

Geometry Processing (601.458/658)

Misha Kazhdan

Course Content

Processing Signals on Triangle Meshes

Theory

Linear algebra

Calculus

Finite elements

Application

Smoothing and Sharpening

Geodesics in Heat

Spectral Representation, PDEs, and Unconditional Stability

Heat Kernel Signature

Shape Deformation

What I Expect From You

Homework

A code-base is provided. (Assignment 1 posted and due 2/07/26.)

Assignments will focus on implementation.

~~Presentations~~

~~Exams~~

Readings

There is no text-book.

Class notes will be posted.

Supplementary readings will be suggested.

Motivating Problem

Given a 2D surface $\mathcal{M} \subset \mathbb{R}^3$, and a function $\phi: \mathcal{M} \rightarrow \mathbb{R}$,
Evolve ϕ so that it gets progressively smoother over time.

Motivating Problem

Newton's law of cooling:

“The *rate of change* in the temperature of a body is directly proportional to the temperature *difference between the body and the surroundings*”

For a signal $\phi: \mathcal{M} \rightarrow \mathbb{R}$

- The *rate of change* is $\partial\phi/\partial t$
- The *difference between the body and the surroundings* is $\Delta\phi$

This gives the PDE:

$$\frac{\partial\phi}{\partial t} = \lambda \cdot \Delta\phi$$

Signal Smoothing Visualization

Motivating Problem

$$\frac{\partial \phi}{\partial t} = \lambda \cdot \Delta \phi$$

Goal:

Study the *linear algebra* and *calculus* involved in formulating the problem and use it to obtain a solution...

To a whole class of problems requiring similar construction:

Smoothing

Wave equation

Stitching

Deformation

Shape matching

Wave Simulation Visualization

General Note

Many techniques designed for processing signals on surfaces are trivially applied to the surface itself by processing the x -, y -, and z -coordinates.

Example:

Instead of smoothing a signal defined on the surface, we can smooth the geometry.

Geometry Smoothing Visualization

Course Thesis

In geometry processing we regularly work with matrices.

✓ Enables numerical computation

⇒ Linear solvers, eigen-decomposition, etc.

✗ Lose track of the spaces we are mapping from/to.

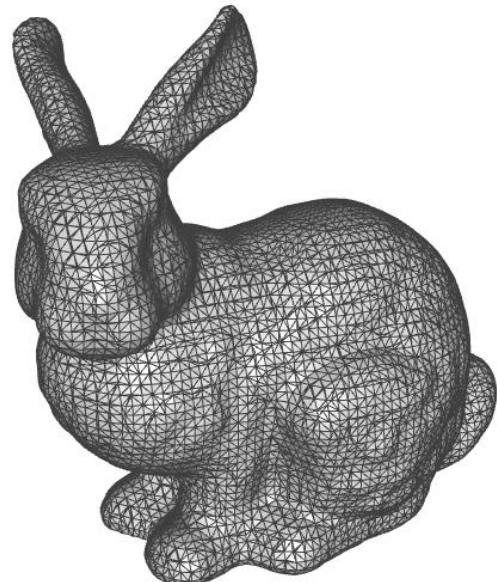
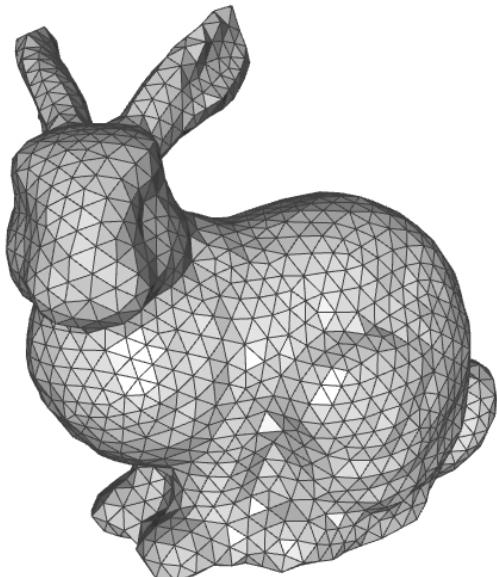
⇒ End up saying nonsensical things

In this course:

Revisit geometry processing from the perspective of tracking what the underlying operators (not matrices) are.

Assignment 1

Naïve Implementation:



Iteratively smooth a signal described by values at vertices of a triangle mesh.

⇒ At each time-step, set the new value at a vertex to be the weighted average of the values at the vertex and its neighbors.

