Deep Reinforcement Learning

Philipp Koehn

18 April 2024
Reinforcement Learning

- Sequence of actions
 - moves in chess
 - driving controls in car

- Uncertainty
 - moves by component
 - random outcomes (e.g., dice rolls, impact of decisions)

- Reward delayed
 - chess: win/loss at end of game
 - Pacman: points scored throughout game

- Challenge: find optimal policy for actions
Deep Learning

- Mapping input to output through multiple layers
- Weight matrices and activation functions
AlphaGo retires from competitive Go after defeating world number one 3-0

By Sam Byford | @345triangle | May 27, 2017, 5:17am EDT
Book

- Lecture based on the book *Deep Learning and the Game of Go* by Pumperla and Ferguson, 2019
- Hands-on introduction to game playing and neural networks
- Lots of Python code
go
Go

- Board game with white and black stones
- Stones may be placed anywhere
- If opponents stones are surrounded, you can capture them
- Ultimately: you need to claim territory
- Player with most territory and captured stones wins
• Starting board, standard board is 19x19, but can also play with 9x9 or 13x13
Move 1

- First move: white
Move 2

- Second move: black
Move 3

- Third move: white
Move 7

- Situation after 7 moves, black’s turn
Move 8

- Move by black: surrounded white stone in the middle
- White stone in middle is captured
Final State

- Any further moves will not change outcome
Final State with Territory Marked

- Total score: number of squares in territory + number of captured stones
Why is Go Hard for Computers?

• Many moves possible
 – 19x19 board
 – 361 moves initially
 – games may last 300 moves

⇒ Huge branching factor in search space

• Hard to evaluate board positions
 – control of board most important
 – number of captured stones less relevant
game playing
Game Tree

- Recall: game tree to consider all possible moves
Alpha-Beta Search

- Explore game tree depth-first
- Exploration stops at win or loss
- Backtrack to other paths, note best/worst outcome
- Ignore paths with worse outcomes

- This does not work for a game tree with about 361^{300} states
Evaluation Function for States

- Explore game tree up to some specified maximum depth
- Evaluate leaf states
 - informed by knowledge of game
 - e.g., chess: pawn count, control of board
- This does not work either due
 - high branching factor
 - difficulty of defining evaluation function
monte carlo tree search
Monte Carlo Tree Search

- Explore depth-first randomly ("roll-out"), record win on all states along path
Monte Carlo Tree Search

- Pick existing node as starting point, execute another roll-out, record loss
Monte Carlo Tree Search

- Pick existing node as starting point, execute another roll-out
Monte Carlo Tree Search

- Pick existing node as starting point, execute another roll-out
Monte Carlo Tree Search

- Increasingly, prefer to explore paths with high win percentage
Monte Carlo Tree Search

• Which node to pick?

\[w + c \sqrt{\frac{\log N}{n}} \]

– \(N \) total number of roll-outs
– \(n \) number of roll-outs for this node in the game tree
– \(w \) winning percentage
– \(c \) hyper parameter to balance exploration

• This is an inference algorithm

– execute, say, 10,000 roll-outs
– pick initial action with best win percentage \(w \)
– can be improved by following rules based on well-known local shapes
action prediction

with

neural networks
Learning Moves

- We would like to learn actions of game playing agent
- Input state: board position
- Output action: optimal move
Learning Moves

- Machine learning problem
- Input: 5x5 matrix
- Output: 5x5 matrix
Neural Networks

- First idea: feed-forward neural network
 - encode board position in $n \times n$ sized vector
 - encode correct move in $n \times n$ sized vector
 - add some hidden layers

- Many parameters
 - input and output vectors have dimension 361 (19x19 board)
 - if hidden layers have same size
 \rightarrow 361x361 weights for each

- Does not generalize well
 - same patterns on various locations of the board
 - has to learn moves for each location
 - consider everything moved one position to the right
Convolutional Neural Networks

- Convolutional kernel: here maps 3x3 matrix to 1x1 value
- Applied to all 3x3 regions of the original matrix
- Learns local features
Move Prediction with CNNs

- May use multiple convolutional kernels (of same size) → learn different local features

- Resulting values may be added or maximum value selected (max-pooling)

- May have several convolutional neural network layers

- Final layer: softmax prediction of move
Human Game Play Data

Game records

For other sources of game records, see the list in the links section.

