

Solid Modeling

Michael Kazhdan (601.457/657)

A Generalization of Algebraic Surface Drawing, Blinn 1982
Marching Cubes, Lorensen and Cline 1987

Solid Modeling

So far, we have focused on representing models with (triangular) meshes that approximate the surface/boundary of the model.

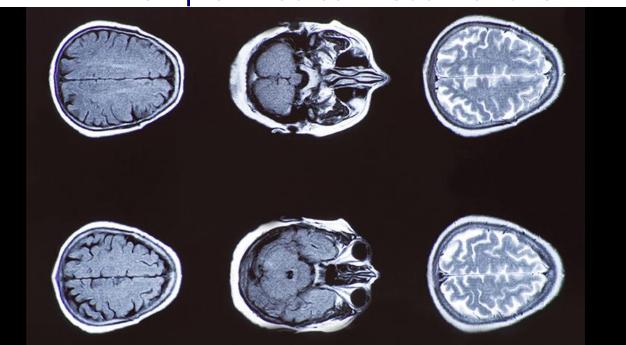
Advantages:

- Well-suited for animation
- Easy to visualize in graphics hardware

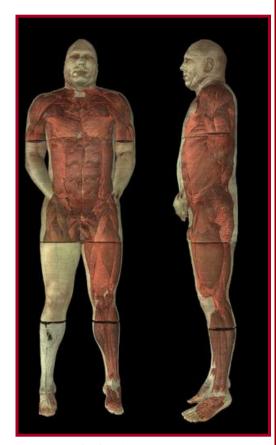
Motivation 1

Some acquisition methods generate solids

Example: Medical visualizations



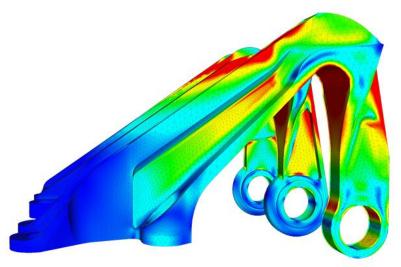
https://www.sciencenewsforstudents.org/



Visible Human (National Library of Medicine)

Motivation 2

- Some representations require solids
 - Example: FEM simulations

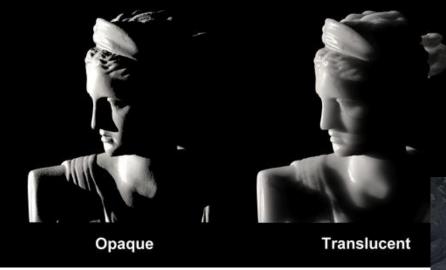


https://www.simscale.com/

[Irving et al., 2007]

Motivation 3

- Some algorithms require solids
 - Example: ray tracing in participating media



http://graphics.stanford.edu/

http://casual-effects.com/

Overview

- Implicit Surfaces
- Voxels
- Quadtrees and Octrees

Given a real-valued function in 3D, F(x, y, z), the implicit surface defined by F is the collection of points for which F(x, y, z) = 0.

Example: quadric

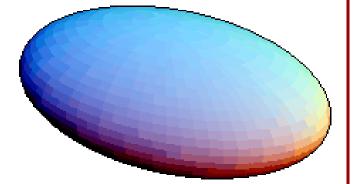
 $F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$

Given a real-valued function in 3D, F(x, y, z), the implicit surface defined by F is the collection of points for which F(x, y, z) = 0.

Example: quadric

$$F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$$

$$\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1 = 0$$



Ellipsoids

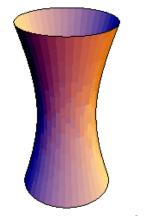
Image courtesy of http://www.geom.uiuc.edu/

Given a real-valued function in 3D, F(x, y, z), the implicit surface defined by F is the collection of points for which F(x, y, z) = 0.

Example: quadric

$$F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$$

$$\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 - \left(\frac{z}{r_z}\right)^2 \pm 1 = 0$$



Hyperboloids

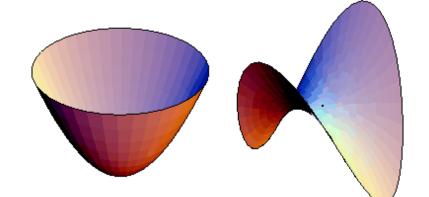
Image courtesy of http://www.geom.uiuc.edu/

Given a real-valued function in 3D, F(x, y, z), the implicit surface defined by F is the collection of points for which F(x, y, z) = 0.

