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Abstract

In this paper, we contribute to the development of context-aware operating rooms by
introducing a novel approach to modeling and monitoring the workflow of surgical
interventions. We first propose a new representation of interventions in terms of multi-
dimensional time-series formed by synchronized signals acquired over time. We then
introduce methods based on Dynamic Time Warping and Hidden Markov Models to
analyze and process this data. This results in workflow models combining low-level
signals with high-level information such as predefined phases, which can be used to
detect actions and trigger an event. Two methods are presented to train these models,
using either fully or partially labeled training surgeries. Results are given based on tool
usage recordings from sixteen laparoscopic cholecystectomies performed by several
surgeons.

Key words: surgical workflow, context aware operating room, surgical assistance
system, Hidden Markov Model, cholecystectomy

1. Introduction

The operating room (OR) needs to be constantly adapted to the introduction of
new technologies and surgical procedures. A key element within this process is the
analysis of the workflow inside the OR[7, 16]. It has impact on patient safety, working
conditions of surgical staff and even overall throughput of the hospital. While new
technologies add much complexity to the daily routine of OR staff, they also facilitate
the design of assistance systems that can relieve the surgical staff from performing
simple but time-consuming tasks and assist them in the tedious ones.

In this paper, we focus on the design of a context-aware system that is able to rec-
ognize the surgical phase performed by the surgeon at each moment of the surgery.
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We believe that robust real-time action and workflow recognition systems will be a
core component of the Operating Room of the Future. They will enable various ap-
plications, ranging from automation of simple tasks to detecting failures, suggesting
modifications, documenting procedures and producing final reports.

Our contribution is threefold: In the introduction we identify the generic need for an
automatic recognition system and introduce a signal based modeling of the surgical ac-
tions to achieve such automation. We then propose two statistical models constructed
from generic signals from the OR: the annotated average surgery and the annotated
Hidden Markov Model, for off-line and on-line recognition of the surgical phases in a
standard endoscopic surgery. The models are built based on a set of training surgeries
where the phases have been labeled. We also propose a method only requiring partially
labeled data. We finally demonstrate and evaluate the methods on the example of la-
paroscopic cholecystectomy using binary instrument usage information and illustrate
their use in some potential applications: automatic generation of report sketches, au-
tomatic triggering of reminders for the surgical staff and automatic prediction of the
remaining time of the surgery.

1.1. Motivation

In the last years, many experts have tried to predict which changes need to be made
to the operating room in order to meet future requirements in terms of appearance, er-
gonomics and operability [33, 10, 3]. Aiming always at better patient treatment and
higher hospital efficiency, issues and solutions have been further discussed in inter-
national workshops gathering clinicians, researchers and medical companies [7, 16].
The focus has been on surgical workflow optimization, system integration and stan-
dardization, in particular in new clinical fields like image guided surgery. Parallel to
these studies, different testbeds have been established to experiment and report on the
development of advanced surgery rooms [32, 1, 20].

A general consensus is that all systems present in the surgery room of the future
should and will be fully integrated into a final system and network. For specific proce-
dures, companies like BrainLab2 and Medtronic3 already provide fully integrated OR
suites. In [22], a surgery room is presented where various contextual informations are
presented on a unified display. Such ORs, where a multitude of signals and information
are available within a unique computer system, offer great opportunities for the design
of powerful context-aware systems which will be reactive to the environment.

Signals are already provided by anesthesia systems, medical and video images and
digital patient files. In addition, more signals from advanced electronic surgical tools
and navigation systems that are tracking patients, clinical staff, surgeon and equipments
will provide an extensive and rich dataset in the future. Note that the use of RFID tags
is being widely investigated for tracking of material and persons inside the hospital
and the OR [8, 29]. Another environment providing rich sensor information is robotic
surgery. The availability of these signals on a daily basis will highly facilitate the
analysis and recognition of all actions performed in the OR.

2http://www.brainlab.com
3http://www.medtronic.com
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Context-awareness is not only profitable for assistance inside the OR. In many
cases, OR delays come merely from poor synchronization between the workflows in-
side and outside the OR [11]. Incorporating context-aware ORs inside a global hospital
awareness system would therefore greatly improve the overall efficiency.

In this work, we present several methods to recognize the surgical phases of a
surgery which has a well-defined workflow. They can either be applied on-line during
the surgery for context-awareness, or off-line after the surgery for instance for docu-
mentation and/or report generation.

