Which *BERT?

A Survey Organizing Contextualized **Encoders**

Patrick Xia

Shijie Wu Benjamin Van Durme

Background

History of Text Representations | Who is BERT? | About BERT and friends

A History of Text Representations

- Co-occurrence statistics
 - Brown Clusters
 - Count vectors, TF-IDF vectors, co-occurrence matrix decomposition
- Predictive
 - word2vec, GloVe, CBOW, Skip-Gram, etc
- Contextualized language models
 - Representation of word *changes* based on context
 - CoVE, ELMo, GPT, BERT, etc

A History of Text Representations

- Co-occurrence statistics
 - Brown Clusters
 - Count vectors, TF-IDF vectors, co-occurrence matrix decomposition
- Predictive
 - word2vec, GloVe, CBOW, Skip-Gram, etc
- Contextualized language models
 - Representation of word *changes* based on context
 - CoVE, ELMo, GPT, BERT, etc

A History of Text Representations

- Co-occurrence statistics
 - Brown Clusters
 - Count vectors, TF-IDF vectors, co-occurrence matrix decomposition
- Predictive
 - word2vec, GloVe, CBOW, Skip-Gram, etc
- Contextualized language models
 - Representation of word *changes* based on context
 - CoVE, ELMo, GPT, BERT, etc

Who is BERT?

BERT is a 12 (or 24) layer Transformer language model trained on two pretraining tasks, masked language modeling (fill-in-the-blank) and next sentence prediction (binary classification), and on English Wikipedia and BooksCorpus. Why this size and architecture?
-base, -large, -small, -xl, etc.

How much linguistic probing tasks, "language"? attention, few-shot evaluation

BERT is a 12 (or 24) layer Transformer language model trained on

two pretraining tasks, Why these tasks? XLNet, ELECTRA, SpanBERT, LXMERT, etc. masked language modeling (fill-in-the-blank)

and next sentence prediction (binary classification), and on English

Wikipedia and BooksCorpus

What's special about this data?

BioBERT, Covid-Twitter-BERT, etc

Other languages?
mBERT, XLM, XLM-R, mT5,
RuBERT, etc

- Pretrain → finetune
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)
- Primary method of evaluation: Natural Language "Understanding" (NLU)
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments

- Pretrain → finetune
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)
- Primary method of evaluation: Natural Language "Understanding" (NLU)
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments

- Pretrain → finetune
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)
- Primary method of evaluation: Natural Language "Understanding" (NLU)
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments

- Pretrain → finetune
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)
- Primary method of evaluation: Natural Language "Understanding" (NLU)
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments

- Pretrain → finetune
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)
- Primary method of evaluation: Natural Language "Understanding" (NLU)
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments

- Pretrain → finetune
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)
- Primary method of evaluation: Natural Language "Understanding" (NLU)
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments

- Pretrain → finetune
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)
- Primary method of evaluation: Natural Language "Understanding" (NLU)
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments

The story so far...

Pretraining | Efficiency | Data | Interpretability | Multilinguality

Pretraining

 Quantitative improvements in downstream tasks are made through pretraining methods

Predict tokens in text

- Masked language modeling
 - Masked token/word/span prediction
 - Replaced word prediction

Predict other signals

- Next sentence/segment prediction
- Discourse relations
- Grounding
 - To KB
 - Visual/multimodal

Pretraining

Masked language modeling

What is natural language processing ?

Who is natural language processing?

Pretraining

- Predict other signals
 - Next "sentence" prediction
 - Discourse markers/relations
 - Real-world knowledge: knowledge base/IR scores
 - Visual and multimodal grounding

- Training:
 - Faster convergence with improved optimizers, hardware
- Inference size/time:
 - Large → small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization
- Are these techniques compared equally?
 - Do we care about %parameter reduction? Memory? Inference time? These don't necessarily correlate
 - Do we care about all tasks or just downstream one(s)?