Example: quadric

$$F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$$

$$\left(\frac{x}{r_x}\right)^2 \pm \left(\frac{y}{r_y}\right)^2 + 2z = 0$$



Paraboloids

Image courtesy of http://www.geom.uiuc.edu/

Blobby Models [Blinn '82]

Express the implicit surface as a sum of (signed) Gaussians:

$$F(x, y, z) = \sum_{i} F_{i}(x, y, z)$$

$$F_{i}(x, y, z) = \alpha_{i} e^{-((x-x_{i})^{2} + (y-y_{i})^{2} + (z-z_{i})^{2})/2\sigma_{i}^{2}}$$

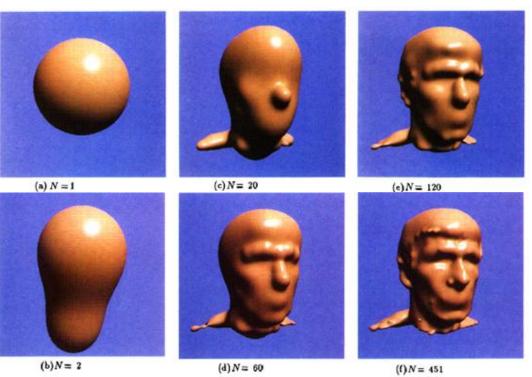
- (x_i, y_i, z_i)
 - Center of the Gaussian
- α_i controls the contribution of the Gaussian
 - How much the Gaussian contributes
 - Interior vs. exterior (sign)
- σ_i controls the width of the Gaussian
 - Extent of the contribution

Blobby Models [Blinn '82]

The more functions we use, the more accurate the

reconstruction.

But this also makes the function more difficult to sample.



$$F(x, y, z) = \sum_{i} F_{i}(x, y, z)$$

If the functions F_i are compactly supported, evaluation at a point can be done in sub-linear time.

Chen et al., SIGGRAPH 04

Advantages:

- Easy to test if a point is on the boundary of the solid
- Easy to test if a point is inside the solid
- Easy to intersect two solids (e.g. collision detection)

Disadvantages:

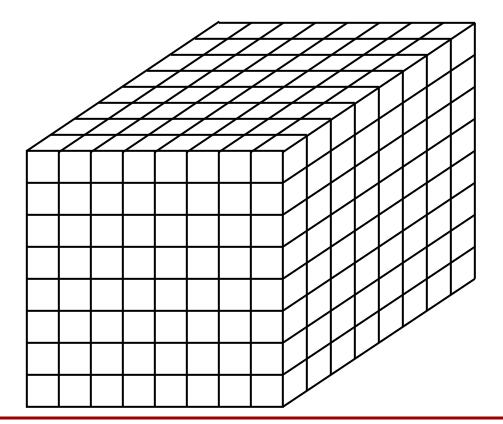
- Hard to describe complex shapes (concisely)
- Hard to evaluate complex functions (efficiently)
- Hard to enumerate points on surface

Overview

- Implicit Surfaces
- Voxels
- Quadtrees and Octrees

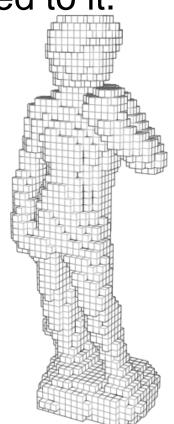
Voxels

- Partition space into uniform grid
 - Grid cells are called *voxels* (volumetric elements)
- Each voxel has a value associated to it.



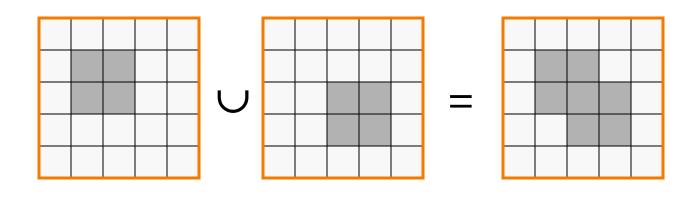
Voxels

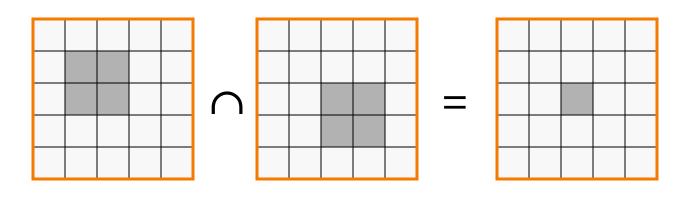
- Partition space into uniform grid
 - Grid cells are called voxels (volumetric elements)
- Each voxel has a value associated to it.
 - Binary Voxel Grids:
 - » Value is 0 if the voxel is outside the model
 - » Value is 1 if the voxel is inside