1.2. Related Work
Close work comes from the robotic community, where awareness is required for

robot control. [23, 38] target the development of a robotic scrub nurse that automati-
cally provides the correct instrument to the surgeon. The approach is based on time-
automata combined with a vision front-end. The conception of the model is however
time-consuming as it is done by hand. A further limitation is that the prototype only
works with a tiny set of instruments provided in a predefined order.
In [15], a task model of cholecystectomy is designed for guidance of a laparoscopic
robot which is controlling the camera pose. A viewing mode is assigned to each sur-
gical stage and transition rules between the stages are manually defined based on the
currently used tool that is detected using color markers. A surgical stage cannot be al-
ways uniquely recognized from the current surgical tool. Therefore some ambiguities
cannot be distinguished with this deterministic approach.

Also demonstrated on cholecystectomy, we have proposed in previous work ap-
proaches based on Dynamic Time Warping for segmenting the surgical phases of the
surgery using laparoscopic tool usage [2, 26]. In [27], we proposed an on-line ap-
proach using Hidden Markov Models constructed from data containing visual cues
computed from the endoscopic video. In [5], we addressed the automatic generation of
human-understandable models of surgical phases. We propose in this paper a unified
framework, address the case of data where the phases have only been labeled partially
and present in more details the motivations and applications.

A statistical model, signals and a detection approach that relates the signals to the
model are needed to recognize the surgical phase. Above references strive to provide a
complete solution. Other existing work addresses one of these three aspects. In [13], a
model based on Unified Markup Language (UML) is proposed in order to understand
and optimize the usage of imaging modalities during a neurosurgical procedure. [24]
presents ontologies and tools to describe and record surgeries in a formal manner. The
actions and interactions occurring in surgeries can be recorded manually by assistants
using a software that helps generating standardized descriptions, which can be in turn
used for an in-depth analysis of the workflow. The method has been validated on a large
dataset of simulated data [25]. This manual approach is complementary to ours in that
it permits in depth formal description and understanding of the workflow despite the
fact that only few sensors are currently available in the OR, as required for monitoring.

Interesting signals for the analysis of surgical gestures are the positions of tools or
the forces applied to them. They can be obtained indirectly using a tracking system
or directly when a robot is used and thus provides the positioning information. Such
signals have been mainly used for evaluating and comparing surgeons performing on
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a simulator [30, 21, 18, 17]. For recognition of several actions in minimally invasive
surgery, [19, 34] use the endoscopic video. In [12], the surgeon’s attention is tracked
with an eye-gaze system to detect the clipping of the cystic duct during a pig cholecys-
tectomy.

Beyond surgeries, different work is also addressing context awareness in clinical
environment. For instance [37, 4] use either vital signs available from the anesthesia
systems or an external camera to automatically detect when patients are entering or
leaving the surgery room.

Dynamic Time Warping (DTW) [31] and Hidden Markov Model (HMM) [28] al-
gorithms have emerged from the speech recognition community and have since been
extensively used for classification in many domains. In the following, we do not use
them for classification, but for constructing a statistical model of a surgical workflow,
in which we intend to recognize the phases. This is permitted by the notion of an
annotated model that we introduce.

1.3. Organization
The motivation for signal based workflow recognition was presented in section

1.1, related work in section 1.2. The remainder of this paper is as follows: the two
core models are introduced in section 2. Their use in segmentation and recognition
is given in section 3. Section 4 presents the medical application and an experimental
comparison of their performance. Different applications of the off-line segmentation
and on-line recognition as well as a discussion of the results are provided in section 5.
Finally, conclusions are given in section 6.

2. Model construction

In this section, we explain how to construct two statistical models whose usage
for phase recognition is described in section 3: the annotated average surgery and the
annotated Hidden Markov Model.

2.1. Assumptions and Notations for Signals and Phases
We assume the signals from the operating room to be normalized and represented

by a multidimensional time-series O where Ot ∈ [0, 1]K . In the example of laparo-
scopic cholecystectomy which is used in our experiments and detailed later in section
4, the signals represent the instrument usage at a temporal resolution of one second and

Ot,k = 1 if and only if instrument k is used at time t . (1)

In this case, K = 17. We assume the usage to be sufficient for inferring the actions per-
formed by the surgeon as most surgical actions are performed by using an instrument.
Any other additional signal, binary or not, can however be included into the modeling
with only little further modification. A surgery room during an endoscopic operation
and the view of the endoscopic camera are shown in fig. 1. Signals acquired during a
surgical procedure are shown in fig. 2.

