# **Deep Reinforcement Learning**

Philipp Koehn

15 April 2025



# **Reinforcement Learning**



- Sequence of actions
  - moves in chess
  - driving controls in car
- Uncertainty
  - moves by component
  - random outcomes (e.g., dice rolls, impact of decisions)
- Reward delayed
  - chess: win/loss at end of game
  - Pacman: points scored throughout game
- Challenge: find optimal policy for actions

# **Deep Learning**





- Mapping input to output through multiple layers
- Weight matrices and activation functions

# **AlphaGo**



GOOGLE TECH ARTIFICIAL INTELLIGENCE

# AlphaGo retires from competitive Go after defeating world number one 3-0

By Sam Byford | @345triangle | May 27, 2017, 5:17am EDT











#### **Book**



- Lecture based on the book
   Deep Learning and the Game of Go
   by Pumperla and Ferguson, 2019
- Hands-on introduction to game playing and neural networks
- Lots of Python code





go

#### Go



- Board game with white and black stones
- Stones may be placed anywhere
- If opponents stones are surrounded, you can capture them
- Ultimately: you need to claim territory
- Player with most territory and captured stones wins

## Go Board





• Starting board, standard board is 19x19, but can also play with 9x9 or 13x13





• First move: white





• Second move: black





• Third move: white





• Situation after 7 moves, black's turn





• Move by black: surrounded white stone in the middle

# **Capture**





• White stone in middle is captured

## **Final State**





• Any further moves will not change outcome

# Final State with Territory Marked





• Total score: number of squares in territory + number of captured stones

# Why is Go Hard for Computers?



- Many moves possible
  - 19x19 board
  - 361 moves initially
  - games may last 300 moves
- ⇒ Huge branching factor in search space
  - Hard to evaluate board positions
    - control of board most important
    - number of captured stones less relevant



# game playing

## **Game Tree**





• Recall: game tree to consider all possible moves

# Alpha-Beta Search



- Explore game tree depth-first
- Exploration stops at win or loss
- Backtrack to other paths, note best/worst outcome
- Ignore paths with worse outcomes
- This does not work for a game tree with about  $361^{300}$  states

#### **Evaluation Function for States**



- Explore game tree up to some specified maximum depth
- Evaluate leaf states
  - informed by knowledge of game
  - e.g., chess: pawn count, control of board
- This does not work either due
  - high branching factor
  - difficulty of defining evaluation function



# monte carlo tree search





• Explore depth-first randomly ("roll-out"), record win on all states along path





• Pick existing node as starting point, execute another roll-out, record loss





• Pick existing node as starting point, execute another roll-out





• Pick existing node as starting point, execute another roll-out





• Increasingly, prefer to explore paths with high win percentage



• Which node to pick?

$$w + c\sqrt{\frac{\log N}{n}}$$

- N total number of roll-outs
- n number of roll-outs for this node in the game tree
- w winning percentage
- c hyper parameter to balance exploration
- This is an inference algorithm
  - execute, say, 10,000 roll-outs
  - pick initial action with best win percentage w
  - can be improved by following rules based on well-known local shapes



# action prediction with neural networks

# **Learning Moves**





- We would like to learn actions of game playing agent
- Input state: board position
- Output action: optimal move

# **Learning Moves**



| 0 | 0 | 0  | 0  | 0 |
|---|---|----|----|---|
| 0 | 0 | 1  | 0  | 0 |
| 0 | 0 | 1  | 1  | 0 |
| 0 | 0 | 1  | -1 | 0 |
| 0 | 0 | -1 | -1 | 0 |



| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

• Machine learning problem

• Input: 5x5 matrix

• Output: 5x5 matrix

#### **Neural Networks**



- First idea: feed-forward neural network
  - encode board position in  $n \times n$  sized vector
  - encode correct move in  $n \times n$  sized vector
  - add some hidden layers
- Many parameters
  - input and output vectors have dimension 361 (19x19 board)
  - if hidden layers have same size
    - → 361x361 weights for each
- Does not generalize well
  - same patterns on various locations of the board
  - has to learn moves for each location
  - consider everything moved one position to the right



#### **Convolutional Neural Networks**





- Convolutional kernel: here maps 3x3 matrix to 1x1 value
- Applied to all 3x3 regions of the original matrix
- Learns local features

#### **Move Prediction with CNNs**





- May use multiple convolutional kernels (of same size)
  - → learn different local features
- Resulting values may be added or maximum value selected (max-pooling)
- May have several convolutional neural network layers
- Final layer: softmax prediction of move

# **Human Game Play Data**





# **Human Game Play Data**



- Game records
  - sequence of moves
  - winning player
- Convert into training data for move prediction
  - one move at a time
  - prediction +1 for move if winner
  - **−** prediction −1 for move if loser
- learn winning moves, avoid losing moves

# Playing Go with Neural Move Predictor



- Greedy search
- Make prediction at each turn
- Selection move with highest probability

# reinforcement learning

# **Self-Play**



- Previously: learn policy from human play data
- Now: learn policy from self-play

- Need to have an agent that plays reasonably well to start
  - → learn initial policy from human play data
- Greedy move selection with same policy will result in the same game each time
  - stochastic moves:
     move predicted with 80% confidence → select it 80% of the time
  - may have to clip probabilities that are too certain (e.g., 99.9% to 80%)

# **Experience from Self-Play**



- Self play will generate self play data ("experience")
  - sequence of moves
  - winner at the end
- Can be used as training data to improve model
  - first train model on human play data
  - then, run 1 epoch over self-play data