Binary Voxel Boolean Operations

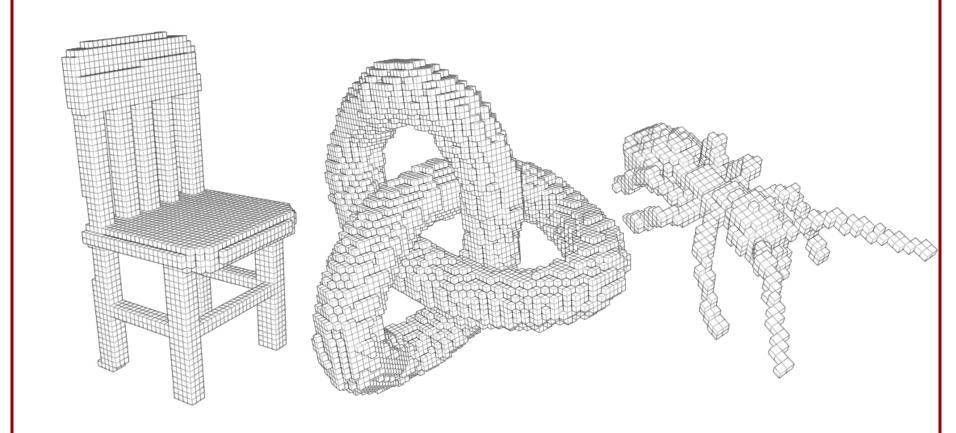
- Compare objects voxel by voxel
 - Trivial





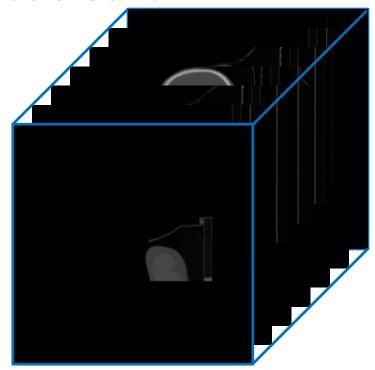
Binary Voxel Visualization

Draw the faces between on and off voxels.



Voxels

- Partition space into uniform grid
 - Grid cells are called voxels (volumetric elements)
- Each voxel has a value associated to it.
 - Binary Voxel Grids:
 - Continuous Voxel Grids:
 - » Each voxel stores a continuous value (e.g. density, temperature, color, etc.)



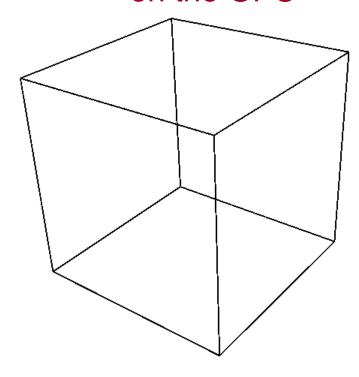
Voxels

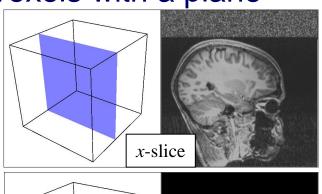
- Partition space into uniform grid
 - Grid cells are called voxels (like pixels)
- · Each voxel has a value associated to it.
 - Binary Voxel Grids:
 - Continuous Voxel Grids:
 - » Each voxel stores a continuous value (e.g. density, temperature, color, etc.)

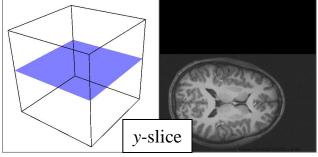
Continuous Voxel Visualization

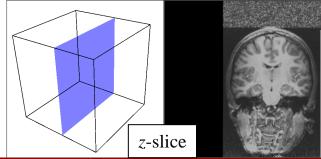
- Slicing
- Ray-Casting
- Iso-Surface Extraction

- Slicing
 - Draw 2D image by intersecting voxels with a plane
 - » Supported by 3D texturing on the GPU