On this page, you can download game records of top amateur games played on the K Go Server (KGS, formerly known as the Kiseido Go Server). I am grateful to Bill Shubert, who created KGS, for the permission to use these files, and for making them available to me in an easy way.

The games in the archives below are those where either one of the players (or both) is 7d or stronger, or both are 6d. All comments are stripped from these games, and all games with variations are omitted. They are suitable for use with Kombilo.

Need still more games? Have a look at the KGS games played by 4d+ players.

There are several versions of each archive, compressed in different ways: .tar.gz, .tar.bz2, and .zip version; please choose the one which is most suitable for you. The content of the uncompressed archives is completely identical.

<table>
<thead>
<tr>
<th>Source</th>
<th>Time period</th>
<th>Number of games</th>
<th>Archive format</th>
<th>File size</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>KGS</td>
<td>2019_01</td>
<td>2095</td>
<td>.zip</td>
<td>1.8 MB</td>
<td>Download</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.tar.gz</td>
<td>0.9 MB</td>
<td>Download</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.tar.bz2</td>
<td>0.4 MB</td>
<td>Download</td>
</tr>
<tr>
<td></td>
<td>2018_12</td>
<td>1992</td>
<td>.zip</td>
<td>1.6 MB</td>
<td>Download</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.tar.gz</td>
<td>0.8 MB</td>
<td>Download</td>
</tr>
</tbody>
</table>
Human Game Play Data

- Game records
 - sequence of moves
 - winning player

- Convert into training data for move prediction
 - one move at a time
 - prediction +1 for move if winner
 - prediction −1 for move if loser

- learn winning moves, avoid losing moves
Playing Go with Neural Move Predictor

- Greedy search
- Make prediction at each turn
- Selection move with highest probability
reinforcement learning
Self-Play

• Previously: learn policy from human play data

• Now: learn policy from self-play

• Need to have an agent that plays reasonably well to start
 → learn initial policy from human play data

• Greedy move selection with same policy will result in the same game each time
 – stochastic moves:
 move predicted with 80% confidence → select it 80% of the time
 – may have to clip probabilities that are too certain (e.g., 99.9% to 80%)
Experience from Self-Play

- Self play will generate self play data ("experience")
 - sequence of moves
 - winner at the end

- Can be used as training data to improve model
 - first train model on human play data
 - then, run 1 epoch over self-play data
• Reminder: policy informs which action to take in each state

• Learning move predictor = learning policy
Q Learning

- Learn utility value for each state = likelihood of winning
- Training on game play data, utility=1 for win, 0 for loss
- Game play with utility predictor
 - consider all possible actions
 - compute utility value for resulting state
 - choose action with maximum utility outcome
- Alternative architecture
- Explicitly modeling the last move: $Q(\text{state}, \text{action})$
actor-critic learning
Credit Assignment Problem

- Go game lasts many moves (say, 300 moves)
 - some of the moves are good
 - some of the moves are bad
 - some of the moves make no difference

- We want to learn from the moves that made a difference
 - before: low chance of winning
 - move
 - at the end \rightarrow win
Consider Win Probability

- Moves that pushed towards win matter more
Consider Win Probability

- Especially important moves: change from losing position to winning position
- Compute utility of state $V(s)$. Definition of advantage: $A = R - V(s)$
Actor-Critic Learning

- Combination of policy learning and Q learning
 - actor: move predictor (as in policy learning) $s \rightarrow a$
 - critic: value of state (as in Q learning) $V(s)$