We define a phase as a subpart of the surgery that can be identified uniquely in
all examples of the surgery and that is validated by a medical expert. We assume
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Figure 1: Picture of a surgery room (left) during an endoscopic operation. View of the endoscopic video
(right).
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Figure 2: Signals recorded from a surgery.

the phases to be performed consecutively in time and in the same order, as this is the
case in standard surgeries. In the current stage of our research, we are not explicitly
handling exceptions in the workflow. This will be discussed in section 5.2. Phases
contain actions, which themselves can occur repetitively in all phases. In case of binary
instrument usage, a change in a signal of the time-series represents a transition to a new
action. At the beginning, we assume the phases to be contiguous in time, meaning that
each time step corresponds to a phase. This assumption can be relaxed when only
subparts of the surgery need to be detected, as explained in section 2.5.

In the following, P is the number of phases and L the size of the training set. The
surgeries in the training set are denoted by Ol, where l ∈ 1 . . . L. A new surgery that
has to be monitored will be denoted by Otest. The phase at time t for a surgery O is
referred to by T (O, t).
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Figure 3: DTW distance matrix. The path drawn through the valley displays the optimal synchronization
between surgeries Oi and Ore f .

2.2. DTW averaging
A statistical model of the surgery, called the average surgery, is created based on a

set of surgeries, the training set. The surgeries in the training set are all synchronized
using the Dynamic Time Warping algorithm to generate an average surgery on an aver-
age timeline, preserving the average length of the surgeries, the phases and the actions.
This average surgery can be used for off-line segmentation of new surgeries or for an
efficient generation of the HMM models as will be explained later.

The averaging approach is based on [36]. In the following, we adapt the pre-
sentation to the time discrete case that is considered in this work. Let the surgeries
O1, . . . ,OL be of length T 1, . . . ,T L and Ore f be a surgery taken as reference with length
T re f .

The Dynamic Time Warping algorithm [31] uses dynamic programming to perform
a nonlinear synchronization between two time series so as to minimize their warped
distance. The reference Ore f is first synchronized to each training surgery Oi yielding
for i ∈ {1 . . . L} the synchronization functions

syncre f→i(y) = (tre f (y), ti(y)) . (2)

These functions give discrete correspondences between the timelines of the reference
(tre f ) and of the surgeries (ti). Due to the properties of the DTW, after a step on the
discrete timeline from y to y + 1 either tre f (y) or ti(y) is incremented by one. An ex-
ample of a synchronization function is represented graphically in fig. 3. The variable y
represents a discretization of the optimal path through the valley.

The average timeline is computed from the reference as the function avgtime(t):

{1, . . . ,T re f } → [1,T mean]

t →
1
L

L∑
i=1

1
#{y: tre f (y)=t}

∑
{y: tre f (y)=t}

ti(y) , (3)

where #· denotes the cardinality operator. The function avgtime takes real values, is
monotonically increasing between 0 and T mean = 1

L
∑

i T i and can therefore be inverted.
It is used to compute the average surgery Oavg on the discrete timeline {1, . . . , bT meanc}
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using linear interpolation and averaging over all surgeries. Let ta and tb be the closest
values in the range of avgtime around the integer t with t ∈ [ta, tb]. Denoting Ya =

{y : tre f (y) = avg−1
time(ta)} and Yb = {y : tre f (y) = avg−1

time(tb)}, we then define

Oavg
t =

1
l

l∑
i=1

(tb − t)
(tb − ta)

1
#Ya

∑
y∈Ya

Oi
ti(y) +

(t − ta)
(tb − ta)

1
#Yb

∑
y∈Yb

Oi
ti(y) . (4)

Similarly to [36], we use three steps for our average surgery computation:

1. Compute initial reference
2. Compute first average surgery
3. Iterate average surgery computation using previous average surgery as reference

There are various ways to choose the initial reference. It could simply be one of
the training surgeries. However, when some actions have not been performed in this
specific surgery, but in one or several of the other surgeries from the training set, it
is likely that these actions are also not represented correctly in the average surgery.
Experiments have shown that the following approach avoids this problem. First, the
training surgeries are averaged pairwise using DTW. The resulting average surgeries
are then again iteratively merged pairwise and the last one is taken as the initial refer-
ence.
An average surgery that has been computed using the method described above is shown
in figure 4.

A straightforward extension to the average surgery is the notion of surgical simi-
larity, which can be given for each observation vector in an average surgery. Let us
define

S IMt =
1
K

K∑
k=1

max(Oavg
t,k , 1 −Oavg

t,k ) . (5)

When S IMt is close to 1, it means that a reliable synchronization point between all
surgeries was found. More intuitively, it means that the surgical activity for this time
point was unambiguous across all training surgeries. In contrary, a value close to 0.5
implies ambiguity. This will be used later to efficiently construct HMMs models.

