Informed Search

Philipp Koehn

15 February 2024
Heuristic

From Wikipedia:

any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect but sufficient for the immediate goals
Outline

- Best-first search
- A^* search
- Heuristic algorithms
 - hill-climbing
 - simulated annealing
 - genetic algorithms
best-first search
Review: Tree Search

- Search space is in form of a tree
- Strategy is defined by picking the **order of node expansion**
Best-First Search

- **Idea:** use an *evaluation function* for each node
 - estimate of “desirability”

⇒ Expand most desirable unexpanded node

- **Implementation:**
 - *fringe* is a queue sorted in decreasing order of desirability

- **Special cases**
 - greedy search
 - A* search
Greedy Search

- State evaluation function $h(n)$ (heuristic)
 = estimate of cost from n to the closest goal

- E.g., $h_{SLD}(n) = $ straight-line distance from n to Bucharest

- Greedy search expands the node that appears to be closest to goal
Romania with Step Costs in km

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance to Bucharest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrogea</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Râmnicu Vâlcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>

Straight-line distance to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobrogea 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Râmnicu Vâlcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374
Greedy Search Example
Greedy Search Example

Straight-line distance to Bucharest

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>166</td>
</tr>
<tr>
<td>Dobrogea</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsda</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehedia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>86</td>
</tr>
<tr>
<td>Valsiu</td>
<td>190</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy Search Example

Straight-line distance to Bucharest:
- Arad: 366
- Bucharest: 0
- Craiova: 166
- Dobroșa: 242
- Eforie: 161
- Făgăraș: 178
- Giurgiu: 77
- Hîrsova: 151
- Iași: 226
- Lugoj: 244
- Mehadia: 341
- Neamț: 234
- Oradea: 380
- Pitești: 98
- Râmnicu Vâlcea: 193
- Sibiu: 253
- Timișoara: 329
- Urziceni: 80
- Vaslui: 190
- Zerind: 374
Greedy Search Example

Straight-line distance to Bucharest

- Arad: 366
- Bucharest: 0
- Craiova: 166
- Dobrota: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hîrșova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Râmnicu Vâlcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 86
- Vaslui: 190
- Zerind: 374
Properties of Greedy Search

- **Complete?** No, can get stuck in loops, e.g., with Oradea as goal, Iasi → Neamt → Iasi → Neamt →

 ![Graph showing a loop example](image)

 Complete in finite space with repeated-state checking

- **Time?** $O(b^m)$, but a good heuristic can give dramatic improvement

- **Space?** $O(b^m)$—keeps all nodes in memory

- **Optimal?** No
a* search
A* Search

- **Idea:** avoid expanding paths that are already expensive

- **State evaluation function** $f(n) = g(n) + h(n)$
 - $g(n)$ = cost so far to reach n
 - $h(n)$ = estimated cost to goal from n
 - $f(n)$ = estimated total cost of path through n to goal

- **A* search uses an admissible heuristic**
 - i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n
 - also require $h(n) \geq 0$, so $h(G) = 0$ for any goal G

- **E.g.,** $h_{SLD}(n)$ never overestimates the actual road distance

- **Theorem:** A* search is optimal
A* Search Example

Straight-Line Distance to Bucharest

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>166</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>166</td>
</tr>
<tr>
<td>Dobroța</td>
<td>212</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Făgăras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>76</td>
</tr>
<tr>
<td>Hârșova</td>
<td>151</td>
</tr>
<tr>
<td>Iași</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>254</td>
</tr>
<tr>
<td>Mioveni</td>
<td>161</td>
</tr>
<tr>
<td>Neamț</td>
<td>354</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitești</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vâlcea</td>
<td>153</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timișoara</td>
<td>338</td>
</tr>
<tr>
<td>Urziceni</td>
<td>86</td>
</tr>
<tr>
<td>Vâlcei</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>

The diagram shows the graph representation of the cities and their distances.
A* Search Example
A* Search Example