- Training:
 - Faster convergence with improved optimizers, hardware
- Inference size/time:
 - Large → small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization
- Are these techniques compared equally?
 - Do we care about %parameter reduction? Memory? Inference time? These don't necessarily correlate
 - Do we care about all tasks or just downstream one(s)?

- Training:
 - Faster convergence with improved optimizers, hardware
- Inference size/time:
 - Large → small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization
- Are these techniques compared equally?
 - Do we care about %parameter reduction? Memory? Inference time? These don't necessarily correlate
 - Do we care about all tasks or just downstream one(s)?

- Training:
 - Faster convergence with improved optimizers, hardware
- Inference size/time:
 - Large → small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization
- Are these techniques compared equally?
 - Do we care about %parameter reduction? Memory? Inference time?
 These don't necessarily correlate
 - Do we care about all tasks or just downstream one(s)?

- Training:
 - Faster convergence with improved optimizers, hardware
- Inference size/time:
 - Large → small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization
- Are these techniques compared equally?
 - Do we care about %parameter reduction? Memory? Inference time?
 These don't necessarily correlate
 - Do we care about all tasks or just downstream one(s)?

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, in-domain, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, in-domain, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, in-domain, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, in-domain, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, in-domain, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, in-domain, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, in-domain, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?

- Task probing
 - → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 - → Visualize weights for important words in input or layers in model
- Input Prompting
 - → Force language models to fill in or complete text
- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical

- Task probing
 - → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 - → Visualize weights for important words in input or layers in model
- Input Prompting
 - → Force language models to fill in or complete text
- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical

- Task probing
 - → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 - → Visualize weights for important words in input or layers in model
- Input Prompting
 - → Force language models to fill in or complete text
- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical

- Task probing
 - → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 - → Visualize weights for important words in input or layers in model
- Input Prompting
 - → Force language models to fill in or complete text
- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical

- Task probing
 - → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 - → Visualize weights for important words in input or layers in model
- Input Prompting
 - → Force language models to fill in or complete text
- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical

- Task probing
 - → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 - → Visualize weights for important words in input or layers in model
- Input Prompting
 - → Force language models to fill in or complete text
- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical

Interpretability

- Task probing
 - → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 - → Visualize weights for important words in input or layers in model
- Input Prompting
 - → Force language models to fill in or complete text
- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?

Shortcomings

Leaderboards | Overfitting our understanding | Expensive evaluations

- There's good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 - Publicize and publish negative results
- Leaderboard owners should be responsible for frequently surveying submissions
- A leaderboard is not just a dataset: it's an unending shared task
 - Shared tasks need summaries discussing all the methods

- There's good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 - Publicize and publish negative results
- Leaderboard owners should be responsible for frequently surveying submissions
- A leaderboard is not just a dataset: it's an unending shared task
 - Shared tasks need summaries discussing all the methods

- There's good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 - Publicize and publish negative results
- Leaderboard *owners* should be responsible for frequently surveying submissions
- A leaderboard is not just a dataset: it's an unending shared task
 - Shared tasks need summaries discussing all the methods

- There's good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 - Publicize and publish negative results
- Leaderboard owners should be responsible for frequently surveying submissions
- A leaderboard is not just a dataset: it's an unending shared task
 - Shared tasks need summaries discussing all the methods

- There's good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 - Publicize and publish negative results
- Leaderboard owners should be responsible for frequently surveying submissions
- A leaderboard is not just a dataset: it's an unending shared task
 - Shared tasks need summaries discussing all the methods

- We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 - What about 8-layer BERT? Or distilled BERT?
 - Simple English Wikipedia + RoBERTa?
 - BooksCorpus (subgenres) + XLNet?
- Draw more conclusions across models in addition to across tasks
 - At what point (#params) does a model outperform humans on X?
 - How much of Wikipedia does a model need to outperform on Y?

- We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 - What about 8-layer BERT? Or distilled BERT?
 - Simple English Wikipedia + RoBERTa?
 - BooksCorpus (subgenres) + XLNet?
- Draw more conclusions across models in addition to across tasks
 - At what point (#params) does a model outperform humans on X?
 - How much of Wikipedia does a model need to outperform on Y?

