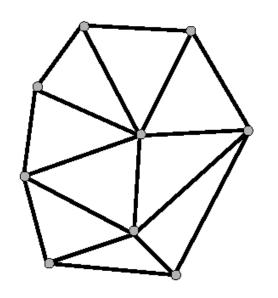


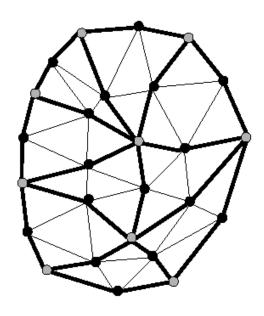
Representing Meshes Parametric Curves

Michael Kazhdan

(601.457/657)

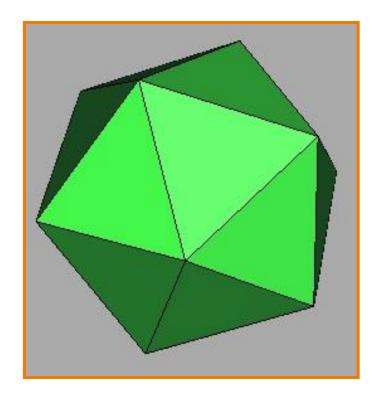
Outline




- Representing Meshes
- Parametric Curves

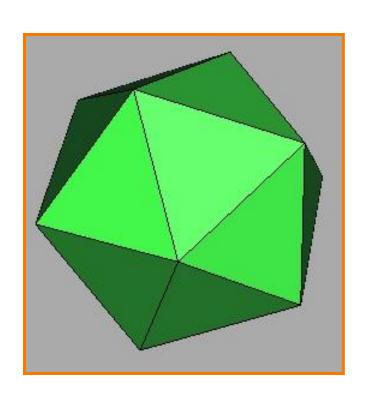
Key Questions

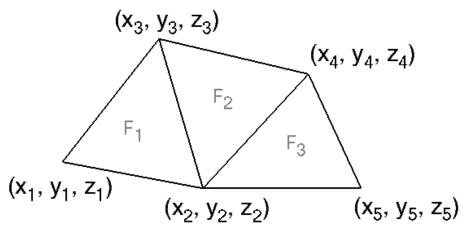
- How to refine the mesh?
 - Aim for properties like smoothness
- How to store the mesh?
 - Aim for efficiency in implementing subdivision rules



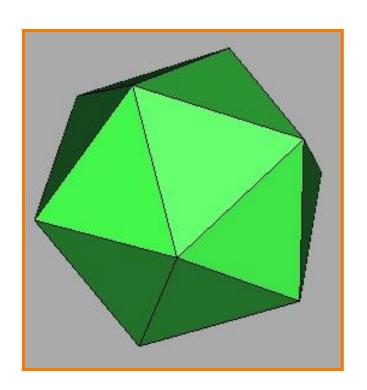
Zorin & Schroeder SIGGRAPH 99 Course Notes

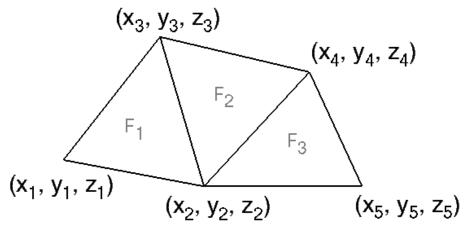
Polygon Meshes

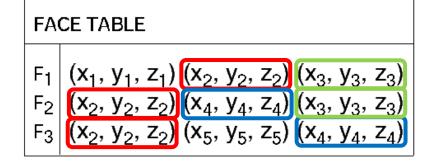



- Mesh Representations
 - Independent faces
 - Vertex and face tables
 - Adjacency lists
 - Winged-Edge

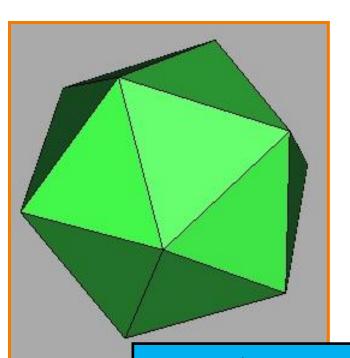
Each face lists vertex coordinates

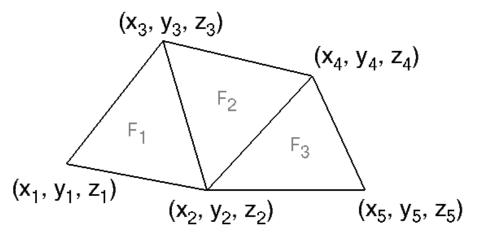




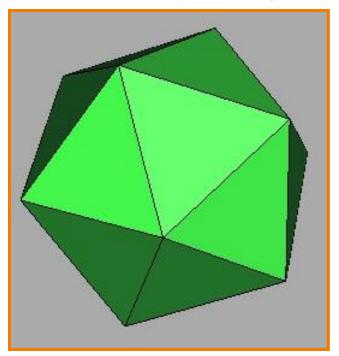

FACE TABLE F₁ (x₁, y₁, z₁) (x₂, y₂, z₂) (x₃, y₃, z₃) F₂ (x₂, y₂, z₂) (x₄, y₄, z₄) (x₃, y₃, z₃) F₃ (x₂, y₂, z₂) (x₅, y₅, z₅) (x₄, y₄, z₄)

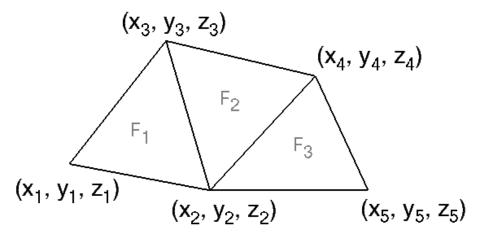
- Each face lists vertex coordinates
 - × Redundant vertices





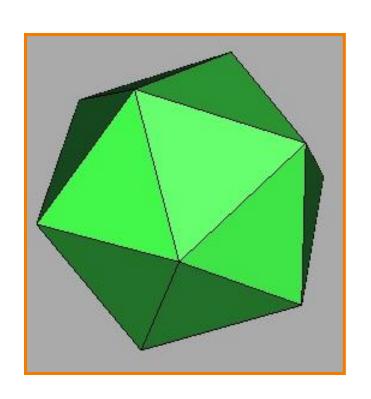
- Each face lists vertex coordinates
 - × Redundant vertices

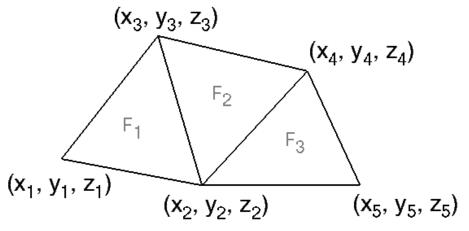



FACE TABLE $F_1 (x_1, y_1, z_1)(x_2, y_2, z_2)(x_3, y_3, z_3)$ $F_2 (x_2, y_2, z_2)(x_4, y_4, z_4)(x_3, y_3, z_3)$ $F_3 (x_4, y_4, z_4)(x_4, y_4, z_4)(x_5, y_4, z_4)$

⇒ Moving a vertex requires changing the coordinates of **each** instance.

- Each face lists vertex coordinates
 - × Redundant vertices
 - No (efficient/precise) vertex-adjacency info



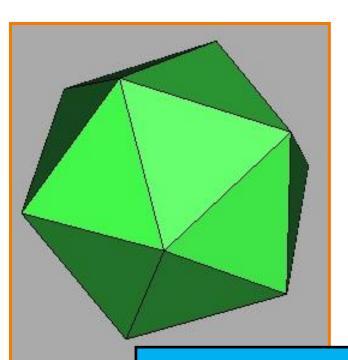

FACE TABLE

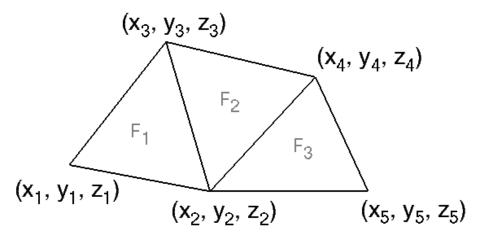
Vertex and Face Tables

Each face lists vertex references

VERTEX TABLE

V_1	X ₁	Υ ₁	Z_1
V_2	X ₂	Y_2	Z_2
٧3	Х3	Υ3	Z_3
V_4	X ₄	Y_4	Z_4
٧5	X ₅	Υ5	Z_5


FACE TABLE


F ₁	٧1	٧2	٧3
			٧3
F ₃	٧2	V_5	V_4

Vertex and Face Tables

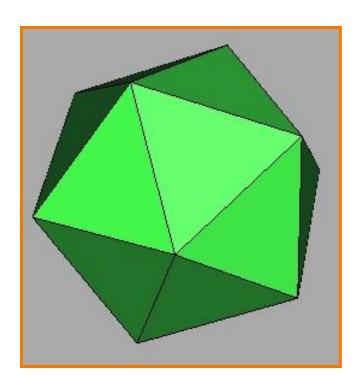
- Each face lists vertex references
 - ✓ Shared vertices