Straight-Line distance to Bucharest:
- Arad: 166
- Bucharest: 0
- Craiova: 160
- Dobrota: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 70
- Hlinsova: 151
- Iasi: 226
- Lugoj: 264
- Mediasia: 261
- Neamt: 734
- Oradea: 380
- Pitești: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 378
- Uzeceni: 86
- Vâlcea: 199
- Zerind: 374

Distances:
- Arad: 280 + 366
- Fagaras: 239 + 176
- Oradea: 291 + 380
- Rimnicu Vilcea: 220 + 193

Arad

Sibiu

Fagaras

Oradea

Rimnicu Vilcea

Timisoara

Zerind
A* Search Example

Straight-Line Distance to Bucharest

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>166</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>106</td>
</tr>
<tr>
<td>Dobrogea</td>
<td>202</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>78</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>74</td>
</tr>
<tr>
<td>Harghita</td>
<td>7</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lasi</td>
<td>226</td>
</tr>
<tr>
<td>Lepa</td>
<td>204</td>
</tr>
<tr>
<td>Miercurea</td>
<td>301</td>
</tr>
<tr>
<td>Neamt</td>
<td>354</td>
</tr>
<tr>
<td>Oradea</td>
<td>386</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vlcea</td>
<td>153</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>378</td>
</tr>
<tr>
<td>Uracleni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
A* Search Example
A* Search Example

Straight-Line Distance to Bucharest

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>140</td>
</tr>
<tr>
<td>Dobrota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>91</td>
</tr>
<tr>
<td>Hârlău</td>
<td>151</td>
</tr>
<tr>
<td>Iaşi</td>
<td>226</td>
</tr>
<tr>
<td>Lupoj</td>
<td>264</td>
</tr>
<tr>
<td>Mioveni</td>
<td>361</td>
</tr>
<tr>
<td>Neamt</td>
<td>334</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Piteşti</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vâlcea</td>
<td>593</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timişoara</td>
<td>378</td>
</tr>
<tr>
<td>Urziceni</td>
<td>86</td>
</tr>
<tr>
<td>Vâlcea</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>

Arad

Sibiu

Fagaras

Oradea

Pitesti

Craiova

Bucharest

Sibiu

Arad

646 = 280 + 366

Sibiu

591 = 338 + 253

Bucharest

450 = 450 + 0

Craiova

526 = 366 + 160

Pitesti

417 = 317 + 100

Sibiu

553 = 300 + 253

447 = 118 + 329

449 = 75 + 374
A* Search Example
A* Search Example
Optimality of A*

- Suppose some suboptimal goal G_2 has been generated and is in the queue.
- Let n be an unexpanded node on a shortest path to an optimal goal G.

\[f(G_2) = g(G_2) \quad \text{since} \quad h(G_2) = 0 \]
\[> g(G) \quad \text{since} \quad G_2 \text{ is suboptimal} \]
\[\geq f(n) \quad \text{since} \quad h \text{ is admissible} \]

- Since $f(G_2) > f(n)$, A* will never terminate at G_2.

\begin{figure}
\centering
\includegraphics[scale=0.5]{diagram.png}
\caption{Diagram illustrating the optimality of A*.}
\end{figure}
Properties of A*

- **Complete?** Yes, unless there are infinitely many nodes with $f \leq f(G)$
- **Time?** Exponential in [relative error in $h \times$ length of solution]
- **Space?** Keeps all nodes in memory
- **Optimal?** Yes—cannot expand f_{i+1} until f_i is finished

A* expands all nodes with $f(n) < C^*$
A* expands some nodes with $f(n) = C^*$
A* expands no nodes with $f(n) > C^*$
Admissible Heuristics

• E.g., for the 8-puzzle
Admissible Heuristics

- E.g., for the 8-puzzle
 - $h_1(n) =$ number of misplaced tiles
 - $h_2(n) =$ total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

- $h_1(S) =$?
- $h_2(S) =$?
Admissible Heuristics

- E.g., for the 8-puzzle
 - $h_1(n) =$ number of misplaced tiles
 - $h_2(n) =$ total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