2.3. HMM modeling
A discrete Hidden Markov Model is a quintuplet λ = (N,M, A, B, π) where N is the

number of states {xi : 1 ≤ i ≤ N} in the model, M the size of the observation alphabet,
A the transition probability matrix between the states, B the observation probability
matrix and π a probability distribution over the initial states. HMMs offer a much
more general statistical description of a process than the average surgery, especially by
permitting non-sequential modeling and by explicitly including probabilities, as needed
for on-line recognition. The relationship between HMM and DTW is explicated in [14].

In this work, observations are the vectors of the time-series representing the surg-
eries. We aim at constructing HMMs that represent one kind of surgery and also allow
us to recognize on-line the phase carried out by the surgeon. Traditionally, e.g. in
speech recognition [28], HMMs are used to model the stochastic properties of a train-
ing set of time series. The likelihood P(T|λ) that the time series T has been generated
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Figure 4: Signals of an average surgery.

by the HMM λ can for instance be used for classification if different HMMs are used to
represent the classes. Given a training set of time-series {Ti}, there exist many methods
to initialize and train an HMM λ such that the log-likelihood

∑
i logP(Ti|λ) is maxi-

mized. The model construction described in section 2.4 will be based for comparison
on the three following initialization methods:

• Fully connected HMMs (HMM-full): the number of states is fixed, the parame-
ters are randomly initialized and the model is trained by expectation-maximization
(EM).

• Sequential HMMs (HMM-seq): the number of sequentially connected states is
inferred from the amount of training data, training sequences are split and then
assigned to the states for initialization of the probabilities.

• Model merging (HMM-merged): the method is described in [35]. An exhaus-
tive topology is built out of all training data. Pairs of states are then chosen and
merged together until the decrease of the log-likelihood exceeds a given thresh-
old.

For the sequential HMMs construction, the number of states is chosen to be
√

(L2 )
where L is the average length of the training sequences. The different resulting topolo-
gies of these models are illustrated in fig. 5.

Using the assumptions on the phases described in section 2.1, we aim at automati-
cally building an annotated HMM that describes the stochastics of the surgical signals
and permits to infer the current phase using labeled training data. This construction is
described in the next section.

2.4. Annotated statistical models
We define an annotated average surgery as a pair

αDTW = (Oavg,B) (6)

where
Bt : {1, . . . , P} → [0, 1] (7)
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Figure 5: Different HMM topologies resulting from the construction methods mentioned in sec. 2.3.

and Bt(p) is the probability of being in phase p at timestamp t from Oavg.
We define an annotated HMM as a pair

αHMM = (λ,A) (8)

where
Ax : {1, . . . , P} → [0, 1] (9)

andAx(p) is the probability of being in phase p while being in state x of λ.
The results of segmentation and phase recognition using the methods described

above largely depend on how the annotated models are constructed. The methods pre-
sented in this section can be applied to both the construction of the annotated average
surgery and the construction of the annotated HMM model. Since they are similar in
both cases, we only describe them for the construction of the annotated HMM model.
The extension to the annotated surgical average is straightforward. The two presented
methods differ from the required amount of labeled data and the step where the labels
are used. While the first method depends on fully labeled training data, the second
method only requires a partially labeled training set.

2.4.1. A-priori phase-wise construction
This is a fully supervised framework. It supposes all sequences of the training set

to be labeled. In that case, a HMM λp for each phase p is constructed and all these
models are concatenated to form an overall model λ as presented in figure 6. Each
sub-model is initialized from the training data of the corresponding phase using one
of the three methods presented in section 2.3. For each state x of the overall model λ,
the annotation assigns the probability 1 to the phase p, given that the state x originally
stemmed from the sub-model λp. Otherwise, the probability 0 is assigned. If the
EM algorithm is used after concatenation, the annotation A is updated similarly to
the other HMM parameters, leading to an annotation function that does not take only
binary values anymore.
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Figure 6: A-priori phase-wise model construction: Sub-HMMs are constructed for each phase or cluster of
data and appended as displayed in this image.

2.4.2. A-posteriori automatic model annotation
In this case, the model is first directly constructed from all data without using

any label information. Afterwards, it is automatically annotated using the training
sequences that are labeled. To do this, the labeled time-series {Ol} are synchronized to
the model using the Viterbi algorithm, giving paths

pathl : {1, . . . ,T l} → {(xi)1≤i≤N} . (10)

The labels from the surgeries are then carried over to the model to update the prob-
abilities in the states that were visited:

Ax(p) =
#{l, t : pathl(t) = x and p = T (Ol, t)}

#{l, t : pathl(t) = x}
. (11)

Intuitively, the formula counts the number of visits that a label makes to each state.
When several labeled surgeries are used, the annotation is therefore averaged.

Initializing the model from all the training data is computationally very expensive.
The surgical similarity is used to speed up the construction, as explained below.