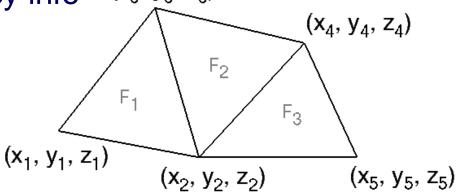
VERTEX TABLE

V ₁	X ₁	Υ1	Z ₁
V_2		Y_2	Z_2
٧3	Х3	Υ3	Z_3
V_4	X₄	Y_{A}	Z_{A}

FACE TABLE

F₁ V₁ V₂ V₃ F₂ V₂ V₄ V₃ F₃ V₂ V₅ V₄


⇒ Moving a vertex requires changing the coordinates of a **single** point.

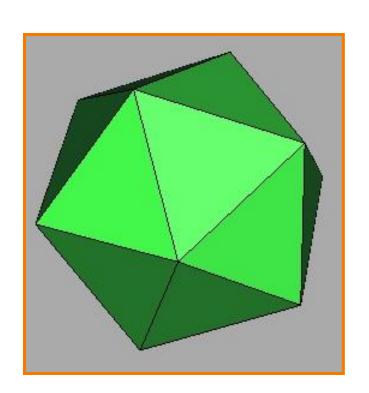

Vertex and Face Tables

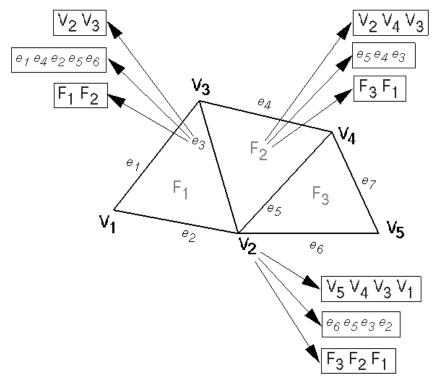
- Each face lists vertex references
 - ✓ Shared vertices

★ No (efficient) adjacency info (x₃, y₃, z₃)

VERTEX TABLE

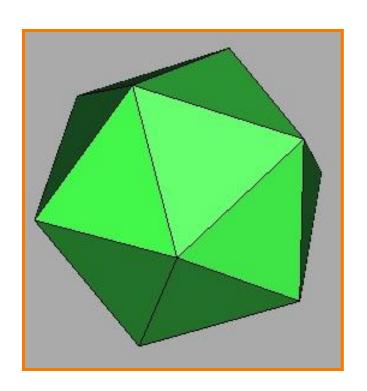
V ₁	X ₁	Υ ₁	Z ₁
٧3	X ₂ X ₃	Υ3	Z_2
	X ₄ X ₅	Υ ₄ Υ ₅	Z ₄ Z ₅

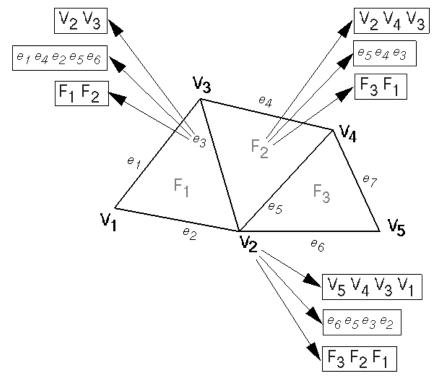

FACE TABLE


F ₁	٧1	٧2	٧3
F ₂	٧2	٧_4	٧3
F ₃	V ₂ V ₂	V_5	V_4

Adjacency Lists

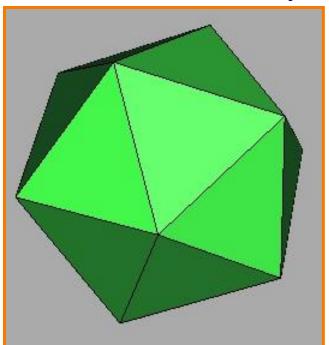
Store all vertex, edge, and face adjacencies

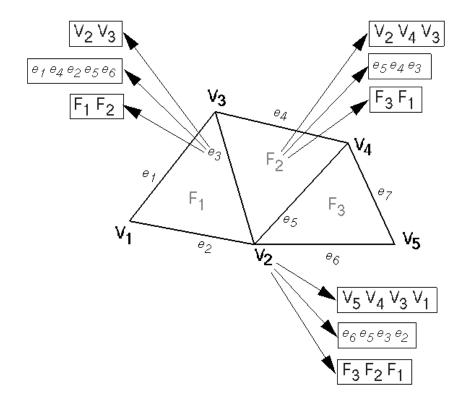




Adjacency Lists

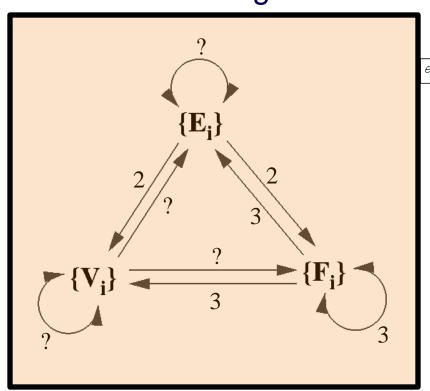
- Store all vertex, edge, and face adjacencies
 - ✓ Efficient adjacency info

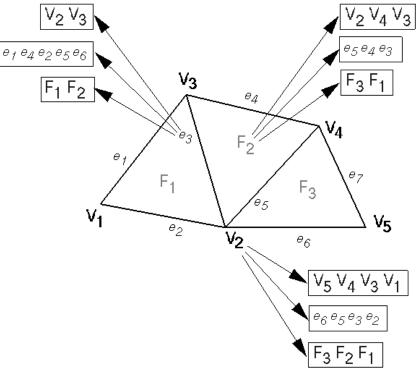




Adjacency Lists

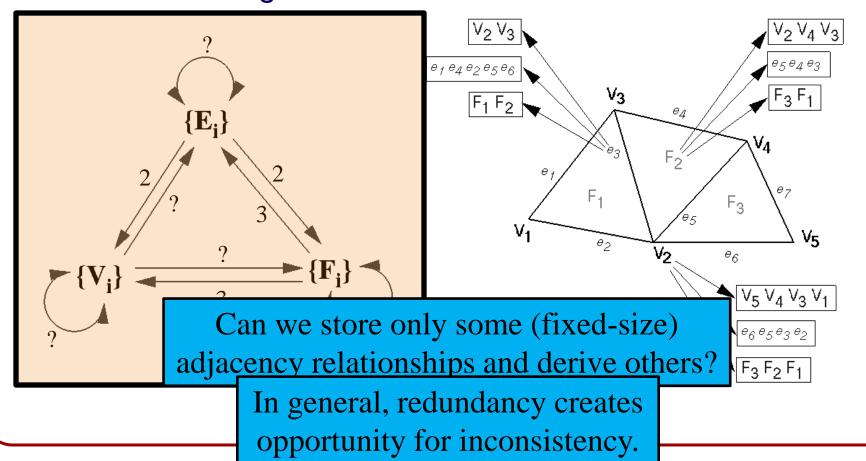
- Store all vertex, edge, and face adjacencies
 - ✓ Efficient adjacency info
 - Extra storage
 - Variable size arrays





Partial Adjacency Lists

- Store all vertex, edge, and face adjacencies
 - ✓ Efficient adjacency info
 - Extra storage



Partial Adjacency Lists

- Store all vertex, edge, and face adjacencies
 - ✓ Efficient adjacency info
 - Extra storage