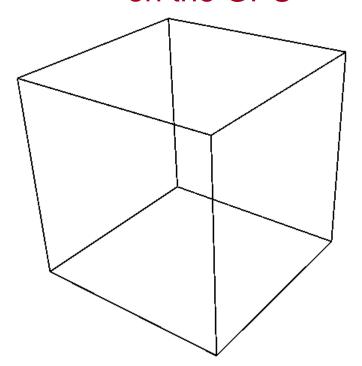


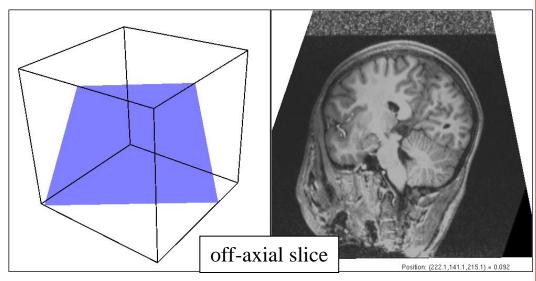




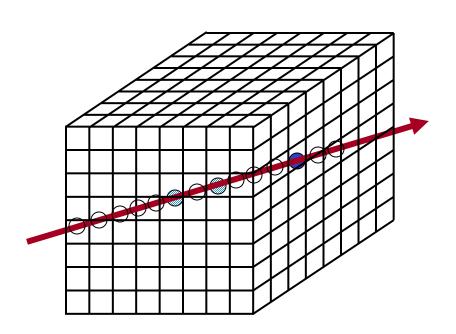


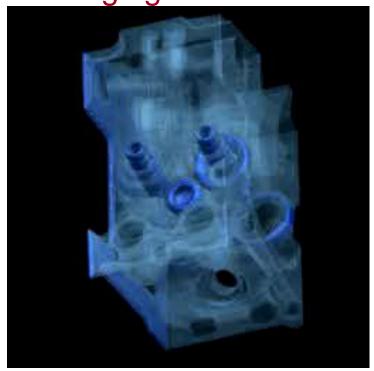
- Slicing
 - Draw 2D image by intersecting voxels with a plane
 - » Supported by 3D texturing on the GPU





- Ray casting
 - Integrate density along rays through pixels
 - » Doing this interactively is challenging



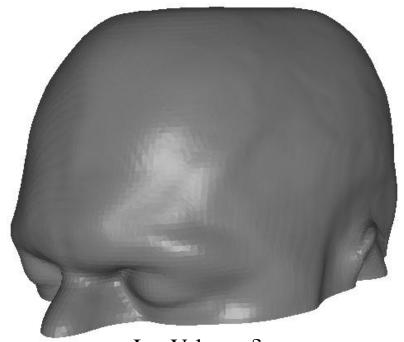


Engine Block
Stanford University

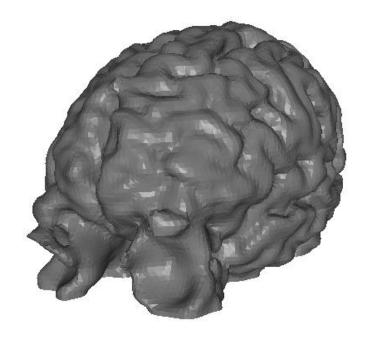
- Ray casting
 - Integrate density along rays through pixels

https://innoarea.com/files/ejemplo_gaussian_splatting.png

- Iso-Surface Extraction
 - Treat the voxel grid as a regular sampling of a function F(x, y, z), and extract the iso-surface with $F(x, y, z) = \delta$.

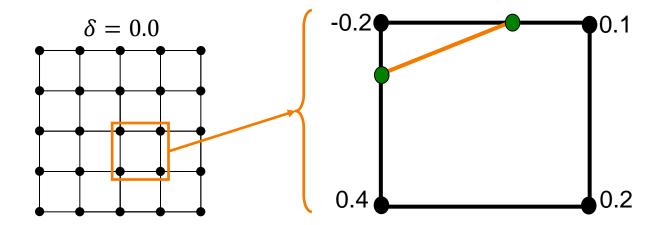


Iso-Value = δ_1



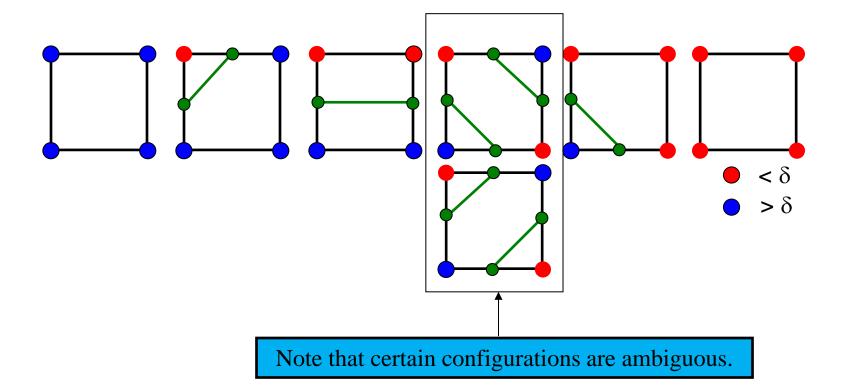
Iso-Value = δ_2

- Iso-Surfaces analog with 2D grid
 - Assume each grid vertex has scalar value
 - » **Iso-Vertices**: If one of the edge vertices has value larger than δ and the other has value less than δ , find the point on the edge whose linear interpolation equals δ .
 - » **Iso-Edge**: Per cell, connect iso-vertices with line segments.