- We use this setup to influence how much to boost good moves
 - advantage $A = R - V(s)$
 - good moves when advantage is high
Policy Learning with Advantage

- Before: predict win

- Now: predict advantage
Architecture of Actor-Critic Model

- Game play data with advantage scores for each move
- Training of actor and critic similar
 ⇒ Share components, train them jointly
- Multi-task learning helps regularization
alpha go
Overview

Human game records -> Supervised learning -> Fast policy network

Supervised learning -> Strong policy network

Strong policy network -> Self-play reinforcement learning

Self-play reinforcement learning -> Stronger policy network and Value network

Stronger policy network and Value network -> Inference
Encoding the Board

- We encoded each board position with an integer (+1=white, -1=black, 0=blank)

- AlphaGo uses a 48-dimensional vector that encode knowledge about the game
 - 3 booleans for stone color
 - 1 boolean for legal and fundamentally sensible move
 - 8 boolean to record how far back stone was placed
 - 8 booleans to encode liberty
 - 8 booleans to encode liberty after move
 - 8 booleans to encode capture size
 - 8 booleans to encode how many of your own stones will be placed in jeopardy because of move
 - 2 booleans for ladder detection
 - 3 booleans for technical values

- Note: ladder, liberty, and capture are basic concepts of the game
Policy and Value Networks

- Policy network: $s \rightarrow a$
- Value network: $s \rightarrow V(s)$
- These networks are trained as previously described
- Fairly deep networks
 - 13 layers for policy network
 - 16 layers for value network
Monte Carlo Tree Search

- Inference uses a refined version of Monte Carlo Tree Search (MCTS)
- Roll-out guided by fast policy network (greedy search)
- When visiting a node with some unexplored children ("leaf")
 → use probability distribution from strong policy network for stochastic choice
- Combine roll-out statistics with prediction from value network
MCTS with Value Network

- Estimate value of a leaf node \(l \) in the game tree where a roll-out started as

\[
V(l) = \frac{1}{2} \text{value}(l) + \frac{1}{2} \text{roll-out}(l)
\]

- \text{value}(l) is prediction from value network
- \text{roll-out}(l) is win percentage from Monte Carlo Tree Search

- This is used to compute Q values for any state-action pair given its leaf nodes \(l_i \)

\[
Q(s, a) = \frac{\sum_i V(l_i)}{N(s, a)}
\]

- Combine with the prediction of the strong policy network \(P(s, a) \)

\[
a' = \arg\max_a Q(s, a) + \frac{P(s, a)}{1 + N(s, a)}
\]
alpha go zero
Less and More

- Less
 - no pre-training with human game play data
 - no hand crafted features in board encoding
 - no Monte Carlo rollouts

- More
 - 80 convolutional layers
 - tree search also used in self-play
Improved Tree Search

- Tree search adds one node in each iteration (not full roll-out)

- When exploring a new node
 - compute its Q value
 - compute action prediction probability distribution
 - pass Q value back up through search tree

- Each node in search tree keeps record of
 - P prediction for action leading to this node
 - Q average of all terminal Q values from visits passing through node
 - N number of visits of parent
 - n number of visits of node

- Score of node (c is hyper parameter to be optimized)
 $$Q + cP \frac{\sqrt{N}}{1 + n}$$
Inference and Training

- **Inference**
 - choose action from most visited branch
 - visit count is impacted by both action prediction and success in tree search
 → more reliable than win statistics or raw action prediction

- **Training**
 - predict visit count
and more...
Google's AlphaZero Destroys Stockfish In 100-Game Match

Chess changed forever today. And maybe the rest of the world did, too.

StarCraft is a deep, complicated war strategy game. Google’s AlphaStar AI crushed it.

DeepMind has conquered chess and Go and moved on to complex real-time games. Now it’s beating pro gamers 10-1.

By Kelsey Piper | Updated Jan 24, 2019, 7:04pm EST