Which *BERT?
A Survey Organizing Contextualized Encoders

Patrick Xia Shijie Wu Benjamin Van Durme
BERT is a 12 (or 24) layer Transformer language model trained on two pretraining tasks, masked language modeling (fill-in-the-blank) and next sentence prediction (binary classification), and on English Wikipedia and BookCorpus.

About BERT and friends

Why this size and architecture? -base, -large, -small, -xl, etc.

Why these tasks?XLNet, ELECTRA, SpanBERT, LXMERT, etc.

Why these tasks?masked language modeling (fill-in-the-blank)

How much “language”?linguistic probing tasks, attention, few-shot evaluation

What’s special about this data?BioBERT, Covid-Twitter-BERT, etc

Other languages?mBERT, XLM, XLM-R, mT5, RuBERT, etc
Using *BERTs

• Pretrain → finetune
 • *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 • *Finetune* encoders on target task (low-resource, expensive annotation)

• Primary method of evaluation: Natural Language “Understanding” (NLU)
 • Question Answering and Reading Comprehension
 • Commonsense
 • Textual Entailments
The story so far...

Pretraining | Efficiency | Data | Interpretability | Multilinguality
Pretraining

- Quantitative improvements in downstream tasks are made through pretraining methods

Predict tokens in text
- Masked language modeling
 - Masked token/word/span prediction
 - Replaced word prediction

Predict other signals
- Next sentence/segment prediction
- Discourse relations
- Grounding
 - To KB
 - Visual/multimodal
Efficiency

- **Training:**
 - Faster convergence with improved optimizers, hardware

- **Inference size/time:**
 - Large \rightarrow small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization

- **Are these techniques compared equally?**
 - Do we care about %parameter reduction? Memory? Inference time?
 These don’t necessarily correlate
 - Do we care about all tasks or just downstream one(s)?
Data

• Quantity: more data is better
 • Are comparisons across encoders fair?

• Quality: clean, *in-domain*, data is better
 • What are our test sets?

• Where is our data coming from??
 • Do we know what biases the contextualized encoders learn?
 • Should we use biased model in real systems?
Interpretability

• Task probing
 → Finetune pretrained models to test specific linguistic phenomenon

• Model weight inspection
 → Visualize weights for important words in input or layers in model

• Input Prompting
 → Force language models to fill in or complete text

• None of these methods are perfect
 • Task probing: more finetuning
 • Weight inspection: not reliable
 • Prompting: picking the prompt is critical
Multilinguiality

• A single encoder on multilingual text with shared input vocabulary

• These models do well! Why?
 • Shared vocabulary
 • Shared (upper) layers
 • Deep networks
 • Embeddings across languages can be aligned

• When are multilingual models good?
Shortcomings

Leaderboards | Overfitting our understanding | Expensive evaluations
Shortcomings

• Leaderboards without a leader
 • Publish & publicize negative submitted results
 • Leaderboard owners can periodically survey submissions?

• Overfitting our understanding
 • Interpretability/probing studies look at default pretrained models
 • Draw more conclusions across models in addition to across tasks

• Expensive evaluations
 • How can we make evaluation easier?
 • Unit testing?
So, which *BERT?

What is your ... task | data | language | goal?
What is your task?

• Not all tasks benefit from the shiniest encoder!
 • Some pretrained systems work well with just BERT
 • Encodings are just inputs to complex systems that are further tuned
• Finetuning and retraining entire models may not be feasible or even justified for your task
What is your data?

• Does the domain of your data overlap with that of the encoder?
• Is there are specialized pretrained encoder for your domain or data?
• Do you have enough data to train your own?
• Do you even need contextualized encoders?
What is your language?

- Is your language low-resource?
 - Use the best general-purpose model
 - Again, depends on your task and data

- Is there a competitive monolingual contextualized encoder?
 - Chinese, French, etc
 - Monolingual data curation may be better
 - Language-specific model hyperparameters can be adjusted (e.g. vocabulary)
What is your goal?

• Encoder research?
 • Build off great recent ideas
 • Incorporate “beta” and “nightly” ideas!

• Product development, fast deployment, something that works?
 • Pick well-documented models
 • HuggingFace Transformers uses a single interface; models can be easily upgraded later
Summary

• Contextualized encoders have transformed research and thinking in NLP in just a couple years
• Areas we are focusing on:
 • Pretraining, efficiency, data, interpretability, and multilinguality
• Are we making progress?
• Which model should you use?
 • Depends on task, data, language, and objective