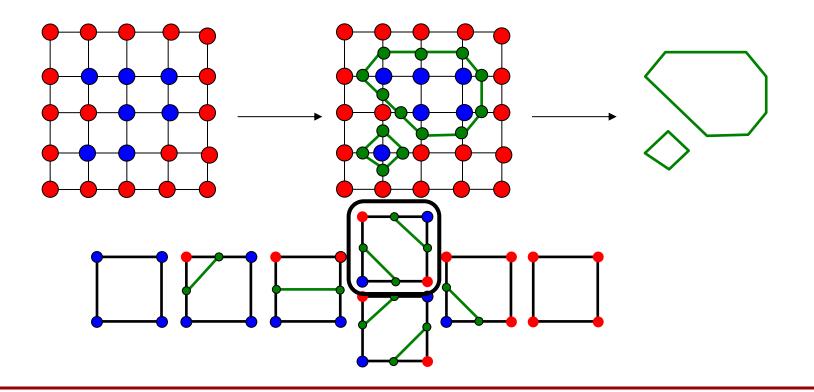


Note: The number of cell edges at which we insert vertices must be even

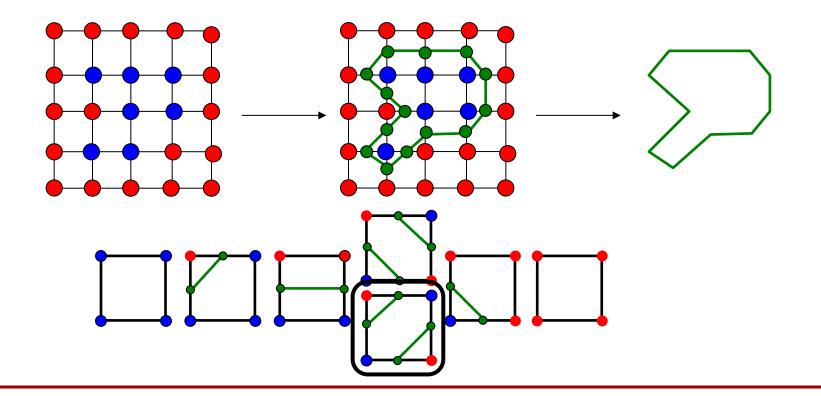
- Iso-Surfaces analog with 2D grid
 - Break up into the $2^4 = 16$ different possible cases
 - Assign a rule for curve extraction in each case



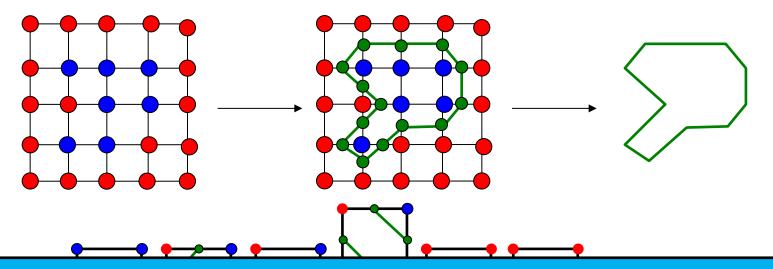
- Iso-Surfaces analog with 2D grid
 - Break up into the $2^4 = 16$ different possible cases
 - Assign a rule for curve extraction in each case
 - Combine the iso-vertices from the different cells



- Iso-Surfaces analog with 2D grid
 - Break up into the $2^4 = 16$ different possible cases
 - Assign a rule for curve extraction in each case
 - Combine the iso-vertices from the different cells



- Iso-Surfaces analog with 2D grid
 - Break up into the $2^4 = 16$ different possible cases
 - Assign a rule for curve extraction in each case
 - Combine the iso-vertices from the different cells



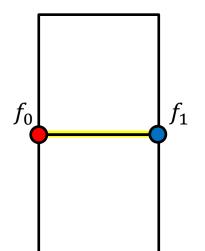
As long as the geometry shared by adjacent cells (e.g. position of iso-vertices) is defined by values along the shared edge, adjacent cells will define consistent (connected) segments.

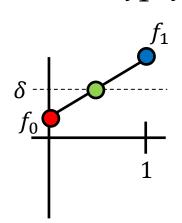
Assigning iso-vertex positions (linear):

Given values f_0 and f_1 at the endpoints of an edge we can fit a linear interpolant:

$$\mathbf{F}(t) = f_0 \cdot (1 - t) + f_1 \cdot t$$

 \Rightarrow The function has value $F(t) = \delta$ at $t = \frac{\delta - f_0}{f_1 - f_0}$.