2.5. Discussion and Construction Speed-up

The phase-wise construction requires all phases of all training surgeries to be la-
beled. In contrast, the a-posteriori annotation provides the advantage that not all of the
phases or surgeries from the training data need to be labeled, while the other model pa-
rameters are still initialized from all the available data. Additionally, when some phase
detection is not very reliable, the user can be asked to add a few training surgeries where
e.g. only these phases and their neighbors are labeled. When for an application only
some subparts of the surgeries are interesting to be detected, it is also straightforward
to construct the model using only data where these subparts are annotated.

Training an HMM model from full data or from data of a long phase can be compu-
tationally expensive, especially when using the model merging method which requires
iterative EM computation. To alleviate this burden, we split the training data and con-
catenate the trained sub-models in an unsupervised approach, similarly to what is done
in section 2.4.1. In section 2.4.1, the transitions between phases are used as synchro-
nization points. We use the average surgery to find such consistent splitting point and
to construct the full model from subparts. Using the surgical similarity S IMt, we split
at points which are sufficiently spaced from each other and are also local similarity
maxima, where the maximum allowed size of a split is used as a single parameter. This
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Figure 7: Training data obtained from surgical similarity splits. Each subpart of the average surgery corre-
sponds to synchronized subparts of the training surgeries, which are then used to construct the sub-HMM.

provides clusters of training data by back-projecting from the average surgery to the
training time-series, as described in fig. 7. HMM sub-models are trained from these
clusters of training data and finally concatenated.

3. Off-line Segmentation and On-line Recognition

In this section, we explain how to use the annotated models for phase-detection in
an unknown surgery, both in the off-line and on-line case.

3.1. Off-line segmentation

Off-line segmentation is the process of segmenting a new surgery after the acquisi-
tion of all signals Otest

t,k . The objective is to compute the phase T (Otest, t) at each time
step t while knowing the complete signals Otest

1 . . .Otest
T test , where T test denotes the end

of the surgery.

3.1.1. Using an annotated average surgery
If an annotated average surgery

αDTW = (Oavg,B) (12)

is available from training data, the process is the following: the time-series Otest is
synchronized to the average surgery Oavg using DTW. This gives a synchronization
function synctest→avg(y) = (ttest(y), tavg(y)). The labels from the average surgery are
then carried over to the new surgery for each time t. Since it is possible that the time
t is synchronized to different consecutive times of the average surgery annotated with
different most likely phases, the overall most likely annotation is used:

T (Otest, t) = argmax
p

∑
{y: ttest(y)=t}

Btavg(y)(p) . (13)
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3.1.2. Using an annotated HMM model
If an annotated HMM model

αHMM = (λ,A) (14)

is available from training data, the Viterbi algorithm is used to find the most likely path
through the topology of λ that would generate the time-series Otest. This synchronizes
the time-series to the model, giving for each time step the corresponding state:

path : {1, . . . ,T test} → {(xi)1≤i≤N} . (15)

The labels from the model are then carried over to the new surgery:

T (Otest, t) = argmax
p
Apath(t)(p) . (16)

3.2. On-line phase recognition

On-line recognition is the computation of the most probable phase when only par-
tial signals Otest

1 . . .Otest
t up to the actual time t are known. While the DTW synchro-

nization performs very well for off-line segmentation, when the complete time series is
known, on-line DTW synchronization is very unreliable. This stems from the absence
of precise modeling of unlikely observations through the topology or observation prob-
abilities, as available in HMMs. For this reason, only HMMs are used. In the annotated
HMM model

αHMM = (λ,A) (17)

the so-called forward probabilities [28] permit to compute P(Xt = xi|Otest
1 . . .Otest

t ),
the probability of being in state xi at time t knowing the partial observations, using
dynamic programming. This provides a convenient way to obtain the most probable
phase. We are looking for

Ttest(t) = T (Otest, t)
= argmax

u
P(phase = u|Otest

1 . . .Otest
t ) . (18)

From the annotation of the model, we know the probability P(phase = u|X =

x) =de f Ax(u) of being in phase u while being in the HMM state x, thus

Ttest(t) = argmax
u

∑
xi

P(phase = u | Xt = xi) ×

P(Xt = xi | Otest
1 . . .Otest

t )

= argmax
u

∑
xi

Axi (u)P(Xt = xi | Otest
1 . . .Otest

t ) . (19)
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4. Experiments

4.1. Medical Application

The methods described above can be applied on any standard endoscopic surgery,
but also on other kinds of surgery as long as informative signals about the operation can
be made available. Endoscopic surgeries belong to minimally invasive surgeries and are
performed through natural or small incisions. They offer less inconvenience and faster
recovery times to the patient. Additionally, the limited number of laparoscopic tools
used during surgery, along with the camera that observes the operating field, promise
the development of automatic tool detection systems in the near future.