- We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 - What about 8-layer BERT? Or distilled BERT?
 - Simple English Wikipedia + RoBERTa?
 - BooksCorpus (subgenres) + XLNet?
- Draw more conclusions across models in addition to across tasks
 - At what point (#params) does a model outperform humans on X?
 - How much of Wikipedia does a model need to outperform on Y?

- We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 - What about 8-layer BERT? Or distilled BERT?
 - Simple English Wikipedia + RoBERTa?
 - BooksCorpus (subgenres) + XLNet?
- Draw more conclusions across models in addition to across tasks
 - At what point (#params) does a model outperform humans on X?
 - How much of Wikipedia does a model need to outperform on Y?

- We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 - What about 8-layer BERT? Or distilled BERT?
 - Simple English Wikipedia + RoBERTa?
 - BooksCorpus (subgenres) + XLNet?
- Draw more conclusions across *models* in addition to across *tasks*
 - At what point (#params) does a model outperform humans on X?
 - How much of Wikipedia does a model need to outperform on Y?

- We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 - What about 8-layer BERT? Or distilled BERT?
 - Simple English Wikipedia + RoBERTa?
 - BooksCorpus (subgenres) + XLNet?
- Draw more conclusions across models in addition to across tasks
 - At what point (#params) does a model outperform humans on X?
 - How much of Wikipedia does a model need to outperform on Y?

- We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 - What about 8-layer BERT? Or distilled BERT?
 - Simple English Wikipedia + RoBERTa?
 - BooksCorpus (subgenres) + XLNet?
- Draw more conclusions across models in addition to across tasks
 - At what point (#params) does a model outperform humans on X?
 - How much of Wikipedia does a model need to outperform on Y?

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks → unrelated effort and time running "evaluation"
 - Stick with a few tasks → unfair comparisons, angry reviewers
- How can we make evaluation easier?
- Unit testing models for practical applications?

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks → unrelated effort and time running "evaluation"
 - Stick with a few tasks → unfair comparisons, angry reviewers
- How can we make evaluation easier?
- Unit testing models for practical applications?

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks → unrelated effort and time running "evaluation"
 - Stick with a few tasks → unfair comparisons, angry reviewers
- How can we make evaluation easier?
- Unit testing models for practical applications?

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks → unrelated effort and time running "evaluation"
 - Stick with a few tasks → unfair comparisons, angry reviewers
- How can we make evaluation easier?
- Unit testing models for practical applications?

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks → unrelated effort and time running "evaluation"
 - Stick with a few tasks → unfair comparisons, angry reviewers
- How can we make evaluation easier?
- Unit testing models for practical applications?

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks → unrelated effort and time running "evaluation"
 - Stick with a few tasks → unfair comparisons, angry reviewers
- How can we make evaluation easier?
- Unit testing models for practical applications?

So, which *BERT?

What is your ... task | data | language | goal ?

What is your task?

- Not all tasks benefit from the shiniest encoder!
 - Some pretrained systems work well with just BERT
 - Encodings are just inputs to complex systems that are further tuned
- Finetuning and retraining entire models may not be feasible or even justified for your task

What is your task?

- Not all tasks benefit from the shiniest encoder!
 - Some pretrained systems work well with just BERT
 - Encodings are just inputs to complex systems that are further tuned
- Finetuning and retraining entire models may not be feasible or even justified for your task

What is your task?

- Not all tasks benefit from the shiniest encoder!
 - Some pretrained systems work well with just BERT
 - Encodings are just inputs to complex systems that are further tuned
- Finetuning and retraining entire models may not be feasible or even justified for your task

- Does the domain of your data overlap with that of the encoder?
- Is there are specialized pretrained encoder for your domain or data?
- Do you have enough data to train your own?
- Do you even need contextualized encoders?

- Does the domain of your data overlap with that of the encoder?
- Is there are specialized pretrained encoder for your domain or data?
- Do you have enough data to train your own?
- Do you even need contextualized encoders?