- $h_1(S) =$ 6
- $h_2(S) =$ 4+0+3+3+1+0+2+1 = 14
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible)
 $\rightarrow h_2$ dominates h_1 and is better for search

- Typical search costs ($d =$ depth of solution for 8-puzzle)

 $d = 14$
 IDS $= 3,473,941$ nodes
 $A^*(h_1) = 539$ nodes
 $A^*(h_2) = 113$ nodes

 $d = 24$
 IDS $\approx 54,000,000,000$ nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes

- Given any admissible heuristics $h_a, h_b,$

 $h(n) = \max(h_a(n), h_b(n))$

 is also admissible and dominates h_a, h_b
Relaxed Problems

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere ⇒ $h_1(n)$ gives the shortest solution.

- If the rules are relaxed so that a tile can move to any adjacent square ⇒ $h_2(n)$ gives the shortest solution.

- Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem.
Relaxed Problems

- Well-known example: travelling salesperson problem (TSP)
- Find the shortest tour visiting all cities exactly once
Relaxed Problems

- Well-known example: travelling salesperson problem (TSP)
- Find the shortest tour visiting all cities exactly once

Minimum spanning tree
- connects all vertices without cycles, with the minimum total edge weight
- can be computed in $O(n^2)$
- is a lower bound on the shortest (open) tour
Summary: A*

- Heuristic functions estimate costs of shortest paths
- Good heuristics can dramatically reduce search cost
- Greedy best-first search expands lowest h
 - incomplete and not always optimal
- A* search expands lowest $g + h$
 - h is never an over-estimate
 - complete and optimal
 - also optimally efficient (up to tie-breaks, for forward search)
- Admissible heuristics can be derived from exact solution of relaxed problems
iterative improvement algorithms
Iterative Improvement Algorithms

- In many optimization problems, **path** is irrelevant; the goal state itself is the solution.

- Then state space = set of “complete” configurations
 - find **optimal** configuration, e.g., TSP
 - find configuration satisfying constraints, e.g., timetable

- In such cases, can use **iterative improvement** algorithms
 → keep a single “current” state, try to improve it

- Constant space, suitable for online as well as offline search
Example: Travelling Salesperson Problem

- Start with any complete tour, perform pairwise exchanges

- Variants of this approach get within 1% of optimal quickly with 1000s of cities
Example: \(n \)-Queens

- Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal

- Move a queen to reduce number of conflicts (\(h \))

- Almost always solves \(n \)-queens problems almost instantaneously for very large \(n \), e.g., \(n = 1 \) million
Hill-Climbing

• For instance Gradient Ascent (or Descent)

• “Like climbing Everest in thick fog with amnesia”

1. Start state = a solution (maybe randomly generated)
2. Consider neighboring states, e.g.,
 • move a queen
 • pairwise exchange in traveling salesman problem
3. No better neighbors? Done.
4. Adopt best neighbor state
5. Go to step 2
Hill-Climbing

- Useful to consider state space landscape

- Random-restart hill climbing overcomes local maxima—trivially complete
- Random sideways moves 😊 escape from shoulders 😊 loop on flat maxima
Local Beam Search

- **Idea:** keep k states instead of 1; choose top k of all their successors

- **Not the same as** k searches run in parallel!

- **Problem:** quite often, all k states end up on same local hill

- **Idea:** choose k successors randomly, biased towards good ones
Simulated Annealing

- Idea: escape local maxima by allowing some “bad” moves
- But gradually decrease their size and frequency

- Iterate, reduce temperature T over time
 - compute best greedy move
 - draw random move
 - compute difference in value $\Delta E = \text{value}(\text{random}) - \text{value}(\text{best})$
 - with probability $e^{\frac{\Delta E}{T}}$: return random
 - else: return best
Genetic Algorithms

- Stochastic local beam search + generate successors from **pairs** of states
Genetic Algorithms

- GAs require states encoded as strings (GPs use programs)
- Crossover helps iff substrings are meaningful components
Summary

- Exact search
 - exhaustive exploration of the search space
 - search with heuristics: A*

- Approximate search
 - hill-climbing
 - simulated annealing
 - genetic algorithms