Which *BERT?
A Survey Organizing Contextualized Encoders

Patrick Xia Shijie Wu Benjamin Van Durme
Background

History of Text Representations | Who is BERT? | About BERT and friends
A History of Text Representations

• Co-occurrence statistics
 • Brown Clusters
 • Count vectors, TF-IDF vectors, co-occurrence matrix decomposition

• Predictive
 • word2vec, GloVe, CBOW, Skip-Gram, etc

• Contextualized language models
 • Representation of word *changes* based on context
 • CoVE, ELMo, GPT, BERT, etc
A History of Text Representations

• Co-occurrence statistics
 • Brown Clusters
 • Count vectors, TF-IDF vectors, co-occurrence matrix decomposition

• Predictive
 • word2vec, GloVe, CBOW, Skip-Gram, etc

• Contextualized language models
 • Representation of word *changes* based on context
 • CoVE, ELMo, GPT, BERT, etc
A History of Text Representations

• Co-occurrence statistics
 • Brown Clusters
 • Count vectors, TF-IDF vectors, co-occurrence matrix decomposition

• Predictive
 • word2vec, GloVe, CBOW, Skip-Gram, etc

• Contextualized language models
 • Representation of word changes based on context
 • CoVE, ELMo, GPT, BERT, etc
Who is BERT? 🐦

BERT is a 12 (or 24) layer Transformer language model trained on two pretraining tasks, masked language modeling (fill-in-the-blank) and next sentence prediction (binary classification), and on English Wikipedia and BooksCorpus.
About BERT and friends

Why this size and architecture?
- base, -large, -small, -xl, etc.

How much "language"?
linguistic probing tasks, attention, few-shot evaluation

Why these tasks?
- masked language modeling (fill-in-the-blank)
- next sentence prediction (binary classification)

XLNet, ELECTRA, SpanBERT, LXMERT, etc.

Other languages?
mBERT, XLM, XLM-R, mT5, RuBERT, etc

BERT is a 12 (or 24) layer Transformer language model trained on

Wikipedia and BooksCorpus

What's special about this data?
- BioBERT, Covid-Twitter-BERT, etc
Using these *BERTs

• **Pretrain → finetune**
 - *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 - *Finetune* encoders on target task (low-resource, expensive annotation)

• **Primary method of evaluation: Natural Language “Understanding” (NLU)**
 - Question Answering and Reading Comprehension
 - Commonsense
 - Textual Entailments
Using these *BERTs

• Pretrain → finetune
 • *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 • *Finetune* encoders on target task (low-resource, expensive annotation)

• Primary method of evaluation: Natural Language “Understanding” (NLU)
 • Question Answering and Reading Comprehension
 • Commonsense
 • Textual Entailments
Using these *BERTs

• Pretrain → finetune
 • *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 • *Finetune* encoders on target task (low-resource, expensive annotation)

• Primary method of evaluation: Natural Language “Understanding” (NLU)
 • Question Answering and Reading Comprehension
 • Commonsense
 • Textual Entailments
Using these *BERTs

• Pretrain \rightarrow finetune
 • Pretrain encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 • Finetune encoders on target task (low-resource, expensive annotation)

• Primary method of evaluation: Natural Language “Understanding” (NLU)
 • Question Answering and Reading Comprehension
 • Commonsense
 • Textual Entailments
Using these *BERTs

• Pretrain → finetune
 • *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 • *Finetune* encoders on target task (low-resource, expensive annotation)

• Primary method of evaluation: Natural Language “Understanding” (NLU)
 • Question Answering and Reading Comprehension
 • Commonsense
 • Textual Entailments
Using these *BERTs

• Pretrain \rightarrow finetune
 • *Pretrain* encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 • *Finetune* encoders on target task (low-resource, expensive annotation)

• Primary method of evaluation: Natural Language “Understanding” (NLU)
 • Question Answering and Reading Comprehension
 • Commonsense
 • Textual Entailments
Using these *BERTs

