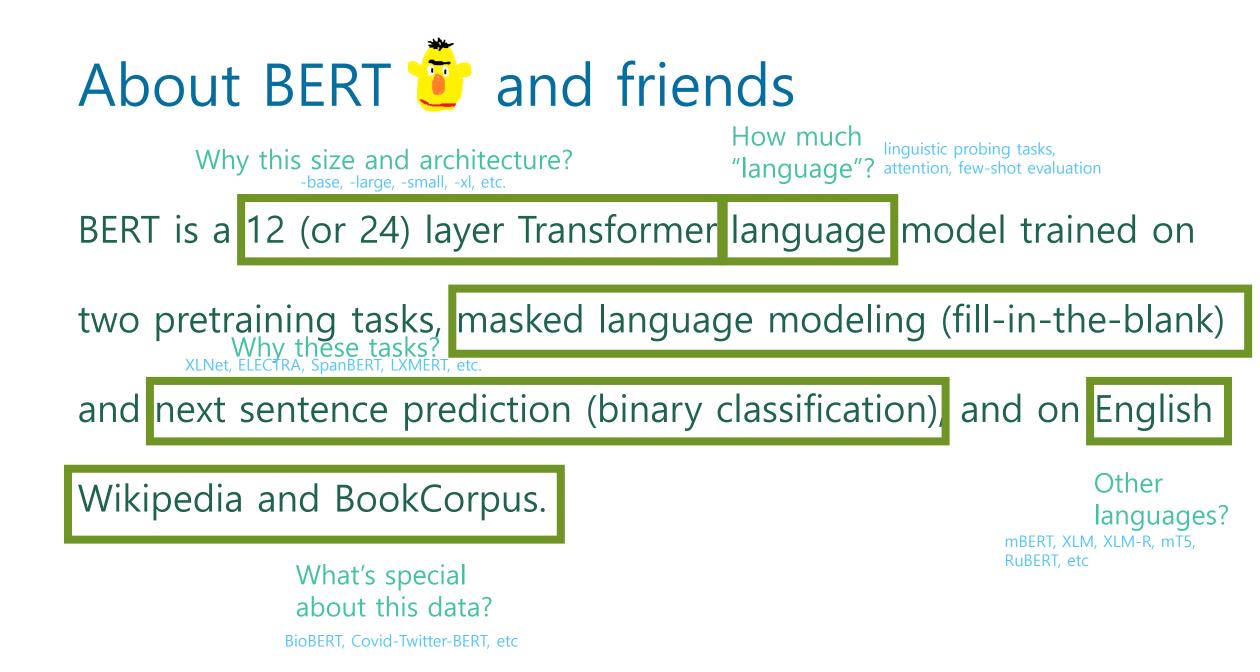
Which *BERT? A Survey Organizing Contextualized Encoders

Patrick Xia



Shijie Wu Benjamin Van Durme

Using *BERTs

- Pretrain \rightarrow finetune
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)
- Primary method of evaluation: Natural Language "Understanding" (NLU)
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments

The story so far...

Pretraining | Efficiency | Data | Interpretability | Multilinguality

Pretraining

• Quantitative improvements in downstream tasks are made through pretraining methods

Predict tokens in text

- Masked language modeling
 - Masked token/word/span prediction
 - Replaced word prediction

Predict other signals

- Next sentence/segment prediction
- Discourse relations
- Grounding
 - To KB
 - Visual/multimodal

Efficiency

• Training:

- Faster convergence with improved optimizers, hardware
- Inference size/time:
 - Large \rightarrow small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization
- Are these techniques compared equally?
 - Do we care about %parameter reduction? Memory? Inference time? These don't necessarily correlate
 - Do we care about all tasks or just downstream one(s)?

Data

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, in-domain, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?

Interpretability

- Task probing
 - → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 - \rightarrow Visualize weights for important words in input or layers in model
- Input Prompting
 - \rightarrow Force language models to fill in or complete text
- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical

Multilinguality

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?

Shortcomings

Leaderboards | Overfitting our understanding | Expensive evaluations

Shortcomings

- Leaderboards without a leader
 - Publish & publicize negative submitted results
 - Leaderboard owners can periodically survey submissions?
- Overfitting our understanding
 - Interpretability/probing studies look at default pretrained models
 - Draw more conclusions across *models* in addition to across *tasks*
- Expensive evaluations
 - How can we make evaluation easier?
 - Unit testing?

So, which *BERT?

What is your ... task | data | language | goal ?

What is your task?

- Not all tasks benefit from the shiniest encoder!
 - Some pretrained systems work well with just BERT
 - Encodings are just inputs to complex systems that are further tuned
- Finetuning and retraining entire models may not be feasible or even justified for your task

What is your data?

- Does the domain of your data overlap with that of the encoder?
- Is there are specialized pretrained encoder for your domain or data?
- Do you have enough data to train your own?
- Do you even need contextualized encoders?

What is your language?

- Is your language low-resource?
 - Use the best general-purpose model
 - Again, depends on your task and data
- Is there a competitive monolingual contextualized encoder?
 - Chinese, French, etc
 - Monolingual data curation may be better
 - Language-specific model hyperparameters can be adjusted (e.g. vocabulary)

What is your goal?

- Encoder research?
 - Build off great recent ideas
 - Incorporate "beta" and "nightly" ideas!
- Product development, fast deployment, something that works?
 - Pick well-documented models
 - HuggingFace Transformers uses a single interface; models can be easily upgraded later

Summary

- Contextualized encoders have transformed research and thinking in NLP in just a couple years
- Areas we are focusing on:
 - Pretraining, efficiency, data, interpretability, and multilinguality
- Are we making progress?
- Which model should you use?
 - Depends on task, data, language, and objective