Adjacency encoded in edges

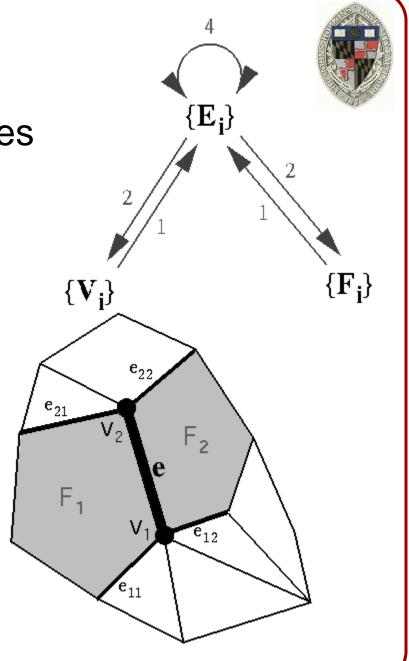
• All adjacencies in O(1) time

- Little extra storage
- Fixed-size records
- Supports polygonal faces

Each edge stores:

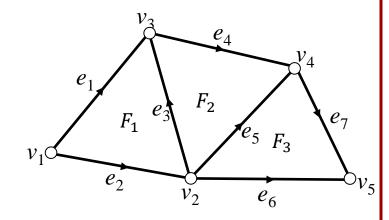
4 "wing" edges

2 vertices


2 faces

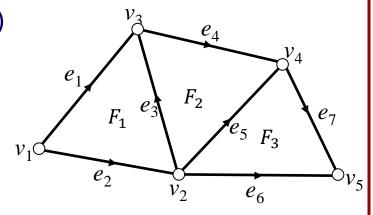
Each face stores:

1 (some) edge


Each vertex stores:

1 (some) edge

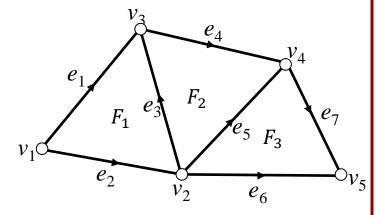
- Vertex table:
 - A reference to some incident edge


VERIEX LABLE						
X ₁	Υ ₁	Z ₁	e ₁			
X ₂	Y_2	Z_2	e ₆			
Х3	Υ3	Z_3	e ₃			
X4	Υ4	Z 4	e ₅			
X ₅	Υ ₅	Z ₅	e ₆			
	X ₁ X ₂ X ₃ X ₄	X ₁ Y ₁ X ₂ Y ₂ X ₃ Y ₃ X ₄ Y ₄				

EDGE TABLE					,	<u>S</u>	Е	
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	٧1	V_2	F ₁		e ₁	e ₁	ез	e ₆
e ₃	V ₂	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	ез	е7	e ₅
e ₅	V ₂	V_4	F_2	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

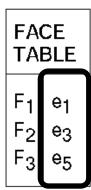
1	FACE TABLE				
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

- Vertex table:
 - A reference to some incident edge
 - Vertex positions (and other attributes)

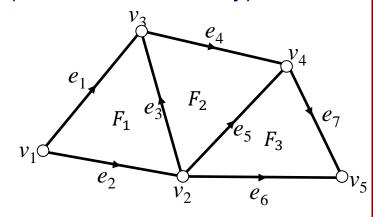

VEI	VERTEX TABLE					
V ₁	X ₁	Υ ₁	Z_1	e ₁		
٧2	X ₂	Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	e ₃		
٧4	X_4	Y_4	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z_5	e ₆		

EDGE TABLE					,	S	Е	E
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e_1	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3	ез	e ₆	e_4	е7
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

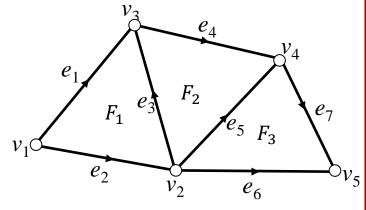


- Face table:
 - A reference to some incident edge
 - (And other attributes)


VERTEX TABLE					
V ₁	X ₁	Υ ₁	Z ₁	e ₁	
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆	
٧3	Х3	Υ3	Z_3	ез	
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅	
V ₅	X ₅	Υ ₅	Z ₅	e ₆	

ED	EDGE TABLE					S	E	,
	S	E	L	R	L	R	L	R
e ₁	V ₁	٧3		F ₁	e ₂		-	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
1	٧2		F ₂	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

- Edge table:
 - References to Start and End vertices (orientation arbitrary)


VEI	VERTEX TABLE							
٧1	X ₁	Υ ₁	Z_1	e ₁				
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	ез				
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

EDO	FDGE TARI F					S	E	•
	S	E	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	٧2	F ₁		e ₁	e ₁	ез	e ₆
e ₃	٧2		F ₁	F_2		e ₅	e ₁	e_4
e ₄	٧3	٧4		F_2	e ₁	ез	е7	e ₅
e ₅	٧2	٧4	F_2	F_3	ез	e ₆	e_4	e ₇
e ₆	V_2	٧5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	V_4	٧5		F_3	e ₄	e ₅	e ₆	e ₆
ı i			7		I			

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

- Edge table:
 - References to Start and End vertices (orientation arbitrary)
 - References to Left and Right faces

VEI	VERTEX TABLE							
ν ₁	X ₁	Y ₁ Y ₂ Y ₃	Z ₁	e ₁				
V ₂	X ₂	Y_2	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	e ₃				
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

ED	GE 1	TABL	<u> </u>			S	E	
	S	E	L	R	L	R	L	R
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V ₂	F ₁		e ₁	e_1	eз	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	е4
e ₄	V3	٧4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	٧4	F_2	F ₃	ез	e ₆	e_4	е7
e ₆	V ₂	٧5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V ₅		F ₃	e_4	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

Edge table:

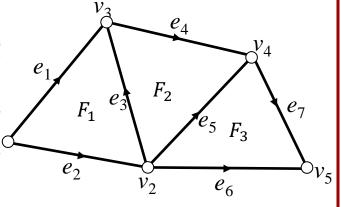
References to Start and End vertices (orientation arbitrary)

References to Left and Right faces

 References to immediate Left and Right edges coming out of the Start vertex

$e_1 \qquad e_4 \qquad e_5 \qquad e_6 $
F_1 e_3 F_2 e_5 F_3 e_7
e_2 v_2 e_6 v_5

VEI	VERTEX TABLE						
V ₁ V ₂ V ₃ V ₄ V ₅	X ₂ X ₃	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁ Z ₂ Z ₃ Z ₄ Z ₅	e ₁ e ₆ e ₃ e ₅ e ₆			

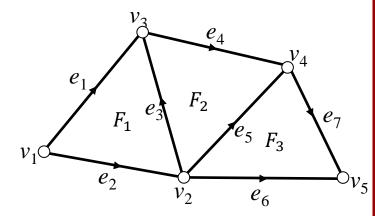

EDGE TABLE						S	Е	
	S	Е	 L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	ез	е7	e ₅
e ₅	٧2	V_4	F ₂	F_3	e ₃	e ₆	e ₄	e ₇
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

Edge table:

- References to Start and End vertices (orientation arbitrary)
- References to Left and Right faces
- References to immediate Left and Right edges coming out of the Start vertex
- References to immediate Left and Right edges coming out of the End vertex

VEI	VERTEX TABLE							
V ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁				
V ₂	X ₂	Υ ₂	Z ₂	e ₆				
V ₄	X ₄	Y ₄	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				


ED	EDGE TABLE				,	S	Е	
	S	E	 L	R	L	R	L	R
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e_4	ез
e ₂	٧1	V_2	F ₁		e ₁	e_1	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
e ₅	V ₂	V_4	F ₂	F_3	ез	e ₆	e_4	е7
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V_5		F_3	e ₄	e ₅	e ₆	e ₆
1	1		l		l			

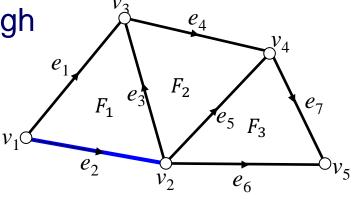
FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

Boundary edges:

Have only one incident face

VEI	VERTEXTABLE					
V ₁	X ₁	Υ ₁	Z ₁	e ₁		
\V ₂	X ₂	Υ2	Z_2	e ₆		
V ₃	Х3	Y ₂ Y ₃	Z_3	e ₃		
٧4	X_4	Υ ₄ Υ ₅	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z_5	e ₆		

EDGE TABLE				S		E	,	
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3)F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F1(e ₁	e ₁	ез	e ₆
ез	V_2	٧3	F ₁	\F ₂	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4)F ₂	e ₁	ез	е7	e ₅
e ₅	V_2	V_4	F ₂	F3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F ₃ (e ₅	e_2	e_7	e ₇
e ₇	V_4	V_5		$)F_3$	e_4	e ₅	e ₆	e ₆


FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

Boundary edges:

Have only one incident face

 Wing edges are defined as though the boundary was also a face

VEI	VERTEX TABLE				
٧1	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z_1	e ₁	
V ₂	X ₂	Y_2	Z_2	e ₆	
٧3	Х3	Υ3	Z_3	ез	
٧4	X ₄	Y_4	Z_4	e ₅	
V ₅	X ₅	Υ ₅	Z_5	e ₆	

	^		_			٦		,
ED	EDGE TABLE			_		5	E	-
	<u>S</u>	<u>E</u>	<u> L </u>	<u>R</u>	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e 2	e_4	eg
e ₂	V_1	V_2	F ₁		e ₁ (e ₁) e3	(e_6)
ез	V ₂	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e ₄
e ₄	V3	V_4		F_2	e ₁	е3	е7	e ₅
e ₅	V ₂	V_4	F ₂	F_3	ез	e ₆	e_4	е7
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	V ₄	V ₅		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

Find CCW edges adjacent to v_2 .