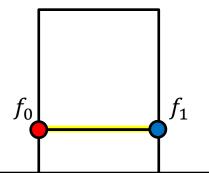


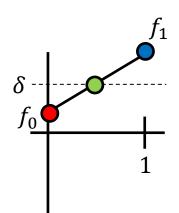
Assigning iso-vertex positions (linear):

Given values f_0 and f_1 at the endpoints of an edge we can fit a linear interpolant:

$$\mathbf{F}(t) = f_0 \cdot (1 - t) + f_1 \cdot t$$

 \Rightarrow The function has value $F(t) = \delta$ at $t = \frac{\delta - f_0}{f_1 - f_0}$.





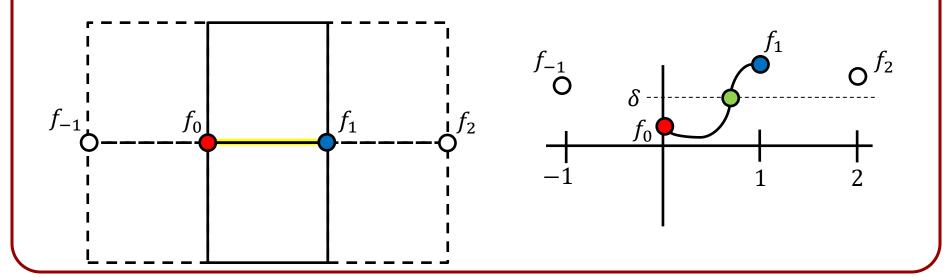
Note:

Since both cells see the same values along the shared edge, they both define the same iso-vertex.

Assigning iso-vertex positions (cubic):

If we also know f_{-1} and f_2 we can fit a Cardinal B-spline to the four values and find the root(s) of the cubic polynomial in the range [0,1]:

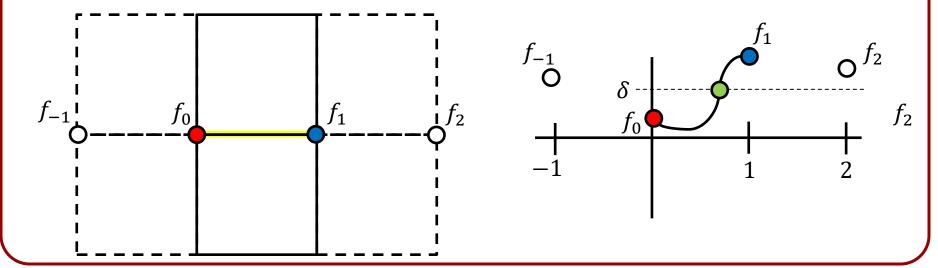
$$\mathbf{F}(t) = f_{-1} \cdot BF_0(t) + f_0 \cdot BF_1(t) + f_1 \cdot BF_2(t) + f_2 \cdot BF_3(t)$$



Note:

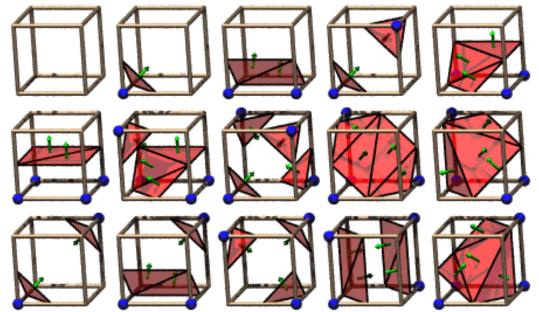
Since the spline is interpolating, if $f_0 < \delta$ and $f_1 > \delta$ (or vice-versa) F(t) will have an odd number of roots in [0,1].

- Because it is cubic, F(t) may have 3 roots in [0,1].
 - \Rightarrow We need to choose the zero-crossing consistently.
 - ⇒ Same number of iso-vertices as linear interpolation.



Marching Cubes Algorithm [Lorensen and Cline, '87]

- Iso-Surface with 3D grid
 - Break up into the $2^8 = 256$ different possible cases
 - Assign a rule for surface extraction in each case
 - Combine the iso-triangles from the different cells

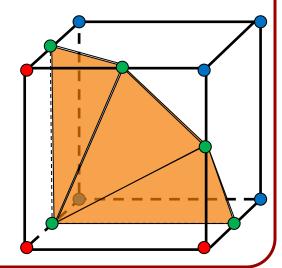


The 15 Cube Combinations

Back in the day, a table of 2⁸ configurations was too much to store in memory. Leveraging symmetry, [Lorensen and Cline, 1987] reduced it to 15 cases.

