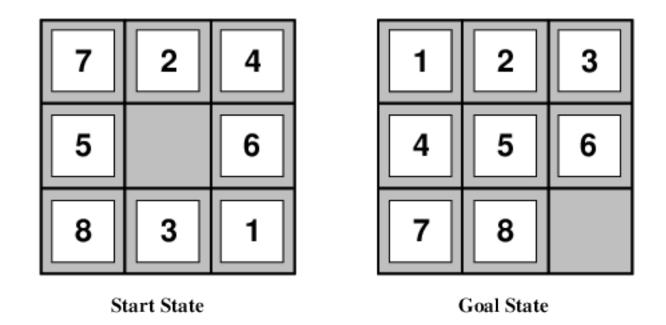
 A^* expands all nodes with $f(n) < C^*$

A* expands some nodes with $f(n) = C^*$

A* expands no nodes with $f(n) > C^*$

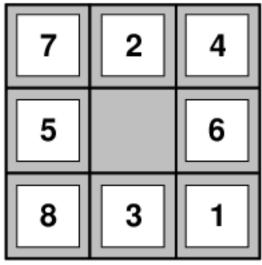
Admissible Heuristics

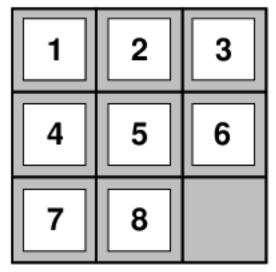
• E.g., for the 8-puzzle



Admissible Heuristics

- E.g., for the 8-puzzle
 - $h_1(n)$ = number of misplaced tiles
 - $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile)



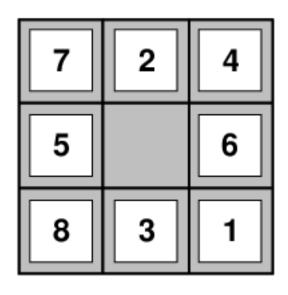


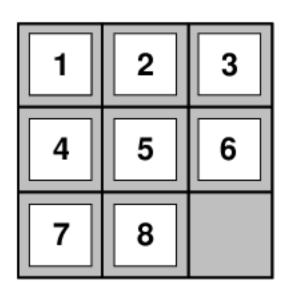
Goal State

- $h_1(S) = ?$
- $h_2(S) = ?$

Admissible Heuristics

- E.g., for the 8-puzzle
 - $h_1(n)$ = number of misplaced tiles
 - $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile)





Goal State

- $h_1(S) = ?6$
- $h_2(S) = ?4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
 - $\rightarrow h_2$ dominates h_1 and is better for search
- Typical search costs (d = depth of solution for 8-puzzle)

$$d = 14$$
 IDS = 3,473,941 nodes $A^*(h_1) = 539$ nodes $A^*(h_2) = 113$ nodes $d = 24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

• Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

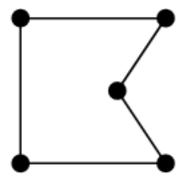
is also admissible and dominates h_a , h_b

Relaxed Problems

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere** $\Rightarrow h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to **any adjacent square** $\Rightarrow h_2(n)$ gives the shortest solution
- Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

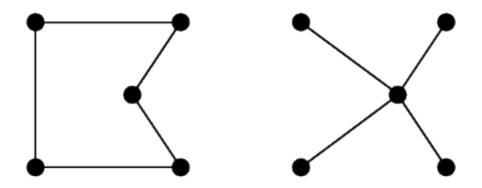
Relaxed Problems

- Well-known example: travelling salesperson problem (TSP)
- Find the shortest tour visiting all cities exactly once



Relaxed Problems

- Well-known example: travelling salesperson problem (TSP)
- Find the shortest tour visiting all cities exactly once



- Minimum spanning tree
 - connects all vertices without cycles, with the minimum total edge weight
 - can be computed in $O(n^2)$
 - is a lower bound on the shortest (open) tour

Summary: A*

- Heuristic functions estimate costs of shortest paths
- Good heuristics can dramatically reduce search cost
- Greedy best-first search expands lowest *h*
 - incomplete and not always optimal
- A* search expands lowest g + h
 - h is never an over-estimate
 - complete and optimal
 - also optimally efficient (up to tie-breaks, for forward search)
- Admissible heuristics can be derived from exact solution of relaxed problems

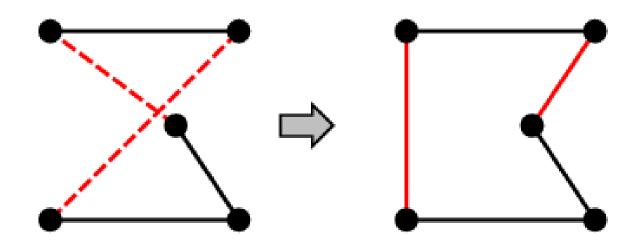
iterative improvement algorithms

Iterative Improvement Algorithms

- In many optimization problems, **path** is irrelevant; the goal state itself is the solution
- Then state space = set of "complete" configurations
 - find optimal configuration, e.g., TSP
 - find configuration satisfying constraints, e.g., timetable
- In such cases, can use **iterative improvement** algorithms
 - → keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