For the experiments, we decided to focus on laparoscopic cholecystectomy, which
is the removal of the gallbladder. This is a common but complex surgery performed
laparoscopically in 95% of the cases [9], with a low conversion rate to open surgery. It
is therefore convenient for the recording of the signals as well as for the demonstration
of the method. It starts with the positioning of trocars on the patient, for insertion of
the instruments inside the body, and finishes with their removal and the suturing of
the induced holes. Even though some details of the surgery depend on the patients
anatomy, the surgeon follows a consistent protocol that we, in congruence with our
medical partners, defined to consist of 14 workflow phases. The most important inter-
mediate phases are the dissection, clipping and cutting of the bile duct and of the cystic
artery. The gallbladder is then separated from the liver and removed using a retraction
sac. For it to pass through the endoscopic hole, the gallstones that caused the operation
are removed one by one beforehand. This is followed by a final control phase of the
abdominal area and the removal of all instruments. A view of the OR during such a
surgery is shown in figure 1. All the phases from the insertion of the trocars till the
suturing are displayed in table 1.

4.2. Data Acquisition

To obtain the data, we recorded 16 laparoscopic cholecystectomies at our partner
medical institution. The surgeries were performed by four surgeons of varying skill
level, but from the same medical school. The recorded data comprised synchronized
videos from the endoscopic view and from two external views. A convenient, custom-
designed video viewing and labeling software has allowed us to manually indicate
which tools were present at each time step. Note that obtaining these signals automat-
ically is technically feasible. It is however not our primary focus in this paper, since it
is a long process to introduce such a system in a real surgery room. With our medical
partner we are currently working on introducing an instrument detection system based
on barcodes, using a camera observing the instruments inserted inside each trocar. The
system is currently being tested on pig experiments.

4.3. Results

For each method, the current phase was estimated once per second and compared to
the ground truth. The ground truth was specified manually using the phases defined by
our medical partners. The three following evaluation measures have been computed:
accuracy, average recall and average precision. Accuracy provides the percentage of
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1 CO2 Inflation 8 Liver Bed Coagulation 1
2 Trocar Insertion 9 Gallbladder Packaging
3 Dissection Phase 1 10 External Retraction
4 Clipping Cutting 1 11 External Cleaning
5 Dissection Phase 2 12 Liver Bed Coagulation 2
6 Clipping Cutting 2 13 Trocar Retraction
7 Gallbladder Detaching 14 Abdominal Suturing

Table 1: The fourteen phases of a cholecystectomy used in the detection.

correct phase detections in the complete surgery. The two following measures are
defined per phase: Recall is defined as the number of correct detections inside the
ground truth phase divided by its length. Precision is the sum of correct detections
divided by the number of correct and incorrect detections. This is complementary
to recall by indicating whether parts of other phases are detected incorrectly as the
considered phase. To present summarized results, we will use accuracy together with
average recall and average precision, corresponding to recall and precision averaged
over all phases. Since the phase lengths can vary largely, incorrect detections inside
short phases tend to be hidden within the accuracy, but are revealed within precision
and recall. For the same reason, relative values are more indicative than absolute values
in minutes.

We have evaluated all presented methods on data of 16 cholecystectomies. Results
for off-line segmentation are shown in table 2, results for on-line recognition in table
3. The three different names αHMM-full, αHMM-seq and αHMM-merged refer to the
three different initialization methods for HMMs presented in section 2.3. We performed
a leave-one-out cross-validation, where for each of the 16 surgeries the model was build
from the remaining 15 ones. The results display the mean evaluation measures over all
surgeries.

Obviously, since all information is available, results for off-line segmentation are
higher than for on-line recognition when the same methods are compared. For off-line
segmentation, methods based on DTW have accuracy above 95%. The results for the
αHMM-seq method are only slightly lower. HMM topologies are designed general
enough for on-line recognition and adaptation to rare observations.

As can be expected, results with a-posteriori annotation are lower than with a-priori
annotation, as less knowledge is used. They are however reasonable, as an accuracy
above 90% can be achieved for HMMs. αHMM-full is based on random initialization.
Multiple initializations followed by expectation-maximization training are performed
and the model performing best on the training data is kept. This method is less reli-
able in presence of limited data than both other methods, which are directly initialized
deterministically from the training data. For DTW, the results are decreased by less
then 3 points. This shows the interest of a-posteriori annotation, since the results even
remain similar when only 50% of the training data is labeled.