• Pretrain → finetune
 • Pretrain encoders on pretraining tasks (high-resource/data, possibly unsupervised)
 • Finetune encoders on target task (low-resource, expensive annotation)

• Primary method of evaluation: Natural Language “Understanding” (NLU)
 • Question Answering and Reading Comprehension
 • Commonsense
 • Textual Entailments
Pretraining

• Quantitative improvements in downstream tasks are made through pretraining methods

Predict tokens in text
• Masked language modeling
 • Masked token/word/span prediction
 • Replaced word prediction

Predict other signals
• Next sentence/segment prediction
• Discourse relations
• Grounding
 • To KB
 • Visual/multimodal
Pretraining

- Masked language modeling

What is natural language processing?

What is natural language [mask]?

What is [mask] processing?

Who is natural language processing?

Masked token prediction

Masked span prediction

Replaced word prediction
Pretraining

• Predict other signals
 • Next “sentence” prediction
 • Discourse markers/relations
 • Real-world knowledge: knowledge base/IR scores
 • Visual and multimodal grounding
Efficiency

• **Training:**
 • Faster convergence with improved optimizers, hardware

• **Inference size/time:**
 • Large \to small: knowledge distillation, pruning
 • Start small: parameter sharing/factorization, quantization

• **Are these techniques compared equally?**
 • Do we care about %parameter reduction? Memory? Inference time? These don’t necessarily correlate
 • Do we care about all tasks or just downstream one(s)?
Efficiency

• Training:
 • Faster convergence with improved optimizers, hardware

• Inference size/time:
 • Large \rightarrow small: knowledge distillation, pruning
 • Start small: parameter sharing/factorization, quantization

• Are these techniques compared equally?
 • Do we care about %parameter reduction? Memory? Inference time? These don’t necessarily correlate
 • Do we care about all tasks or just downstream one(s)?
Efficiency

• **Training:**
 - Faster convergence with improved optimizers, hardware

• **Inference size/time:**
 - Large \to small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization

• **Are these techniques compared equally?**
 - Do we care about %parameter reduction? Memory? Inference time? These don’t necessarily correlate
 - Do we care about all tasks or just downstream one(s)?
Efficiency

- **Training:**
 - Faster convergence with improved optimizers, hardware
- **Inference size/time:**
 - Large \rightarrow small: knowledge distillation, pruning
 - Start small: parameter sharing/factorization, quantization
- **Are these techniques compared equally?**
 - Do we care about %parameter reduction? Memory? Inference time? These don’t necessarily correlate
 - Do we care about all tasks or just downstream one(s)?
Efficiency

• Training:
 • Faster convergence with improved optimizers, hardware

• Inference size/time:
 • Large → small: knowledge distillation, pruning
 • Start small: parameter sharing/factorization, quantization

• Are these techniques compared equally?
 • Do we care about %parameter reduction? Memory? Inference time? These don’t necessarily correlate
 • Do we care about all tasks or just downstream one(s)?
Data

- **Quantity**: more data is better
 - Are comparisons across encoders fair?
- **Quality**: clean, *in-domain*, data is better
 - What are our test sets?
- **Where is our data coming from??**
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?
Data

• **Quantity:** more data is better
 • Are comparisons across encoders fair?

• **Quality:** clean, *in-domain*, data is better
 • What are our test sets?

• **Where is our data coming from??**
 • Do we know what biases the contextualized encoders learn?
 • Should we use biased model in real systems?
Data

• **Quantity**: more data is better
 • Are comparisons across encoders fair?

• **Quality**: clean, *in-domain*, data is better
 • What are our test sets?