Note that given a vertex v on edge e:

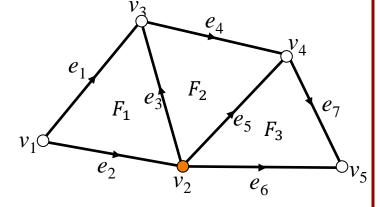
 If v is the Start, the next CCW edge is on the Left of e, coming out of the Start.

Otherwise it is on the Right of e,
 coming out of the End.

VEI	VERTEXTABLE				
ν ₁	X ₁	Υ1	Z ₁	e ₁	
V ₂	X ₂	Y_2	Z_2	e ₆	
٧3	Х3	Υ3	Z_3	ез	
٧4	X ₄	Y_4	Z_4	e ₅	
V ₅	X ₅	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₅	e ₆	

ED	EDGE TABLE				,	S	Е	,
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	_			e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	ез	e ₆
ез		٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄		V_4		F_2			е7	e ₅
e ₅	٧2	V_4	F_2	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅		e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			



Find CCW edges adjacent to v_2 :

Initialize: Choose the only edge coming out of v_2

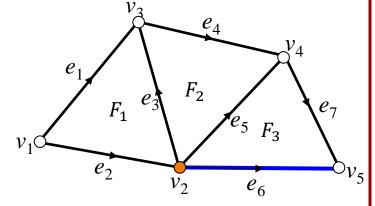
 \circ **Do**: Iterate CCW around v_2

 While: Haven't cycled back to the start edge

VEI	VERTEX TABLE					
ν ₁	X ₁	Υ ₁	Z ₁	e ₁		
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X ₄	Υ ₄ Υ ₅	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

ED	EDGE TABLE					S	Е	<u> </u>
	S	E	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	е7	e ₅
e ₅	٧2	V_4	F ₂	F_3	e ₃	e ₆	e_4	e ₇
e ₆	V_2	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	V_4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

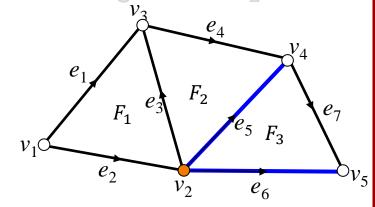


Find CCW edges adjacent to v_2 :

 \circ Initialize: Choose the only edge coming out of v_2

• **Do**: Iterate CCW around v_2

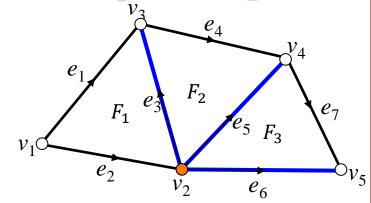
 While: Haven't cycled back to the start edge


VERTEX TABLE					
V ₁	X ₁	Υ ₁	Z ₁	e ₁	
V ₂	X ₂	Υ2	Z_2	e ₆	
٧3	Х3	Υ3	Z_3	ез	
V_4	X ₄	Y_4	Z_4	e ₅	
V ₅	X ₅	Y ₃ Y ₄ Y ₅	Z_5	e ₆	

ED	EDGE TABLE					S	E	,
	S	E	L	R	L	R	L	R
e ₁	V ₁	٧3		F ₁	e ₂		-	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
1	٧2		F ₂	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

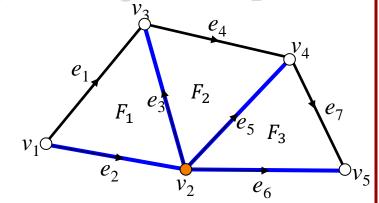
- Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
 - » If v_2 is the Start...
 - » Otherwise...
- While: Haven't cycled back to the start edge


VEI	VERTEX TABLE					
ν ₁	X ₁	Υ ₁	Z ₁	e ₁		
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X_4	Y_4	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

EDGE TABLE					(S	E	E
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e_2	٧1	V_2	F ₁		e ₁	e_1	e_3	e ₆
ез	٧2	٧3	F ₁	F_2	e ₂	e ₅	e_1	e_4
e_4	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
e ₅	V2	V_4	F ₂	F_3	eз	e ₆	e_4	е7
e ₆ (V_2	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	$\sqrt{4}$	٧5		F_3	e_4	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

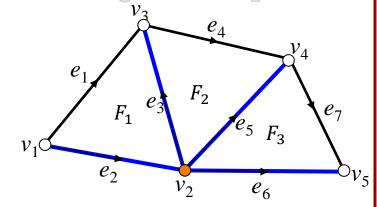
- Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
 - » If v_2 is the Start...
 - » Otherwise...
- While: Haven't cycled back to the start edge


VEI	VERTEX TABLE					
ν ₁	X ₁	Υ ₁	Z ₁	e ₁		
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X_4	Y_4	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

ED	EDGE TABLE					<u>S</u>	Е	E
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	ез
e ₂	V_1	V_2	F ₁		e ₁	e ₁	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e ₄
e ₄	<u>V3</u>	V_4		F_2	еı	ез	e ₇	e ₅
e ₅ (V ₂	V_4	F ₂	F ₃ (ез)e ₆	е4	e ₇
e ₆	\forall_2	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

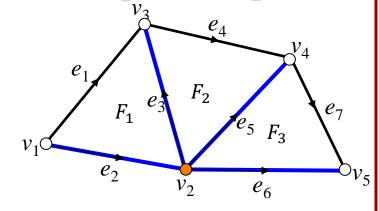
- Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
 - » If v_2 is the Start...
 - » Otherwise...
- While: Haven't cycled back to the start edge


VEI	VERTEX TABLE					
٧1	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁		
V ₂	X ₂	Y_2	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X ₄	Y_4	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

ED	GE 1	ABL	E		Š	S	E	3
	S	E	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	ез
e_2	Vι	V_2	F ₁		e ₁	e_1	e ₃	e ₆
е3(٧2)V ₃	F ₁	F ₂ (e ₂	e ₅	e ₁	e ₄
e ₄	∀3	٧4		F ₂	e ₁	ез	е7	e ₅
e ₅	٧2	V_4	F ₂	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V ₅		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

- Initialize: Choose the only edge coming out of v_2
- \circ **Do**: Iterate CCW around v_2
 - » If v_2 is the Start...
 - » Otherwise...
- While: Haven't cycled back to the start edge


VEI	VERTEX TABLE					
٧1	X ₁	Υ1	Z_1	e ₁		
V ₂	X ₂	Y_2	Z ₂ Z ₃	e ₆		
V ₃	Х3	Υ3	Z_3	ез		
V ₄	X ₄	' 4	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

ED	GE 1	ABL	E			S	E	 E
	S	Е	L	R	L	R	L	R
e ₁	٧1	V3		F ₁	e ₂	e ₂	e ₄	e ₃
e_2	V_1	(V_2))F ₁		e ₁	e ₁	ез	(e ₆
e ₃	٧2	V3	F ₁	F ₂	e ₂	e ₅	e ₁	e ₄
e_4	V3	V_4		F_2	e ₁	ез	е7	e ₅
e ₅	V ₂	V_4	F ₂	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

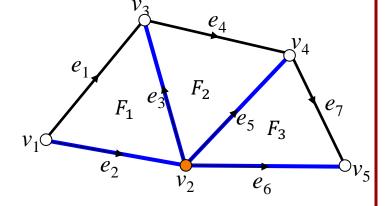
FACE TABLE					
F ₁	e1				
F ₂	e3				
F ₃	e5				

- Initialize: Choose the only edge coming out of v_2
- **Do**: Iterate CCW around v_2
- While: Haven't cycled back to the start edge

VEI	VERTEXTABLE					
٧1	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z_1	e ₁		
V ₂	X ₂	Y_2	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X ₄	Y_4	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