For online-recognition, the best accuracy is above 90% and obtained with αHMM-
seq. A-posteriori annotation slightly decreases the results, but the decrease is always
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Accuracy (%) Avg. Recall (%) Avg. Precision (%)
αDTW (pre) 97.3 (±6.6) 97.6 (±5.6) 97.0 (±5.7)
αDTW (post) 95.1 (±6.6) 95.5 (±6.0) 94.0 (±6.2)
αHMM-full (pre) 90.1 (±7.7) 90.2 (±8.6) 89.5 (±7.9)
αHMM-full (post) 85.4 (±12.4) 83.5 (±12.2) 80.1 (±14.2)
αHMM-seq (pre) 96.0 (±6.3) 96.5 (±5.6) 95.9 (±5.5)
αHMM-seq (post) 94.9(±5.1) 94.7(±4.9) 93.6(±5.9)
αHMM-merged (pre) 93.9 (±6.9) 93.9 (±7.9) 94.6 (±7.5)
αHMM-merged (post) 88.2 (±10.1) 88.8 (±9.0) 85.1 (± 11.4)

Table 2: Off-line results. Mean and std over all surgeries. (pre) indicates a-priori phase-wise construction,
(post) construction with a-posteriori annotation.

below 5 percentage points. This is again very interesting because when only half of the
data is labeled, the results remain similar for all methods, as shown in fig. 8.

αHMM-merged performed lower than the other methods. This method has however
the advantage that the topology of the resulting HMM has semantic meaning [6].

All phases are usually recognized. The errors are mainly caused by a delay of some
seconds when detecting a new phase, which is acceptable for most applications. The
few phases that are incorrectly detected are phases that are very short and that are not
recognized due to the delay. For instance, the second dissection phase has an average
length of 1 minute and 49 seconds. In a few surgeries, its duration is below 15 seconds.
In Fig. 9 the average length of each phase and the corresponding mean detection error
for each phase are indicated in minutes. This error indicates the number of incorrect
detections inside the ground truth phase divided by its length (corresponding to 100% -
recall). The errors were obtained for αHMM-seq with a-priori phase-wise construction.
The maximum mean error occurs for phase 3 and is of 1 minute and 14 seconds. For
comparison, αHMM-seq with a-posteriori annotation yield a maximum mean error per
phase of 1 minute and 11 seconds, occurring in phase 5. The average length among
all surgeries is 48 minutes. Note that the errors are slightly higher in the phases 3 to
5. This comes from the fact that high variations in duration occur within these rather
short phases while moreover phases 3 and 5 are similar. They indeed both consist in
dissection.

The fact that these results were obtained using only few training data of four differ-
ent surgeons with varying skill levels is especially encouraging, since this demonstrates
the robustness of our statistical methods towards inter-person variability.

5. Applications and Discussion

5.1. Applications

Using above described methods, several applications could be realized with a direct
and potentially large impact on patient welfare, peri-operative hospital organization and
surgeon’s control over the surgical processes.
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Accuracy (%) Avg. Recall (%) Avg. Precision (%)
αHMM-full (pre) 88.7 (±9.1) 89.4 (±8.4) 85.8 (±9.6)
αHMM-full (post) 85.4 (±11.8) 84.2 (±9.6) 82.4 (±12.6)
αHMM-seq (pre) 91.3 (±8.7) 91.6 (±7.6) 89.9 (± 8.6)
αHMM-seq (post) 91.6 (±7.1) 89.7 (±7.3) 88.5 (±9.7)
αHMM-merged (pre) 88.1 (±12.0) 88.8 (±11.3) 87.8 (±11.9)
αHMM-merged (post) 84.8 (±14.1) 84.9 (±12.0) 85.1 (± 14.7)

Table 3: On-line results. Mean and std over all surgeries. (pre) indicates a-priori phase-wise construction,
(post) construction with a-posteriori annotation.
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Figure 8: Mean recall and precision for αHMM-seq, αHMM-merged and αHMM-full using a-posteriori
annotation. Influence of number of annotated surgeries. The horizontal lines refer to the best result for each
method, obtained when all training surgeries are labeled.
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Errors are computed for αHMM-seq with a-priori phase-wise construction.

5.1.1. Event triggering
Recognition of the phases can mainly serve in triggering events, like calling auto-

matically the next patient, notifying the cleaning personnel, informing the next surgeon
or giving reminders to the surgical staff. This can also be used to control a user-interface
providing context-aware information. Calling the next patient is actually an important
issue, since if done too soon, the next patient might stay anesthetized for an unneces-
sarily long time. If done too late, the operating room will remain unused during some
time, which reduces the hospital efficiency. In case of cholecystectomy, this is usually
done in phase 7. This could therefore be done automatically and reliably, relieving the
OR staff from this task. This phase was always detected during the experiments and
its mean detection error is 5.9% in case of αHMM-seq with a-priori annotation. This
corresponds to an absolute error of 40 seconds, as can be seen in fig. 9.