• **Where is our data coming from??**
 • Do we know what biases the contextualized encoders learn?
 • Should we use biased model in real systems?
Data

- Quantity: more data is better
 - Are comparisons across encoders fair?
- Quality: clean, *in-domain*, data is better
 - What are our test sets?
- Where is our data coming from??
 - Do we know what biases the contextualized encoders learn?
 - Should we use biased model in real systems?
Data

• Quantity: more data is better
 • Are comparisons across encoders fair?
• Quality: clean, *in-domain*, data is better
 • What are our test sets?
• Where is our data coming from??
 • Do we know what biases the contextualized encoders learn?
 • Should we use biased model in real systems?
Data

• Quantity: more data is better
 • Are comparisons across encoders fair?
• Quality: clean, *in-domain*, data is better
 • What are our test sets?
• Where is our data coming from??
 • Do we know what biases the contextualized encoders learn?
 • Should we use biased model in real systems?
Data

• Quantity: more data is better
 • Are comparisons across encoders fair?
• Quality: clean, *in-domain*, data is better
 • What are our test sets?

• Where is our data coming from??
 • Do we know what biases the contextualized encoders learn?
 • Should we use biased model in real systems?
Interpretability

• Task probing
 → Finetune pretrained models to test specific linguistic phenomenon

• Model weight inspection
 → Visualize weights for important words in input or layers in model

• Input Prompting
 → Force language models to fill in or complete text

• None of these methods are perfect
 • Task probing: more finetuning
 • Weight inspection: not reliable
 • Prompting: picking the prompt is critical
Interpretability

• Task probing
 → Finetune pretrained models to test specific linguistic phenomenon
• Model weight inspection
 → Visualize weights for important words in input or layers in model
• Input Prompting
 → Force language models to fill in or complete text
• None of these methods are perfect
 • Task probing: more finetuning
 • Weight inspection: not reliable
 • Prompting: picking the prompt is critical
Interpretability

• Task probing
 → Finetune pretrained models to test specific linguistic phenomenon

• Model weight inspection
 → Visualize weights for important words in input or layers in model

• Input Prompting
 → Force language models to fill in or complete text

• None of these methods are perfect
 • Task probing: more finetuning
 • Weight inspection: not reliable
 • Prompting: picking the prompt is critical
Interpretability

• Task probing
 → Finetune pretrained models to test specific linguistic phenomenon

• Model weight inspection
 → Visualize weights for important words in input or layers in model

• Input Prompting
 → Force language models to fill in or complete text

• None of these methods are perfect
 • Task probing: more finetuning
 • Weight inspection: not reliable
 • Prompting: picking the prompt is critical
Interpretability

• Task probing
 → Finetune pretrained models to test specific linguistic phenomenon

• Model weight inspection
 → Visualize weights for important words in input or layers in model

• Input Prompting
 → Force language models to fill in or complete text

• None of these methods are perfect
 • Task probing: more finetuning
 • Weight inspection: not reliable
 • Prompting: picking the prompt is critical
Interpretability

• Task probing
 → Finetune pretrained models to test specific linguistic phenomenon

• Model weight inspection
 → Visualize weights for important words in input or layers in model

• Input Prompting
 → Force language models to fill in or complete text

• None of these methods are perfect
 • Task probing: more finetuning
 • Weight inspection: not reliable
 • Prompting: picking the prompt is critical
Interpretability

- Task probing
 → Finetune pretrained models to test specific linguistic phenomenon
- Model weight inspection
 → Visualize weights for important words in input or layers in model
- Input Prompting
 → Force language models to fill in or complete text

- None of these methods are perfect
 - Task probing: more finetuning
 - Weight inspection: not reliable
 - Prompting: picking the prompt is critical
Multilinguality

- A single encoder on multilingual text with shared input vocabulary
 - These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
 - When are multilingual models good?
Multilinguality

• A single encoder on multilingual text with shared input vocabulary

• These models do well! Why?
 • Shared vocabulary
 • Shared (upper) layers
 • Deep networks
 • Embeddings across languages can be aligned

• When are multilingual models good?
Multilinguality

- A single encoder on multilingual text with shared input vocabulary
- These models do well! Why?
 - Shared vocabulary
 - Shared (upper) layers
 - Deep networks
 - Embeddings across languages can be aligned
- When are multilingual models good?
Multilinguality

• A single encoder on multilingual text with shared input vocabulary

• These models do well! Why?
 • Shared vocabulary
 • Shared (upper) layers
 • Deep networks
 • Embeddings across languages can be aligned