Marching Cubes Algorithm (Informally)

- Inductively:
 - Per edge (1D)
 - » Iso-vertices: Get edge δ -crossings
 - Per face (2D)
 - » Iso-edges: Connect iso-vertices in each face
 - Per cell (3D)
 - » Iso-triangles: Merge iso-edges and triangulate

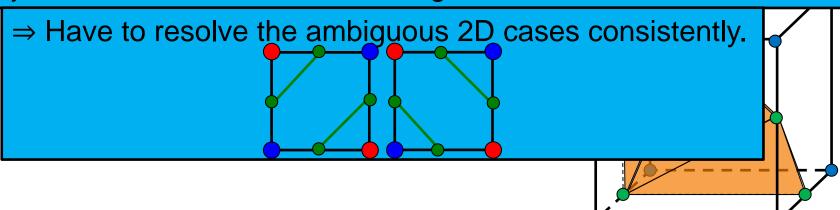


Marching Cubes Algorithm (Informally)

- Inductively:
 - Per edge (1D)
 - » Iso-vertices: Get edge δ -crossings
 - Per face (2D)
 - » Iso-edges: Connect iso-vertices in each face
 - Per cell (3D)

2D: Adjacent cells need to match iso-vertices across the shared edge.

3D: Adjacent cells need to match iso-edges across the shared face.



Voxels

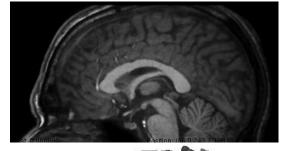
Continuous voxel grids are 3D images. Operations that we applied to 2D images can also be applied to voxel grids:

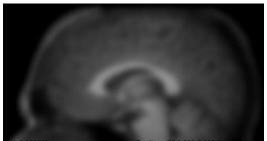
- Sampling
- Contrast
- Edge detection
- Smoothing

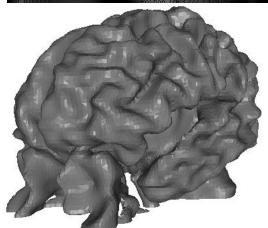
Voxels

Continuous voxel grids are 3D images. Operations that we applied to 2D images can also be applied to voxel grids:

- Sampling
- Contrast
- Edge detection
- Smoothing







Voxels

- Advantages
 - Simple
 - Same complexity for all objects
 - Natural acquisition for some applications
 - Trivial boolean operations

Disadvantages

- Approximate
- Not affine invariant
- Large storage requirements
- Expensive display

Solid Modeling Representations

- Implicit Surfaces
- Voxels
- Quadtrees & Octrees

Quadtrees(2D) & Octrees(3D)

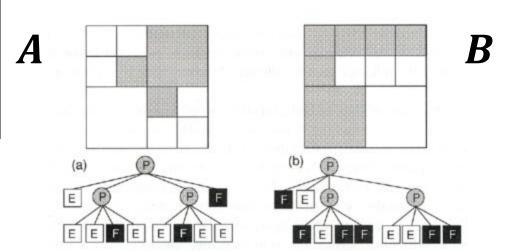
Refine resolution of voxels hierarchically

Outside Inside **Uniform Voxels** Octree

Quadtrees(2D) and Octrees(3D)

Cell ordering:

- 1. bottom left
- 2. bottom right
- 3. top left
- 4. top right

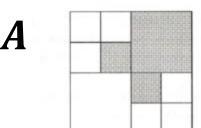


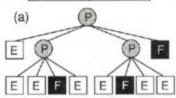
Expected complexity:
 number of nodes ≅ to perimeter or surface area

Binary Quadtree Boolean Operations

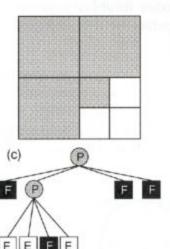
Cell ordering:

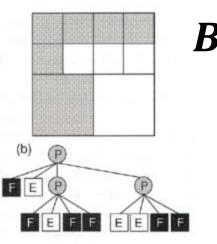
- bottom left
- bottom right
- top left
- top right