5.1.2. Remaining time prediction
Another interesting application is the prediction of the remaining time. Making

this information automatically available to hospital personnel outside the OR could
significantly improve the planning of schedules. After detecting the current HMM state
during a running surgery, the average remaining time can be easily inferred from the
HMM. It starts to be accurate with the beginning of phase 10, with a mean prediction
error below 5 minutes. A more accurate prediction should use information about the
patient (e.g. size, weight, state of inflammation) and about the surgeons (e.g. skills for
the kind of surgery). We unfortunately lack this data, but hope to be able to obtain it in
future recordings.

5.1.3. Reporting and Training
The accurate phase identification in off-line segmentation could be used to sketch

a precise and objective report, containing each phase and their starting times. This can
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potentially shorten the report writing by providing a partially filled report template.
The presented methods are also very interesting for training purposes. Indeed,

they permit to provide quantitative results about the performance of a training surgeon
throughout the surgery. Additionally, synchronization to the average surgery can be
used for evaluation and comparison through video-replay, e.g. by synchronously visu-
alizing two surgeries of the same kind, performed by a trainee and an expert surgeon.
When using on-line synchronization, this could be used on demand to show, e.g. to the
trainee, how an expert has performed the current phase on another patient.

5.2. Discussion

In our experiments, we have used binary signals obtained manually from video data
to prove the concept of our recognition approach. We would like to emphasize that this
is not a limitation. Indeed, the automatic acquisition of such information is technically
feasible, e.g. using RFID technology. Such systems are however are not present in
the OR yet. Additionally, non-binary signals can also be used with the two presented
methods in a straightforward manner. The annotated average surgery model can deal
with such signals by default and the annotated Hidden Markov Model solely requires
a proper observation model, e.g. a mixture of gaussians. Therefore, signals from all
surgical devices and sensors, like the ones mentioned in the related work section, could
be used as input information.

We have considered the cholecystectomy as application for the convenience of the
recordings. It has a linear workflow, but it should be mentioned that the annotated Hid-
den Markov Model can also cope with non-linear workflows, ie. workflows containing
alternatives. The annotated average surgery cannot cope with alternatives between the
phases, but is still useful e.g. for synchronization inside similar phases, whose impor-
tance has been mentioned for training. These two models can deal with variations in
the signals: exceptions having a short duration compared to the length of the phases
will not corrupt the detection afterwards. We have experimented this effect with two
recordings of cholecystectomy which included a biopsy right at the beginning. Specifi-
cation in the model or extension of the modeling is however required to recognize such
variations as being exceptions.

The linearity of the cholecystectomy workflow permits to obtain good results with
a limited amount of training data. A workflow containing multiple alternatives will
require larger training datasets to obtain similar results, since the different surgical
performances need to be observed. Ideally, the definition of such complex workflows
should incorporate the formal knowledge obtained by approaches providing formal
workflow descriptions, like [24].

Additionally, with a large enough database of cases, it would be possible to gen-
erate surgeon-specific models of the surgery. This can be expected to further increase
recognition accuracy.

6. Conclusion

In this work, we have proposed to model interventions in terms of synchronized
generic signals acquired over time and present methods for off-line segmentation and
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on-line recognition of the phases of a complete surgery, using either fully or partially
annotated data. Using the a-priori phase-wise construction, the annotated average
surgery has proven to provide reliable off-line results with an accuracy above 97%.
This can for instance be used for automatic report generation after the surgery or train-
ing through synchronous video replay of surgeries. The annotated HMM permits the
on-line recognition of the phases with an accuracy above 90%. Such an approach can
be used for triggering events inside the operating room or for improved scheduling of
the operating suites.

In both cases, the a-posteriori annotation method yields slightly lower results. But
this method has the noticeable advantage that not all training surgeries need to be la-
beled for the model construction. When only half of the training surgeries are labeled
for a-posteriori annotation, in the off-line and on-line cases the accuracy decreases by
only a few percentages.

In future, we will address more complex workflows, e.g. containing alternative
phases. We will also work on introducing the system into the operating room, as we
believe that the analysis and processing of such signals is of growing importance. On
one side, trends towards integrated surgical environments and growing numbers of sen-
sors will lead to a vast amount of information that can be obtained from future ORs. On
the other side, increasing complexity of technical systems and need for hospital effi-
ciency demand for intelligent computer systems that can optimally assist and unburden
surgical staff.
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