• When are multilingual models good?
Multilinguality

• A single encoder on multilingual text with shared input vocabulary

• These models do well! Why?
 • Shared vocabulary
 • Shared (upper) layers
 • Deep networks
 • Embeddings across languages can be aligned

• When are multilingual models good?
Multilinguality

• A single encoder on multilingual text with shared input vocabulary

• These models do well! Why?
 • Shared vocabulary
 • Shared (upper) layers
 • Deep networks
 • Embeddings across languages can be aligned

• When are multilingual models good?
Multilinguality

• A single encoder on multilingual text with shared input vocabulary

• These models do well! Why?
 • Shared vocabulary
 • Shared (upper) layers
 • Deep networks
 • Embeddings across languages can be aligned

• When are multilingual models good?
Shortcomings
Leaderboards | Overfitting our understanding | Expensive evaluations
Leaderboards without a leader

• There’s good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 • Publicize and publish negative results

• Leaderboard owners should be responsible for frequently surveying submissions

• A leaderboard is not just a dataset: it’s an unending shared task
 • Shared tasks need summaries discussing all the methods
Leaderboards without a leader

- There’s good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 - Publicize and publish negative results
- Leaderboard *owners* should be responsible for frequently surveying submissions
- A leaderboard is not just a dataset: it’s an unending shared task
 - Shared tasks need summaries discussing all the methods
Leaderboards without a leader

• There’s good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 • Publicize and publish negative results

• Leaderboard *owners* should be responsible for frequently surveying submissions

• A leaderboard is not just a dataset: it’s an unending shared task
 • Shared tasks need summaries discussing all the methods
Leaderboards without a leader

• There’s good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 • Publicize and publish negative results

• Leaderboard \textit{owners} should be responsible for frequently surveying submissions

• A leaderboard is not just a dataset: it’s an unending shared task
 • Shared tasks need summaries discussing all the methods
Leaderboards without a leader

• There’s good science in 2nd place: who is responsible for publishing when reviewers demand 1st?
 • Publicize and publish negative results

• Leaderboard *owners* should be responsible for frequently surveying submissions

• A leaderboard is not just a dataset: it’s an unending shared task
 • Shared tasks need summaries discussing all the methods
Overfitting our understanding

• We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 • What about 8-layer BERT? Or distilled BERT?
 • Simple English Wikipedia + RoBERTa?
 • BooksCorpus (subgenres) + XLNet?

• Draw more conclusions across *models* in addition to across *tasks*
 • At what point (#params) does a model outperform humans on X?
 • How much of Wikipedia does a model need to outperform on Y?
Overfitting our understanding

• We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 • What about 8-layer BERT? Or distilled BERT?
 • Simple English Wikipedia + RoBERTa?
 • BooksCorpus (subgenres) + XLNet?

• Draw more conclusions across models in addition to across tasks
 • At what point (#params) does a model outperform humans on X?
 • How much of Wikipedia does a model need to outperform on Y?
Overfitting our understanding

• We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 • What about 8-layer BERT? Or distilled BERT?
 • Simple English Wikipedia + RoBERTa?
 • BooksCorpus (subgenres) + XLNet?

• Draw more conclusions across models in addition to across tasks
 • At what point (#params) does a model outperform humans on X?
 • How much of Wikipedia does a model need to outperform on Y?
Overfitting our understanding

• We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 • What about 8-layer BERT? Or distilled BERT?
 • Simple English Wikipedia + RoBERTa?
 • BooksCorpus (subgenres) + XLNet?

• Draw more conclusions across *models* in addition to across *tasks*
 • At what point (#params) does a model outperform humans on X?
 • How much of Wikipedia does a model need to outperform on Y?
Overfitting our understanding

• We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 • What about 8-layer BERT? Or distilled BERT?
 • Simple English Wikipedia + RoBERTa?
 • BooksCorpus (subgenres) + XLNet?

• Draw more conclusions across *models* in addition to across *tasks*
 • At what point (#params) does a model outperform humans on X?
 • How much of Wikipedia does a model need to outperform on Y?
Overfitting our understanding

• We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 • What about 8-layer BERT? Or distilled BERT?
 • Simple English Wikipedia + RoBERTa?
 • BooksCorpus (subgenres) + XLNet?