Assignment 1: Surface Representation

Surfaces are represented as triangle meshes:

- A vector of vertex positions in 3D
- A vector of triplets of indices into the vertex list

Include/Mesh.h

```
struct Mesh
{
    using Real = double;
    static const unsigned int K = 2;
    static const unsigned int Dim = 3;

    std::vector< Point< Real , Dim > > vertices;

    std::vector< SimplexIndex< K > > triangles;

    ...
}
```

Assignment 1: Surface Representation

Surfaces are represented as triangle meshes:

- A vector of vertex positions in 3D
- A vector of triplets of indices into the vertex list

The `Point<Real,Dim>` class is an array of size `Dim` storing `Real` values.*

```
Include/Mesh.h
struct Mesh
{
    using Real = double;
    static const unsigned int K = 2;
    static const unsigned int Dim = 3;

    std::vector< Point< Real , Dim > > vertices;

    std::vector< SimplexIndex< K > > triangles;

    ...
}
```

*Defined in `ThirdParty/Include/Misha/Geometry.h`

Assignment 1: Surface Representation

Surfaces are represented as triangle meshes:

- A vector of vertex positions in 3D
- A vector of triplets of indices into the vertex list

The `SimplexIndex<K>` class is an array of size $K+1$ storing `unsigned int` values.*

```
Include/Mesh.h
struct Mesh
{
    using Real = double;
    static const unsigned int K = 2;
    static const unsigned int Dim = 3;

    std::vector< Point< Real , Dim > > vertices;

    std::vector< SimplexIndex< K > > triangles;

    ...
}
```

*Defined in `ThirdParty/Include/Misha/Geometry.h`

Assignment 1: Signal Representation

Signals are represented as a vector of **Real** values, in one-to-one correspondence with vertices.

```
Include/Mesh.h
struct Mesh
{
    ...
    std::vector< Real > values;
    ...
}
```

Assignment 1: Invocation

1. To smooth the signal, invoke:

`OneRingSmoothing --in <input file>*`

If the mesh has colors/values, those will be smoothed.
Otherwise, you will need to provide heat sources/sinks.

2. To smooth the geometry, invoke:

`OneRingSmoothing --in <input file>* --geometry`

* The input file can be in either .ply or .obj format.

Assignment 1: Interaction

You can visualization the animation:

[space]: pause/continue

‘+’: advance one time-step

You can move around the animation:

[left mouse]: rotate

[right mouse]: zoom

[left mouse]+[ctrl]: pan

Assignment 1: Interaction

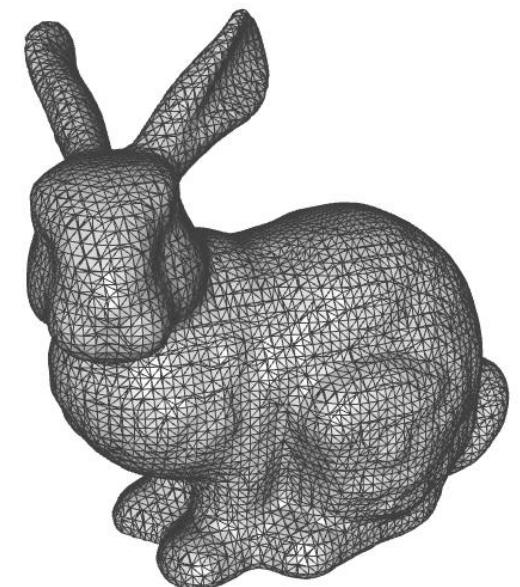
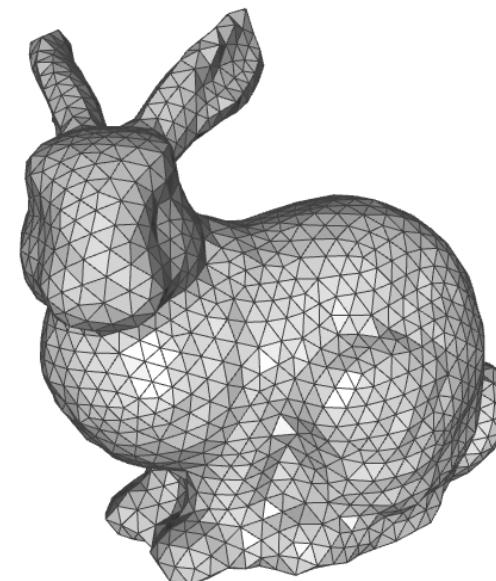
Selection

‘s’: enter/exit selection mode

In selection mode:

[left mouse] (hold): add source

[right mouse] (hold): add sink



Adding Smoothing Sources/Sinks Visualization

Assignment 1: Thoughts

Q: Why do the two bunnies smooth differently?

Q: How do the results depend on the tessellation?

Q: How do we get geometry into the picture?

Miscellany

Contacts:

Professor:

Misha Kazhdan

misha@cs.jhu.edu

TA:

Hongyi Liu

liuhongyi@jhu.edu

Piazza:

<https://piazza.com/jhu/spring2026/en601458658>

I will not respond to queries on Piazza unless I'm notified about them. (Don't hesitate to notify me if you want me to respond.)

Resources:

Consider downloading <https://www.meshlab.net/> to visualize, convert, process triangle meshes