ED	GE 1	ABL	E		(S	E	
	S	E	L	R	L	R	L	R
e ₁	٧1	V3		F ₁	e ₂	e ₂	e ₄	e3
e_2	V_1	(V_2))F ₁		e ₁	e ₁	ез	(e ₆
ез	٧2	V3	F ₁	F ₂	e ₂	e ₅	e ₁	e ₄
e_4	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3	e ₃	e ₆	e_4	e ₇
e ₆	V_2	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	V_4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				



Find CCW edges adjacent to v_2 :

 \circ Initialize: Choose the only edge coming out of v_2

 \circ **Do**: Iterate CCW around v_2

 While: Haven't cycled back to the start edge

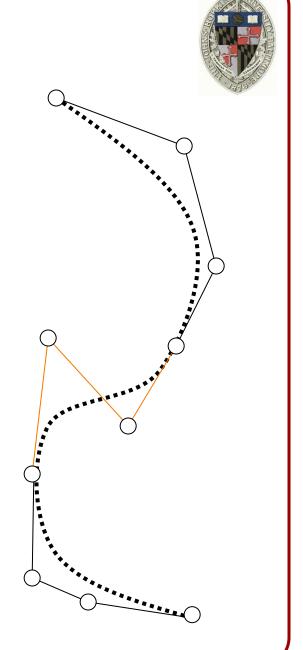
VEI	VERTEX TABLE					
V ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁		
V ₂	X ₂	Y_2	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	eз		
٧4	X ₄	Y_4	Z_4	e ₅		
٧5	X ₅	Υ5	Z ₅	e ₆		

ED	EDGE TABLE					S	E	E
	S	Е	L	R	L	R	L	R
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃ e ₆
e ₂	٧1	V_2	F ₁		e ₁	e ₁	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2			e ₁	
e ₄	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
e ₅		V_4	F ₂	F_3	ез	e ₆	e_4	e ₇

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

Computational complexity is proportional to the size of the output. (Independent of the size of the mesh.)

Outline

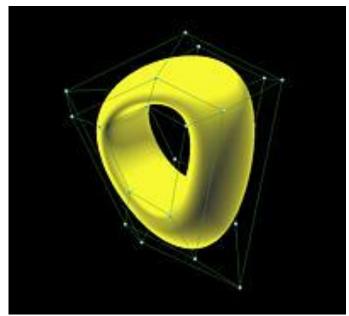


- Representing Meshes
- Parametric Curves

Parametric Curves

Given a 1D control lattice

 Compute a smooth curve passing through/near the control points



Parametric Surfaces

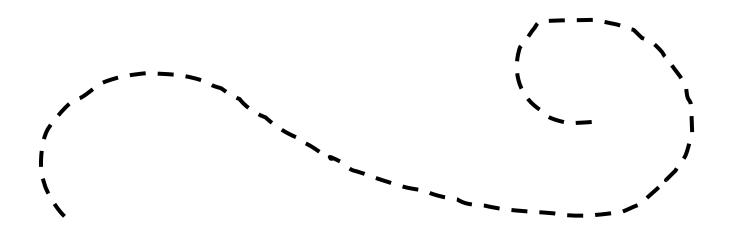
Given a 2D control lattice

 Compute a smooth surface passing through/near the control points

Courtesy of C.K. Shene

Very closely related to subdivision surfaces!

Goals


- Some attributes we would like to have:
 - Local support
 - Simple/predictable
 - Continuous

- We'll satisfy these goals using:
 - Piecewise
 - Polynomials

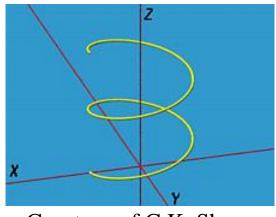
What is a Spline in CG?

A spline is a <u>piecewise</u> <u>polynomial function</u> whose derivatives satisfy <u>continuity constraints</u> across curve boundaries.

What is a Spline in CG?

Piecewise: the spline is a collection of parametric curves segments joined together.

Polynomial functions: each segment is a parametric polynomial curve.


Parametric Curves

A <u>parametric curve</u> in d-dimensions is defined by a collection of coordinate functions in u giving the position of a point on the curve at each u value:

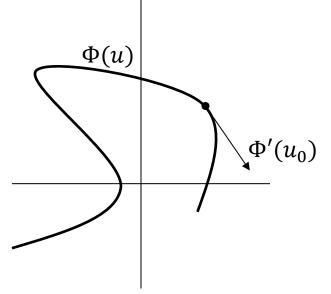
$$\Phi(u) = (x_1(u), \cdots, x_d(u))$$

 $\Phi(u) = (\cos u \, , \sin u \, , u)$

Courtesy of C.K. Shene

Note:

A parametric curve is **not** the graph of a function.


Derivatives

If $\Phi(u) = (x(u), y(u))$ is the parametric equation of a curve, the parametric derivative of the curve at a point u_0 is the vector:

$$\Phi'(u_0) = (x'(u_0), y'(u_0))$$

which points in a direction tangent to the curve.

Note:

The direction of the derivative is determined by the path that the $\Phi'(u_0)$ curve traces out.

The magnitude of the parametric derivative is determined by the tracing speed.

Polynomials

A polynomial in the variable u is:

"An algebraic expression written as a sum of constants multiplied by different powers of a variable."

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \dots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k$$

The constant a_k is referred to as the k-th coefficient of the polynomial P.

A polynomial P(u) has <u>degree</u> n if for all k > n, the coefficients of the polynomial satisfy $a_k = 0$.

Polynomials

A polynomial in the variable u is:

"An algebraic expression written as a sum of constants multiplied by different powers of a variable."

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \dots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k$$

A polynomial of degree n has n + 1 degrees of freedom

Knowing n + 1 pieces of information about a polynomial of degree n should give enough information to reconstruct the coefficients

Polynomials (Matrices)

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \dots + a_n \cdot u^n = \sum_{k=0}^{n} a_k \cdot u^k$$

The polynomial P can be expressed as the matrix multiplication of a row vectors containing the powers of u and a column vector containing the coefficients:

$$P(u) = (u^n \quad \dots \quad u^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}$$

Polynomials (1st Derivative Matrices)

$$P(u) = a_0 + a_1 \cdot u + a_2 \cdot u^2 + \dots + a_n \cdot u^n = \sum_{k=0}^{\infty} a_k \cdot u^k$$

The derivative of the polynomial is:

$$P'(u) = a_1 + 2 \cdot a_2 \cdot u + \dots + n \cdot a_n \cdot u^{n-1} = \sum_{k=1}^{n} k \cdot a_k \cdot u^{k-1}$$

⇒ The derivative of polynomial P can also be expressed as a matrix multiplication:

$$P'(u) = (n \cdot u^{n-1} \quad (n-1) \cdot u^{n-2} \quad \cdots \quad 1 \quad 0) \cdot \begin{pmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_1 \\ a_0 \end{pmatrix}$$

Polynomials (Matrices)

Example:

Given the values of P(u) at n+1 different locations: $p_0 = P(u_0), \dots, p_n = P(u_n)$

$$p_0 = (u_0^n \quad \cdots \quad u_0^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}, \cdots, p_n = (u_n^n \quad \cdots \quad u_n^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}$$

We can stack into one linear system:

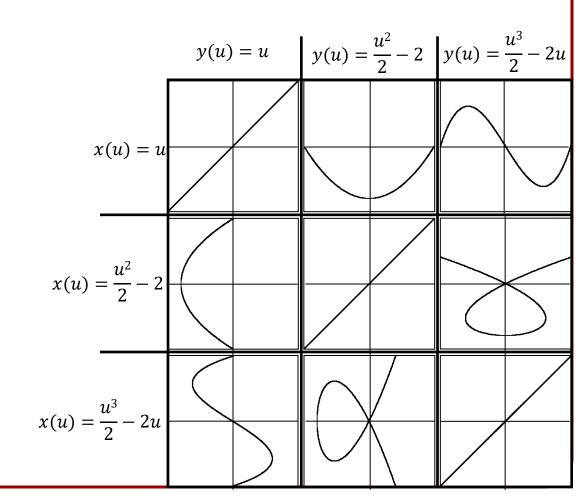
$$\begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix} = \begin{pmatrix} u_0^n & \cdots & u_0^0 \\ \vdots & \ddots & \vdots \\ u_n^n & \cdots & u_n^0 \end{pmatrix} \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}$$

Polynomials (Matrices)

Example:

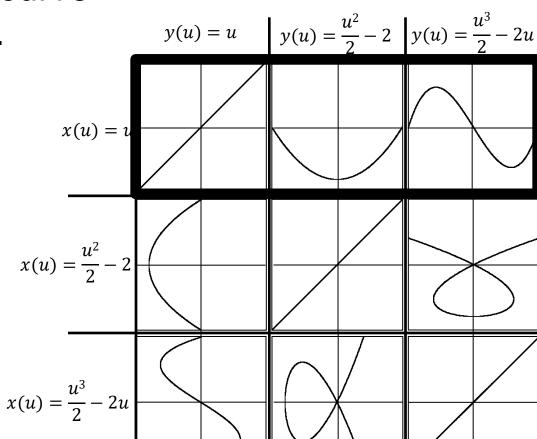
$$P(u) = \sum_{k=0}^{n} a_k \cdot u^k$$

Given the values of P(u) at n+1 different locations: $p_0 = P(u_0), \dots, p_n = P(u_n)$

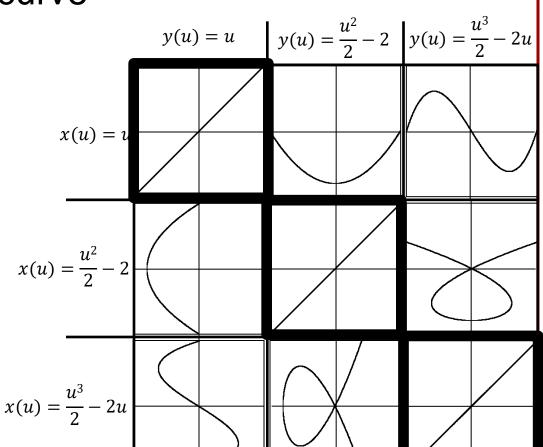

$$p_0 = (u_0^n \quad \cdots \quad u_0^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}, \cdots, p_n = (u_n^n \quad \cdots \quad u_n^0) \cdot \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}$$

We can stack into one linear system, and invert to get the coefficients:

$$\begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix} = \begin{pmatrix} u_0^n & \cdots & u_0^0 \\ \vdots & \ddots & \vdots \\ u_n^n & \cdots & u_n^0 \end{pmatrix} \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix} \Rightarrow \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix} = \begin{pmatrix} u_0^n & \cdots & u_0^0 \\ \vdots & \ddots & \vdots \\ u_n^n & \cdots & u_n^0 \end{pmatrix}^{-1} \begin{pmatrix} p_0 \\ \vdots \\ p_n \end{pmatrix}$$

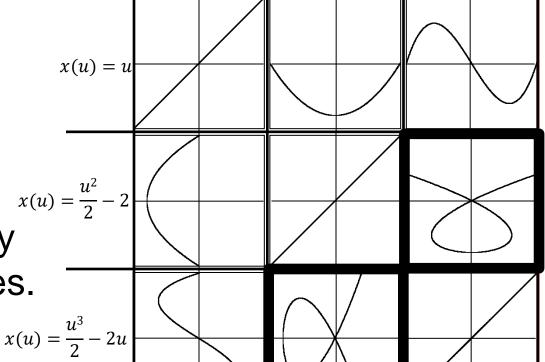

Examples:

Examples:


• When x(u) = u, the curve is the graph of y(u).

Examples:

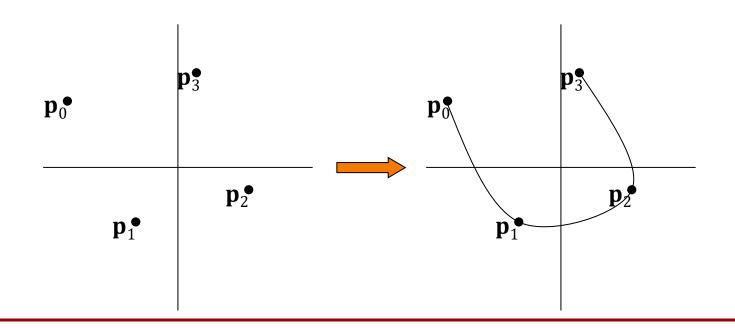
- When x(u) = u, the curve is the graph of y(u).
- Different parametric equations can trace out the same curve.



 $y(u) = \frac{u^2}{2} - 2$ $y(u) = \frac{u^3}{2} - 2u$

Examples:

- When x(u) = u, the curve is the graph of y(u).
- Different parametric equations can trace out the same curve.
- As the degree gets $x(u) = \frac{u^2}{2} 2$ larger, the complexity of the curve increases.


y(u) = u

Parametric Curves (in \mathbb{R}^d)

Goal:

Given a sequence of points, $\{\mathbf{p}_1, \cdots, \mathbf{p}_m\} \subset \mathbb{R}^d$, define a parametric curve that passes through/near the points

Parametric Curves (in \mathbb{R}^d)

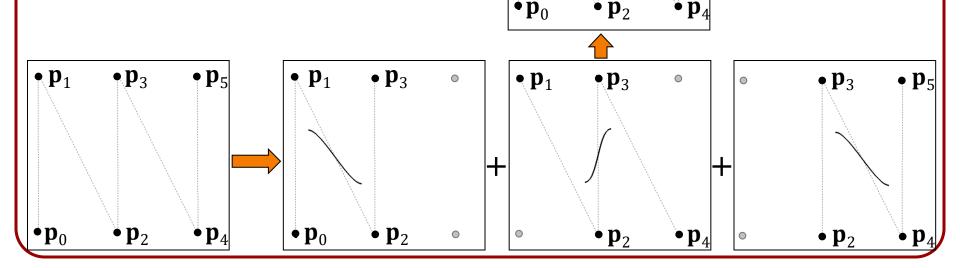
Direct Approach:

Solve for the $d \times m$ coefficients of a parametric polynomial curve of degree m-1, passing through the points.

Limitations:

- No local control
- As the number of points increases:
 - The dimension increases and the curve oscillates more
 - Requires inverting a large linear system

Polynomial Fitting Demo


Piecewise parametric polynomials

Approach:

Fit low-order polynomials to (overlapping) groups of points so that the combined curve passes

through/near the points

Piecewise parametric polynomials

Approach:

Fit low-order polynomials to overlapping groups of points so that the combined curve passes through/near the points

Properties:

- Local Control:
 - » A curve segment only depends on its group of points
- Simplicity
 - » Curve segments are low-order polynomials
- Continuity/Smoothness
 - » How do we guarantee smoothness?

What is a Spline in CG?

Continuity:

Within the parameterized domain, the polynomial functions are smooth.

The values/derivatives $P_1(u)$ $u \in [0,1]$ of the polynomials must match at the boundaries.

$$\mathbf{P}_i(u) = \sum_{j=0}^n \mathbf{a}_{ij} \cdot u^j$$

$$\mathbf{P}_3(u) \ u \in [0,1] \longleftarrow$$

 $P_2(u) \ u \in [0,1]$

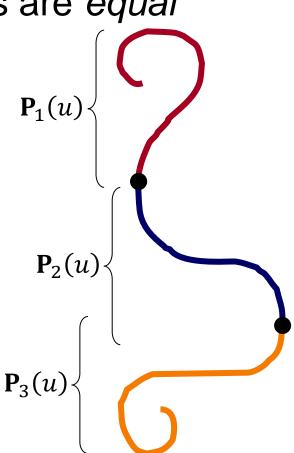
Continuity/Smoothness

Continuity:

Values/derivatives of the two curves are *equal* where they meet.