• Draw more conclusions across *models* in addition to across *tasks*
 • At what point (#params) does a model outperform humans on X?
 • How much of Wikipedia does a model need to outperform on Y?
Overfitting our understanding

• We know so much about English Wikipedia + BooksCorpus, 12-layer and 24-layer BERT.
 • What about 8-layer BERT? Or distilled BERT?
 • Simple English Wikipedia + RoBERTa?
 • BooksCorpus (subgenres) + XLNet?

• Draw more conclusions across *models* in addition to across *tasks*
 • At what point (#params) does a model outperform humans on X?
 • How much of Wikipedia does a model need to outperform on Y?
Expensive evaluations

• GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 • Finetuning cost for every task is high
• If a researcher is focused on distilling encoders with several novel methods:
 • Finetune all tasks \Rightarrow unrelated effort and time running “evaluation”
 • Stick with a few tasks \Rightarrow unfair comparisons, angry reviewers
• How can we make evaluation easier?
• Unit testing models for practical applications?
Expensive evaluations

• GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 • Finetuning cost for every task is high
• If a researcher is focused on distilling encoders with several novel methods:
 • Finetune all tasks → unrelated effort and time running “evaluation”
 • Stick with a few tasks → unfair comparisons, angry reviewers
• How can we make evaluation easier?
• Unit testing models for practical applications?
Expensive evaluations

• GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 • Finetuning cost for every task is high
• If a researcher is focused on distilling encoders with several novel methods:
 • Finetune all tasks → unrelated effort and time running “evaluation”
 • Stick with a few tasks → unfair comparisons, angry reviewers
• How can we make evaluation easier?
• Unit testing models for practical applications?
Expensive evaluations

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks → unrelated effort and time running “evaluation”
 - Stick with a few tasks → unfair comparisons, angry reviewers
- How can we make evaluation easier?
- Unit testing models for practical applications?
Expensive evaluations

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks \(\rightarrow\) unrelated effort and time running “evaluation”
 - Stick with a few tasks \(\rightarrow\) unfair comparisons, angry reviewers

- How can we make evaluation easier?
- Unit testing models for practical applications?
Expensive evaluations

- GLUE: 9 tasks, SuperGLUE: 10 tasks, SQuAD: 150K QA pairs
 - Finetuning cost for every task is high
- If a researcher is focused on distilling encoders with several novel methods:
 - Finetune all tasks → unrelated effort and time running “evaluation”
 - Stick with a few tasks → unfair comparisons, angry reviewers
- How can we make evaluation easier?
- Unit testing models for practical applications?
So, which *BERT?

What is your ... task | data | language | goal ?
What is your task?

• Not all tasks benefit from the shiniest encoder!
 • Some pretrained systems work well with just BERT
 • Encodings are just inputs to complex systems that are further tuned
• Finetuning and retraining entire models may not be feasible or even justified for your task
What is your task?

• Not all tasks benefit from the shiniest encoder!
 • Some pretrained systems work well with just BERT
 • Encodings are just inputs to complex systems that are further tuned

• Finetuning and retraining entire models may not be feasible or even justified for your task
What is your task?

• Not all tasks benefit from the shiniest encoder!
 • Some pretrained systems work well with just BERT
 • Encodings are just inputs to complex systems that are further tuned

• Finetuning and retraining entire models may not be feasible or even justified for your task
What is your data?

• Does the domain of your data overlap with that of the encoder?
• Is there a specialized pretrained encoder for your domain or data?
• Do you have enough data to train your own?
• Do you even need contextualized encoders?
What is your data?

- Does the domain of your data overlap with that of the encoder?
- Is there a specialized pretrained encoder for your domain or data?
- Do you have enough data to train your own?
- Do you even need contextualized encoders?
What is your data?

• Does the domain of your data overlap with that of the encoder?
• Is there are specialized pretrained encoder for your domain or data?
• Do you have enough data to train your own?
• Do you even need contextualized encoders?
What is your data?

