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Background: Dataset Differences

• Domain

• Language
• Cross-lingual transfer of coreference resolution
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Research Questions

Goal: reduce cost of creating a coref model on entirely new 
dataset

1. How effective is continued training for domain adaptation?

2. How to allocate annotated documents?

3. How much do source models forget?

4. Which encoder layers are important?
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Methods: Training

Use standard train/dev splits

Sample a subset of training set to simulate lower-data setting
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RQ1: Continued training for domain adaptation

• Transfer models usually outperform randomly initialized models

• PreCo is as effective as OntoNotes

• PreCo is better with gold mention boundaries
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RQ1: Pretraining and model size

• Compare 
• SpanBERT (L): large unspecialized model (     + 🎲)

• SpanBERT-On (b): small specialized model (🎂 + 🎲) 

• Continued training of small (publicly available) encoders is 
effective with low # training docs
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RQ1: Continued training also improves cross-
lingual transfer

• Transfer model (🎂+🎂) outperforms XLM-R (     + 🎲)

• Improves SOTA performance on cross-lingual coreference
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RQ2: How many documents should be in the 
dev set?
Answer: Increasing dev set from 
5 to 500 documents only gains 
0.3 F1
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RQ3: How much do the models forget?

Largest drops: 
• Annotation guideline changes

Small(er) drops: 
• Cross-domain

• Cross-lingual
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RQ4: Do we need to train the full encoder?

Answer:

• For transfer (🎂+🎂) models, top 6-
12 layers is probably enough

• Not always true for other models
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Conclusions

• Continued training is effective for coreference resolution:
• Better overall performance

• Good initial (zero-shot) performance

• Cheaper training of new model

• PreCo is as good as OntoNotes
• OntoNotes requires a license

• For coreference, use annotated documents for training

• Fresh benchmarks on a wide set of datasets across domains and 
languages



Questions? 
Come to poster session
Or email paxia@jhu.edu

Code/pretrained models at: https://nlp.jhu.edu/coref-transfer/

mailto:paxia@jhu.edu