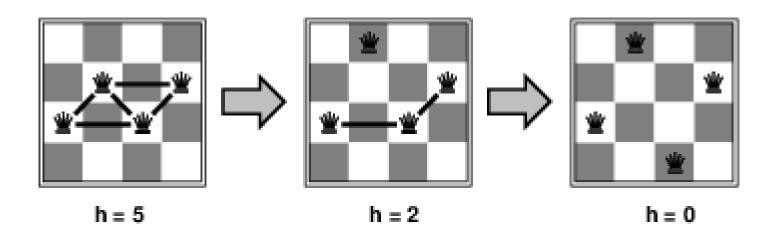
• Start with any complete tour, perform pairwise exchanges



• Variants of this approach get within 1% of optimal quickly with 1000s of cities

Example: *n*-Queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Move a queen to reduce number of conflicts (*h*)



• Almost always solves n-queens problems almost instantaneously for very large n, e.g., n = 1 million

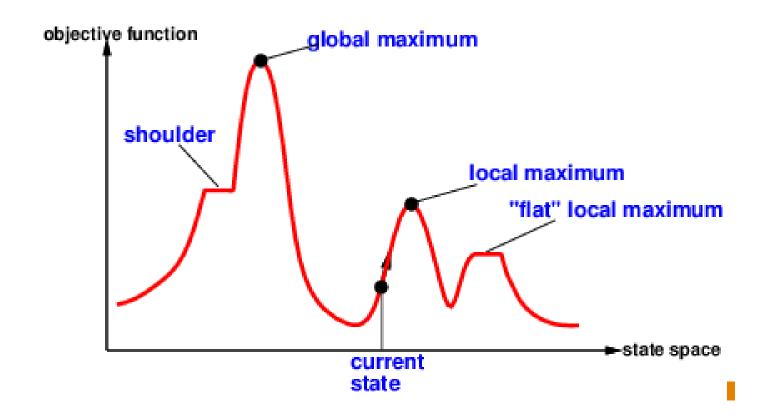
Hill-Climbing

- For instance: Gradient Ascent (or Descent)
- "Like climbing Everest in thick fog with amnesia"

- 1. Start state = a solution (maybe randomly generated)
- 2. Consider neighboring states, e.g.,
 - move a queen
 - pairwise exchange in traveling salesman problem
- 3. No better neighbors? Done.
- 4. Adopt best neighbor state
- 5. Go to step 2

Hill-Climbing

• Useful to consider state space landscape



- Random-restart hill climbing overcomes local maxima—trivially complete
- Random sideways moves © escape from shoulders © loop on flat maxima

Local Beam Search

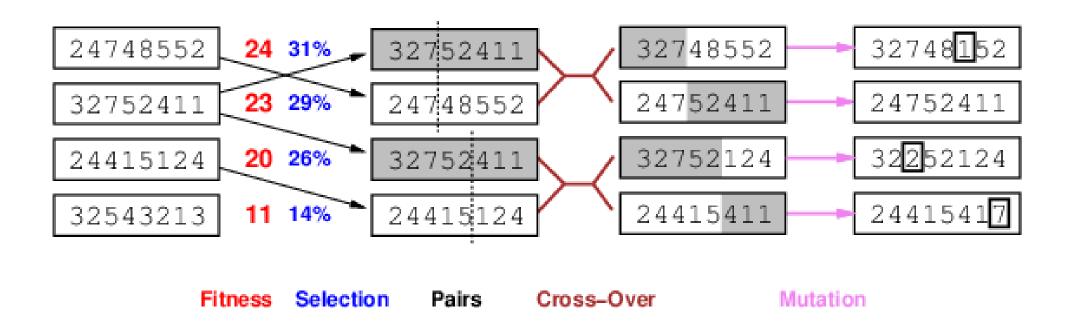
- **Idea**: keep k states instead of 1; choose top k of all their successors
- Not the same as *k* searches run in parallel!
- **Problem**: quite often, all *k* states end up on same local hill
- **Idea**: choose k successors randomly, biased towards good ones

Simulated Annealing

- Idea: escape local maxima by allowing some "bad" moves
- But gradually decrease their size and frequency
- Iterate, reduce temperature T over time
 - compute best greedy move
 - draw random move
 - compute difference in value ΔE = value(random) value(best)
 - with probability $e^{\frac{\Delta E}{T}}$: return **random**
 - else: return best

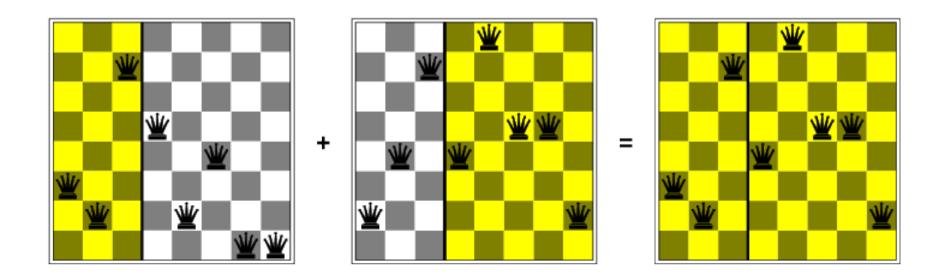
Genetic Algorithms

• Stochastic local beam search + generate successors from **pairs** of states



Genetic Algorithms

- GAs require states encoded as strings (GPs use programs)
- Crossover helps iff substrings are meaningful components



Summary

- Exact search
 - exhaustive exploration of the search space
 - search with heuristics: A*
- Approximate search
 - hill-climbing
 - simulated annealing
 - genetic algorithms