• Does the domain of your data overlap with that of the encoder?
• Is there a specialized pretrained encoder for your domain or data?
• Do you have enough data to train your own?
• Do you even need contextualized encoders?
What is your language?

• Is your language low-resource?
 • Use the best general-purpose model
 • Again, depends on your task and data

• Is there a competitive monolingual contextualized encoder?
 • Chinese, French, etc
 • Monolingual data curation may be better
 • Language-specific model hyperparameters can be adjusted (e.g. vocabulary)
What is your language?

• Is your language low-resource?
 • Use the best general-purpose model
 • Again, depends on your task and data

• Is there a competitive monolingual contextualized encoder?
 • Chinese, French, etc
 • Monolingual data curation may be better
 • Language-specific model hyperparameters can be adjusted (e.g. vocabulary)
What is your language?

• Is your language low-resource?
 • Use the best general-purpose model
 • Again, depends on your task and data

• Is there a competitive monolingual contextualized encoder?
 • Chinese, French, etc
 • Monolingual data curation may be better
 • Language-specific model hyperparameters can be adjusted (e.g. vocabulary)
What is your language?

• Is your language low-resource?
 • Use the best general-purpose model
 • Again, depends on your task and data

• Is there a competitive monolingual contextualized encoder?
 • Chinese, French, etc
 • Monolingual data curation may be better
 • Language-specific model hyperparameters can be adjusted (e.g. vocabulary)
What is your language?

• Is your language low-resource?
 • Use the best general-purpose model
 • Again, depends on your task and data

• Is there a competitive monolingual contextualized encoder?
 • Chinese, French, etc
 • Monolingual data curation may be better
 • Language-specific model hyperparameters can be adjusted (e.g. vocabulary)
What is your language?

• Is your language low-resource?
 • Use the best general-purpose model
 • Again, depends on your task and data

• Is there a competitive monolingual contextualized encoder?
 • Chinese, French, etc
 • Monolingual data curation may be better
 • Language-specific model hyperparameters can be adjusted (e.g. vocabulary)
What is your goal?

• Encoder research?
 • Build off great recent ideas
 • Incorporate “beta” and “nightly” ideas!

• Product development, fast deployment, something that works?
 • Pick well-documented models
 • HuggingFace Transformers uses a single interface; models can be easily upgraded later
What is your goal?

• Encoder research?
 • Build off great recent ideas
 • Incorporate “beta” and “nightly” ideas!

• Product development, fast deployment, something that works?
 • Pick well-documented models
 • HuggingFace Transformers uses a single interface; models can be easily upgraded later
What is your goal?

• Encoder research?
 • Build off great recent ideas
 • Incorporate “beta” and “nightly” ideas!

• Product development, fast deployment, something that works?
 • Pick well-documented models
 • HuggingFace Transformers uses a single interface; models can be easily upgraded later
What is your goal?

• Encoder research?
 • Build off great recent ideas
 • Incorporate “beta” and “nightly” ideas!

• Product development, fast deployment, something that works?
 • Pick well-documented models
 • HuggingFace Transformers uses a single interface; models can be easily upgraded later
What is your goal?

• Encoder research?
 • Build off great recent ideas
 • Incorporate “beta” and “nightly” ideas!

• Product development, fast deployment, something that works?
 • Pick well-documented models
 • HuggingFace Transformers uses a single interface; models can be easily upgraded later
What is your goal?

• Encoder research?
 • Build off great recent ideas
 • Incorporate “beta” and “nightly” ideas!

• Product development, fast deployment, something that works?
 • Pick well-documented models
 • HuggingFace Transformers uses a single interface; models can be easily upgraded later
Summary

• Contextualized encoders have transformed research and thinking in NLP in just a couple years

• Areas we are focusing on:
 • Pretraining, efficiency, data, interpretability, and multilinguality

• Are we making progress?

• Which model should you use?
 • Depends on task, data, language, and objective
Thank you

Please join the Q&A for discussion

See paper for more details and references