- Does the domain of your data overlap with that of the encoder?
- Is there are specialized pretrained encoder for your domain or data?
- Do you have enough data to train your own?
- Do you even need contextualized encoders?

- Does the domain of your data overlap with that of the encoder?
- Is there are specialized pretrained encoder for your domain or data?
- Do you have enough data to train your own?
- Do you even need contextualized encoders?

What is your language?

- Is your language low-resource?
 - Use the best general-purpose model
 - Again, depends on your task and data
- Is there a competitive monolingual contextualized encoder?
 - Chinese, French, etc
 - Monolingual data curation may be better
 - Language-specific model hyperparameters can be adjusted (e.g. vocabulary)

- Is your language low-resource?
 - Use the best general-purpose model
 - Again, depends on your task and data
- Is there a competitive monolingual contextualized encoder?
 - Chinese, French, etc
 - Monolingual data curation may be better
 - Language-specific model hyperparameters can be adjusted (e.g. vocabulary)

- Is your language low-resource?
 - Use the best general-purpose model
 - Again, depends on your task and data
- Is there a competitive monolingual contextualized encoder?
 - Chinese, French, etc
 - Monolingual data curation may be better
 - Language-specific model hyperparameters can be adjusted (e.g. vocabulary)

- Is your language low-resource?
 - Use the best general-purpose model
 - Again, depends on your task and data
- Is there a competitive monolingual contextualized encoder?
 - Chinese, French, etc
 - Monolingual data curation may be better
 - Language-specific model hyperparameters can be adjusted (e.g. vocabulary)

- Is your language low-resource?
 - Use the best general-purpose model
 - Again, depends on your task and data
- Is there a competitive monolingual contextualized encoder?
 - Chinese, French, etc
 - Monolingual data curation may be better
 - Language-specific model hyperparameters can be adjusted (e.g. vocabulary)

- Is your language low-resource?
 - Use the best general-purpose model
 - Again, depends on your task and data
- Is there a competitive monolingual contextualized encoder?
 - Chinese, French, etc
 - Monolingual data curation may be better
 - Language-specific model hyperparameters can be adjusted (e.g. vocabulary)

- Encoder research?
 - Build off great recent ideas
 - Incorporate "beta" and "nightly" ideas!
- Product development, fast deployment, something that works?
 - Pick well-documented models
 - HuggingFace Transformers uses a single interface; models can be easily upgraded later

- Encoder research?
 - Build off great recent ideas
 - Incorporate "beta" and "nightly" ideas!
- Product development, fast deployment, something that works?
 - Pick well-documented models
 - HuggingFace Transformers uses a single interface; models can be easily upgraded later

- Encoder research?
 - Build off great recent ideas
 - Incorporate "beta" and "nightly" ideas!
- Product development, fast deployment, something that works?
 - Pick well-documented models
 - HuggingFace Transformers uses a single interface; models can be easily upgraded later

- Encoder research?
 - Build off great recent ideas
 - Incorporate "beta" and "nightly" ideas!
- Product development, fast deployment, something that works?
 - Pick well-documented models
 - HuggingFace Transformers uses a single interface; models can be easily upgraded later

- Encoder research?
 - Build off great recent ideas
 - Incorporate "beta" and "nightly" ideas!
- Product development, fast deployment, something that works?
 - Pick well-documented models
 - HuggingFace Transformers uses a single interface; models can be easily upgraded later

- Encoder research?
 - Build off great recent ideas
 - Incorporate "beta" and "nightly" ideas!
- Product development, fast deployment, something that works?
 - Pick well-documented models
 - HuggingFace Transformers uses a single interface; models can be easily upgraded later

Summary

- Contextualized encoders have transformed research and thinking in NLP in just a couple years
- Areas we are focusing on:
 - Pretraining, efficiency, data, interpretability, and multilinguality
- Are we making progress?
- Which model should you use?
 - Depends on task, data, language, and objective

Patrick Xia Shijie Wu Benjamin Van Durme

Thank you

Please join the Q&A for discussion

See paper for more details and references