 \circ C^0 : function is continuous

$$\Rightarrow$$

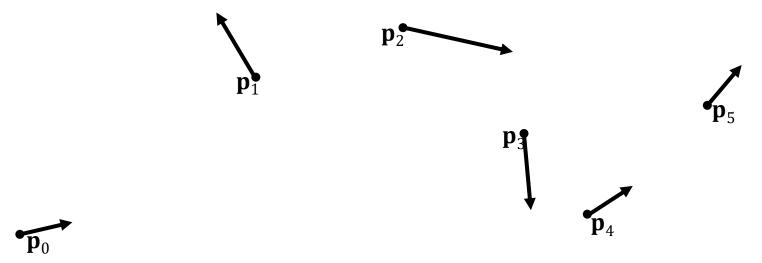

$$\mathbf{P}_i(1) = \mathbf{P}_{i+1}(0)$$

C¹: function is continuous and
 1st derivatives equal

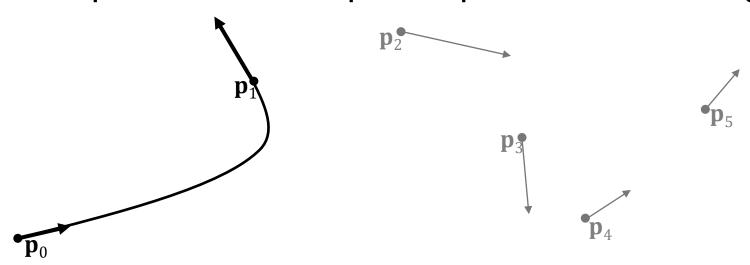
$$\Rightarrow C^0$$
 and $\mathbf{P}'_i(1) = \mathbf{P}'_{i+1}(0)$

• C^2 : function is continuous and 1st and 2nd derivatives are equal $\Rightarrow C^1$ and $\mathbf{P}_i''(1) = \mathbf{P}_{i+1}''(0)$

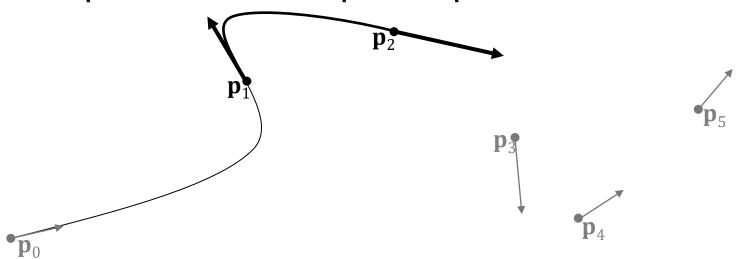
 \circ C^k : function is continuous and ...


Overview

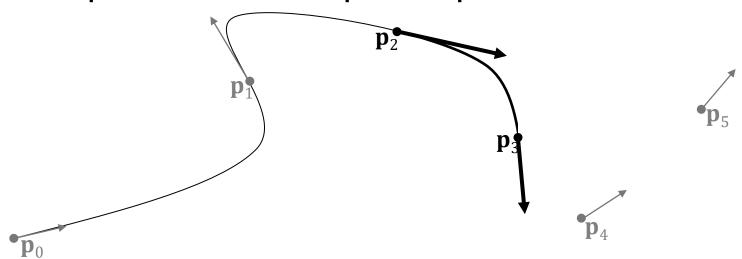
- What is a Spline?
- Specific Examples:
 - Hermite Splines



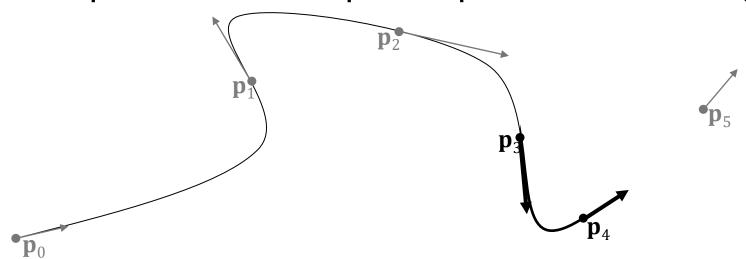
- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents
- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.



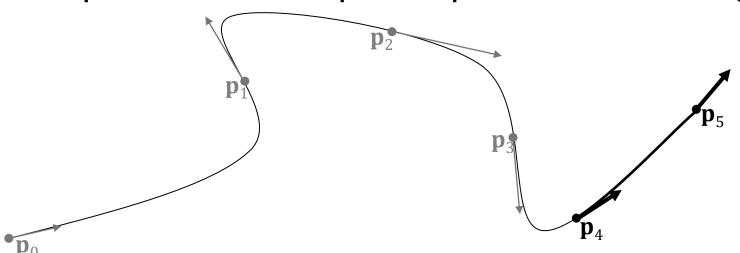
- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents
- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.



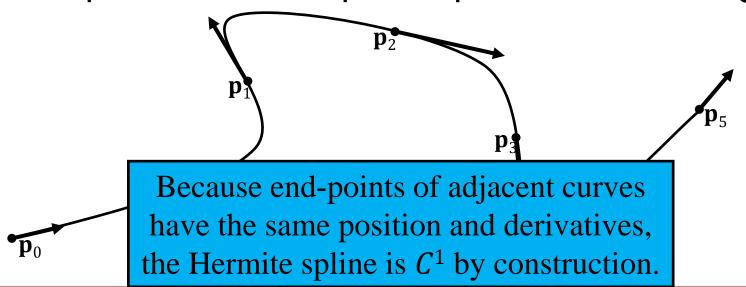
- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents
- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.



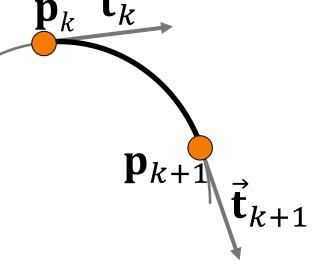
- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents
- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.



- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents
- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.



- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents
- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.



- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents
- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

- Let $\mathbf{P}_k(u) = (x_k(u), y_k(u))$ with $0 \le u \le 1$ be the polynomial curve for the section between control points $\{\mathbf{p}_k, \vec{\mathbf{t}}_k\}$ and $\{\mathbf{p}_{k+1}, \vec{\mathbf{t}}_{k+1}\}$.
- Boundary conditions are:
 - $P_k(0) = \mathbf{p}_k$
 - $\circ \mathbf{P}_k(1) = \mathbf{p}_{k+1}$
 - $\circ \mathbf{P}'_k(0) = \vec{\mathbf{t}}_k$
 - $\circ \mathbf{P}'_k(1) = \vec{\mathbf{t}}_{k+1}$

• Solve for the coefficients of the polynomials $x_k(u)$ and $y_k(u)$ that satisfy the boundary conditions.

Note:

Four constraints \Rightarrow we need a cubic polynomial.

Recall:

For a polynomial:

$$\mathbf{P}_k(u) = \mathbf{a} \cdot u^3 + \mathbf{b} \cdot u^2 + \mathbf{c} \cdot u + \mathbf{d}$$

we have:

$$\mathbf{P}'_k(u) = 3 \cdot \mathbf{a} \cdot u^2 + 2 \cdot \mathbf{b} \cdot u + \mathbf{c}$$

Using the matrix representation:

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

By abuse of notation, we will think of the coefficients \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{d} as d-dimensional vectors rather than scalars so that $\mathbf{P}_k(u)$ is a function taking values in \mathbb{R}^d .

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

The values/derivatives at the end-points are:

$$\mathbf{p}_k = \mathbf{P}_k(0) = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

The values/derivatives at the end-points are:

$$\mathbf{p}_k = \mathbf{P}_k(0) = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_{k+1} = \mathbf{P}_k(1) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

The values/derivatives at the end-points are:

$$\mathbf{p}_{k} = \mathbf{P}_{k}(0) = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{t}_{k} = \mathbf{P}_{k}'(0) = \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$
$$\mathbf{p}_{k+1} = \mathbf{P}_{k}(1) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{P}'_{k}(u) = (3 \cdot u^{2} \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

The values/derivatives at the end-points are:

$$\mathbf{p}_{k} = \mathbf{P}_{k}(0) = (0 \quad 0 \quad 0 \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{\vec{t}}_{k} = \mathbf{P}_{k}'(0) = (0 \quad 0 \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_{k+1} = \mathbf{P}_{k}(1) = (1 \quad 1 \quad 1 \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \mathbf{\vec{t}}_{k+1} = \mathbf{P}_{k}'(1) = (3 \quad 2 \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_k = \mathbf{P}_k(0) = (0 \quad 0 \quad 0 \quad 1) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \qquad \vec{\mathbf{t}}_k = \mathbf{P}'_k(0) = (0 \quad 0 \quad 1 \quad 0) \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\mathbf{p}_{k+1} = \mathbf{P}_k(1) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} \quad \vec{\mathbf{t}}_{k+1} = \mathbf{P}'_k(1) = \begin{pmatrix} 3 & 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

Combining into a single matrix gives:

$$\begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

Inverting, we get:

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

Inverting, we get:

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_k \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix}$$

Using the fact that:

$$\mathbf{P}_k(u) = \begin{pmatrix} u^3 & u^2 & u & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{pmatrix}$$

We get:

$$\mathbf{P}_{k}(u) = (u^{3} \quad u^{2} \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{t}_{k} \\ \mathbf{t}_{k+1} \end{pmatrix}$$
parameters
$$\mathbf{M}_{\text{Hermite}} \quad \text{boundary info}$$

$$\mathbf{P}_{k}(u) = \begin{pmatrix} (u^{3} & u^{2} & u & 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \vec{\mathbf{t}}_{k} \\ \vec{\mathbf{t}}_{k+1} \end{pmatrix}$$