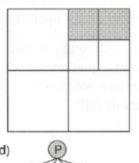


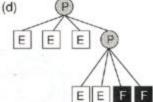


 $A \cup B$









 $A \cap B$

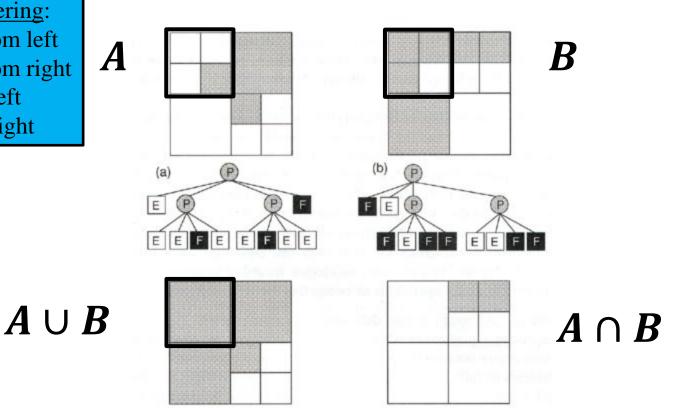
FvDFH Figure 12.24

Binary Quadtree Boolean Operations

ns

Cell ordering:

- 1. bottom left
- 2. bottom right
- 3. top left
- 4. top right

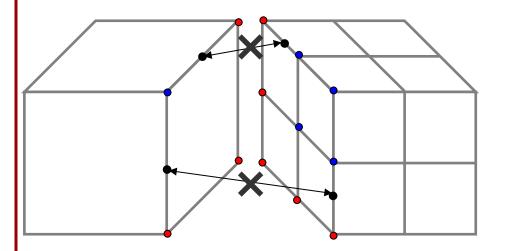


If the operation results in <u>all</u> child nodes being marked empty/full

Remove the children and mark the parent

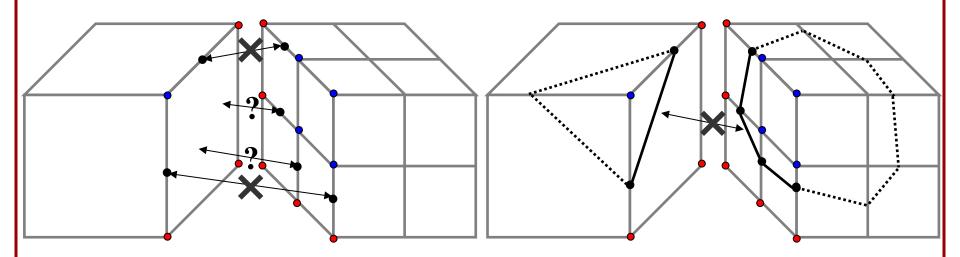
.24

- Extend voxel methods
 - Slicing
 - Ray casting
 - Iso-surface extraction



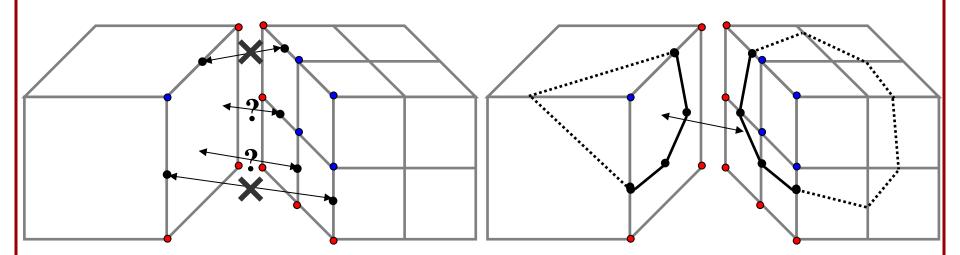
How to define positions of δ -crossings along edges shared by cells at different resolutions?

- Extend voxel methods
 - Slicing
 - Ray casting
 - Iso-surface extraction



How to handle the situation when vertices on one side of a face do not exist on the other?

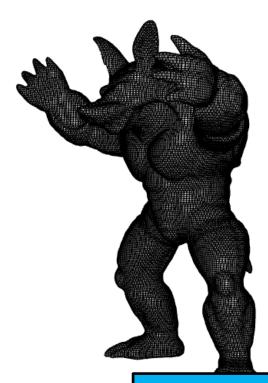
- Extend voxel methods
 - Slicing
 - Ray casting
 - Iso-surface extraction

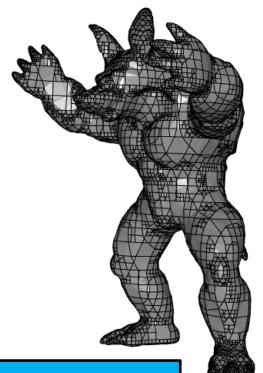


General Approach:

Copy from the finer faces to the coarser one.

- Extend voxel methods
 - Slicing
 - Ray casting
 - Iso-surface extraction





Octree adapted to surface curvature

- Extend voxel methods
 - Slicing
 - Ray casting
 - Iso-surface extraction

Octree adapted to surface curvature