# **Policy Search**





- Reminder: policy informs which action to take in each state
- Learning move predictor = learning policy

# **Q** Learning





- Learn utility value for each state = likelihood of winning
- Training on game play data, utility=1 for win, 0 for loss
- Game play with utility predictor
  - consider all possible actions
  - compute utility value for resulting state
  - choose action with maximum utility outcome

# **Q** Learning





- Alternative architecture
- Explicitly modeling the last move: *Q*(state,action)



# actor-critic learning

# **Credit Assignment Problem**



- Go game lasts many moves (say, 300 moves)
  - some of the moves are good
  - some of the moves are bad
  - some of the moves make no difference
- We want to learn from the moves that made a difference
  - before: low chance of winning
  - move
  - at the end  $\rightarrow$  win

# **Consider Win Probability**





• Moves that pushed towards win matter more

### **Consider Win Probability**





• Especially important moves: change from losing position to winning position

# **Advantage**





Compute utility of state V(s)Definition of advantage: A = R - V(s)(R = final reward)

# **Actor-Critic Learning**



- Combination of policy learning and Q learning
  - actor: move predictor (as in policy learning)  $s \rightarrow a$
  - critic: value of state (as in Q learning) V(s)
- We use this setup to influence how much to boost good moves
  - advantage A = R V(s)
  - good moves when advantage is high

# Policy Learning with Advantage



• Before: predict win







• Now: predict advantage

| 0 | 0 | 0  | 0  | 0 |
|---|---|----|----|---|
| 0 | 0 | 1  | 0  | 0 |
| 0 | 0 | -1 | 1  | 0 |
| 0 | 0 | 1  | -1 | 0 |
| 0 | 0 | -1 | -1 | 0 |



| 0 | 0   | 0 | 0 | 0 |
|---|-----|---|---|---|
| 0 | 0   | 0 | 0 | 0 |
| 0 | 8.0 | 0 | 0 | 0 |
| 0 | 0   | 0 | 0 | 0 |
| 0 | 0   | 0 | 0 | 0 |

#### **Architecture of Actor-Critic Model**





- Training of actor and critic similar
- ⇒ Share components, train them jointly
  - Multi-task learning helps regularization

# alpha go

#### **Overview**





# **Encoding the Board**



- We encoded each board position with a integer (+1=white, -1=black, 0=blank)
- AlphaGo uses a 48-dimensional vector that encode knowledge about the game
  - 3 booleans for stone color
  - 1 boolean for legal and fundamentally sensible move
  - 8 boolean to record how far back stone was placed
  - 8 booleans to encode *liberty*
  - 8 booleans to encode liberty after move
  - 8 booleans to encode *capture* size
  - 8 booleans to encode how many of your own stones will be placed in jeopardy because of move
  - 2 booleans for *ladder* detection
  - 3 booleans for technical values
- Note: *ladder*, *liberty*, and *capture* are basic concepts of the game

# **Policy and Value Networks**



- Policy network:  $s \rightarrow a$
- Value network:  $s \to V(s)$
- These networks are trained as previously described
- Fairly deep networks
  - 13 layers for policy network
  - **–** 16 layers for value network

#### **Monte Carlo Tree Search**



- Inference uses a refined version of Monte Carlo Tree Search (MCTS)
- Roll-out guided by fast policy network (greedy search)
- When visiting a node with some unexplored children ("leaf")
  - → use probability distribution from strong policy network for stochastic choice
- Combine roll-out statistics with prediction from value network

#### MCTS with Value Network



• Estimate value of a leaf node l in the game tree where a roll-out started as

$$V(l) = \frac{1}{2} \operatorname{value}(l) + \frac{1}{2} \operatorname{roll-out}(l)$$

- value(l) is prediction from value network
- roll-out(l) is win percentage from Monte Carlo Tree Search
- This is used to compute Q values for any state-action pair given its leaf nodes  $l_i$

$$Q(s,a) = \frac{\sum_{i} V(l_i)}{N(s,a)} \blacksquare$$

• Combine with the prediction of the strong policy network P(s, a)

$$a' = \operatorname{argmax}_a Q(s, a) + \frac{P(s, a)}{1 + N(s, a)}$$



# alpha go zero

#### Less and More



#### • Less

- no pre-training with human game play data
- no hand crafted features in board encoding
- no Monte Carlo rollouts
- More
  - 80 convolutional layers
  - tree search also used in self-play

# **Improved Tree Search**



- Tree search adds one node in each iteration (not full roll-out)
- When exploring a new node
  - compute its Q value
  - compute action prediction probability distribution
  - pass Q value back up through search tree
- Each node in search tree keeps record of
  - P prediction for action leading to this node
  - Q average of all terminal Q values from visits passing through node
  - *N* number of visits of parent
  - n number of visits of node
- Score of node (*c* is hyper parameter to be optimized)

$$Q + cP \frac{\sqrt{N}}{1+n}$$

# **Inference and Training**



#### • Inference

- choose action from most visited branch
- visit count is impacted by both action prediction and success in tree search
- → more reliable than win statistics or raw action prediction
- Training
  - predict visit count



# and more...



#### Google's AlphaZero Destroys Stockfish In 100-Game Match







Chess changed forever today. And maybe the rest of the world did, too.

# StarCraft is a deep, complicated war strategy game. Google's AlphaStar Al crushed it.

DeepMind has conquered chess and Go and moved on to complex real-time games. Now it's beating pro gamers 10-1.

By Kelsey Piper | Updated Jan 24, 2019, 7:04pm EST