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saaouns: Dataset Differences

e Domain

* Language
* Cross-lingual transfer of coreference resolution
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Goal: reduce cost of creating a coref model on entirely new
dataset

How effective is continued training for domain adaptation?
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How much do source models forget?

> Wi

. Which encoder layers are important?
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Methods: Tra l.n lﬂ g

Use standard train/dev splits
Sample a subset of training set to simulate lower-data setting
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o1 Continued training for domatin adaptation

» Transfer models usually outperform randomly initialized models

* PreCo s as effective as OntoNotes

* PreCo s better with gold mention boundaries
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What’'s better?

clusters clusters
embeddings VS embeddings

Encoder

text text

Untrained large encoder Off-the-shelf trained small encoder
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o1 Pretraining and model size

« Compare .
large unspecialized model (7 + )

small specialized model (8 + )

 Continued training of small (publicly available) encoders is
effective with low # training docs
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o1 Contlnued training also tmproves cross-
lingual transfer

(B + @) outperforms (7 +6Q)

 Improves SOTA performance on cross-lingual coreference

Initialization method
XLM-R (L) Transfer (en)

OntoNotes-zh OntoNotes-ar ‘ SemEval-es SemEval-ca SemEval-it SemeEval-nl
70 - 50 504 @)
1 354 Q
60 - 404 50 ~ ®
50‘ 30' —
- J ©
— 50. 40 30 -
LL 25 4 40 - o
404 20{ | 3

40 4 |

30 10 204 o
304 =
30t 0 (O | A A1 AL o —- Js{e w111 mRRAI 1S

10 100 1000 10 30 100 300 10 100 1000 10 100 1000 10 30 50 10 30 100

# training documents



> How many documents should be tn the
dev set?



> How many documents should be tn the
dev set?

Answer: Increasing dev set from Transfer (on)

5 to 500 documents only gains 722754-------
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v How much do the models forget?
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Largest drops:

* Annotation gutdeline changes
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v How much do the models forget?

Largest drops:
* Annotation gutdeline changes
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0 DO we need to train the full encoder?

Initialization method

Answer: SpanBERT (L) Transfer (on)
SpanBERT-On (L) — Transfer (pc)
» For transfer (B + @) models, top 6-

LitBank QBCoref
12 layers is probably enough 0]y 10—
* Not always true for other models 5
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Top k layers are trainable
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Conclusions

 Continued training is effective for coreference resolution:

* Better overall performance
* Good initial (zero-shot) performance
» Cheaper training of new model

* PreCo s as good as OntoNotes
« OntoNotes requires a license

* For coreference, use annotated documents for training

* Fresh benchmarks on a wide set of datasets across domains and
languages




Questions?
Come to poster session

Or email paxia@jhu.edu
Code/pretrained models at: https://nlp.jhu.edu/coref-transfer/
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