Multiplying out and rearranging terms, we get:

$$\mathbf{P}_{k}(u) = (2u^{3} - 3u^{2} + 1) \cdot \mathbf{p}_{k}$$

$$+ (-2u^{3} + 3u^{2}) \cdot \mathbf{p}_{k+1}$$

$$+ (u^{3} - 2u^{2} + u) \cdot \mathbf{t}_{k}$$

$$+ (u^{3} - u^{2}) \cdot \mathbf{t}_{k+1}$$

$$\mathbf{P}_{k}(u) = (2u^{3} - 3u^{2} + 1) \cdot \mathbf{p}_{k} + (-2u^{3} + 3u^{2}) \cdot \mathbf{p}_{k+1} + (u^{3} - 2u^{2} + u) \cdot \vec{\mathbf{t}}_{k} + (u^{3} - u^{2}) \cdot \vec{\mathbf{t}}_{k+1}$$

Setting:

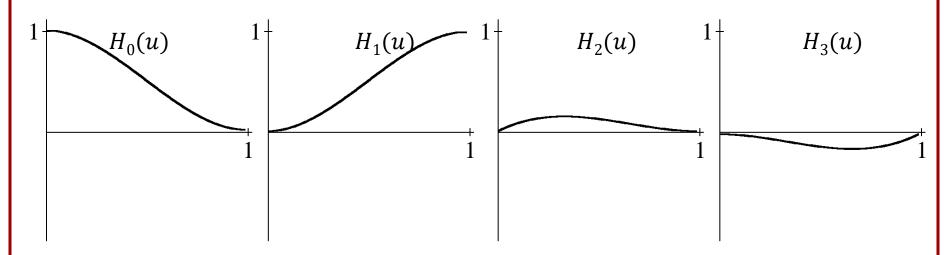
$$H_0(u) = 2u^3 - 3u^2 + 1$$

$$\cdot H_1(u) = -2u^3 + 3u^2$$

$$H_2(u) = u^3 - 2u^2 + u$$

$$H_3(u) = u^3 - u^2$$

we can write $P_k(u)$ as:

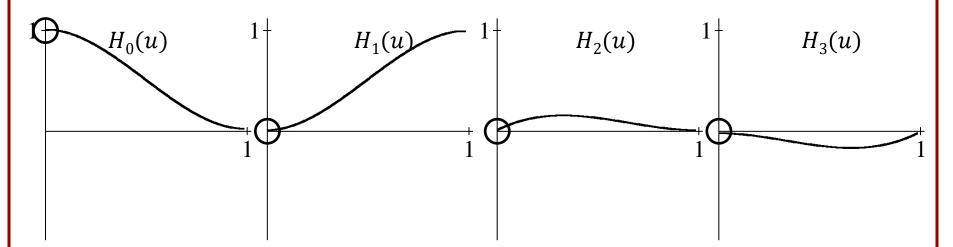

$$\mathbf{P}_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}$$

Setting:

- $\cdot H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $\circ H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

Blending Functions

$$\mathbf{P}_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}$$


Setting:

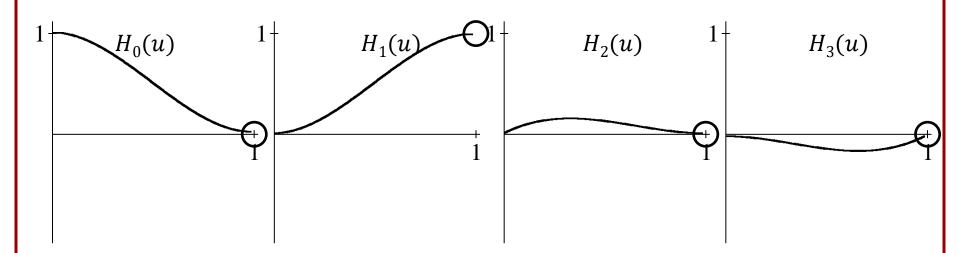
- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $H_3(u) = u^3 u^2$

When u = 0:

- $H_0(u) = 1$
- $H_1(u) = 0$
- $H_2(u) = 0$
- $H_3(u) = 0$

So $\mathbf{P}_k(0) = \mathbf{p}_k$

$$\mathbf{P}_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}$$


Setting:

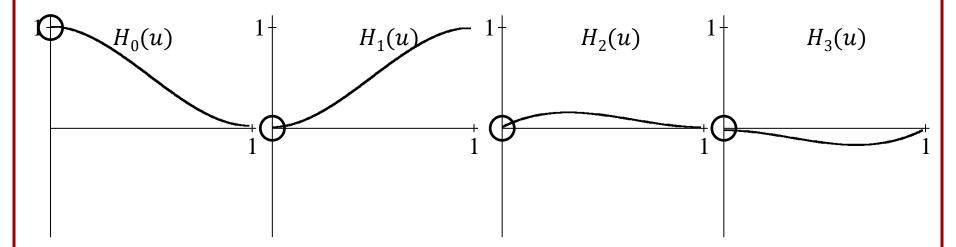
- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

When u = 1:

- $H_0(u) = 0$
- $H_1(u) = 1$
- $H_2(u) = 0$
- $H_3(u) = 0$

So $P_k(1) = p_{k+1}$

$$\mathbf{P}_k(u) = H_0(u) \cdot \mathbf{p}_k + H_1(u) \cdot \mathbf{p}_{k+1} + H_2(u) \cdot \mathbf{t}_k + H_3(u) \cdot \mathbf{t}_{k+1}$$


Setting:

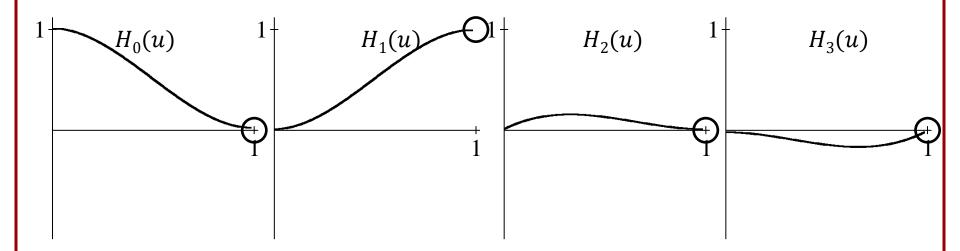
- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

When u = 0:

- $\bullet H_0'(u) = 0$
- $H_1'(u) = 0$
- $H_2'(u) = 1$
- $H_3'(u) = 0$

So
$$\mathbf{P}_k'(0) = \vec{\mathbf{t}}_k$$

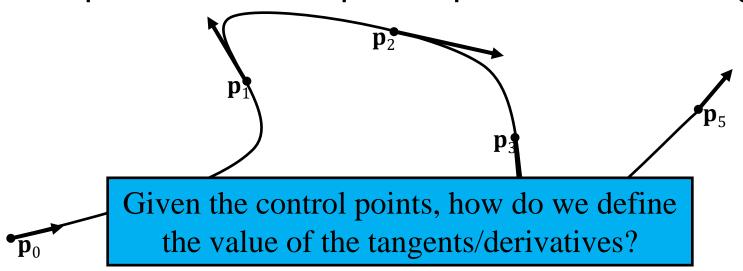
$$\mathbf{P}'_{k}(u) = H'_{0}(u) \cdot \mathbf{p}_{k} + H'_{1}(u) \cdot \mathbf{p}_{k+1} + H'_{2}(u) \cdot \vec{\mathbf{t}}_{k} + H'_{3}(u) \cdot \vec{\mathbf{t}}_{k+1}$$


Setting:

- $H_0(u) = 2u^3 3u^2 + 1$
- $\circ H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 2u^2 + u$
- $\circ H_3(u) = u^3 u^2$

When u = 1:

- $H_0'(u) = 0$
- $H_1'(u) = 0$
- $\bullet \, H_2'(u) = 0$
- $H_3'(u) = 1$


So
$$\mathbf{P}'_k(1) = \vec{\mathbf{t}}_{k+1}$$

$$\mathbf{P}'_{k}(u) = H'_{0}(u) \cdot \mathbf{p}_{k} + H'_{1}(u) \cdot \mathbf{p}_{k+1} + H'_{2}(u) \cdot \vec{\mathbf{t}}_{k} + H'_{3}(u) \cdot \vec{\mathbf{t}}_{k+1}$$

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents
- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

