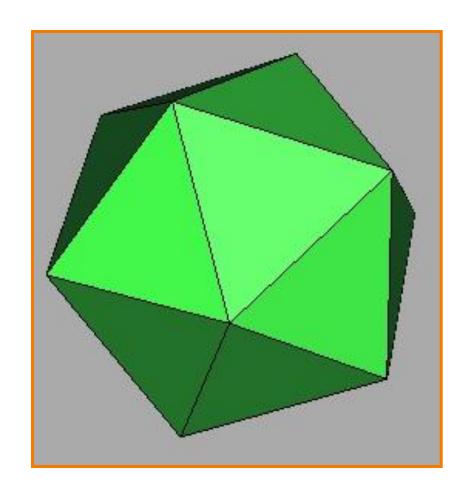


3D Object Representation (Loop) Subdivision Surfaces

Michael Kazhdan

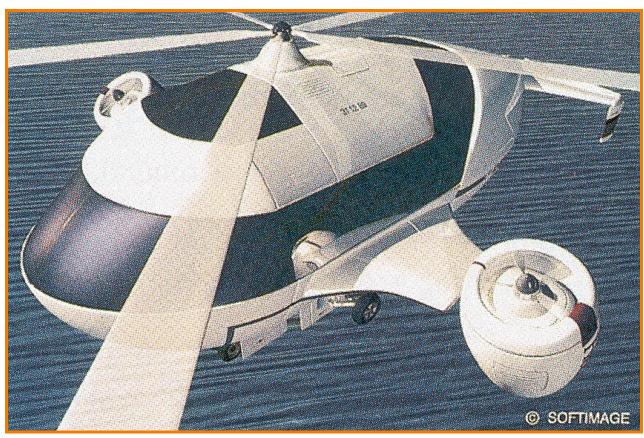
(601.457/657)

3D Objects



How can this object be represented in a computer?

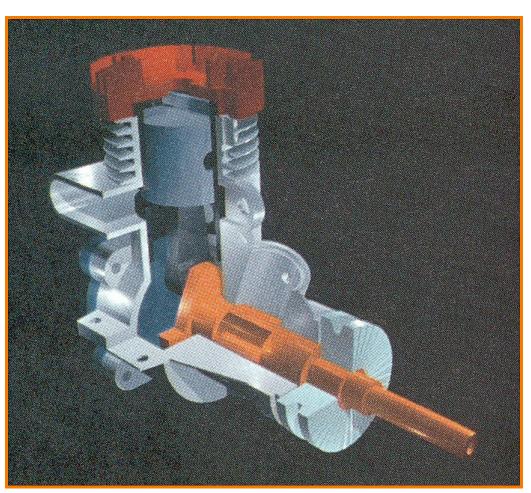
3D Objects



H&B Figure 10.46

This one?

3D Objects



H&B Figure 9.9

This one?

3D Object Representations

- Raw data
 - Point cloud
 - Polygon soup
 - Range image

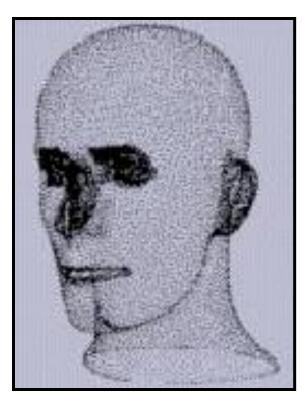
- Surfaces
 - Mesh
 - Subdivision
 - Parametric

- Solids
 - Implicit
 - Voxels
 - CSG

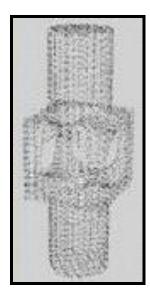
- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Point Clouds

- Unstructured set of 3D point samples
 - Acquired from random sampling, particle system implementations, etc.



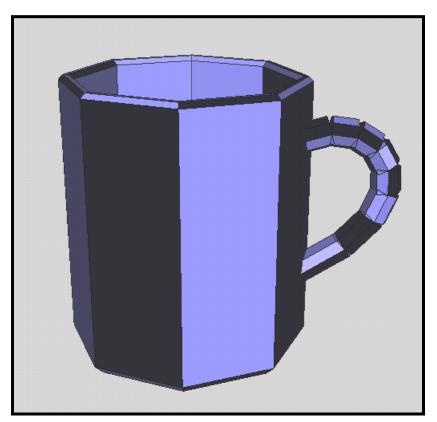
Hoppe



Hoppe

Polygon Soups

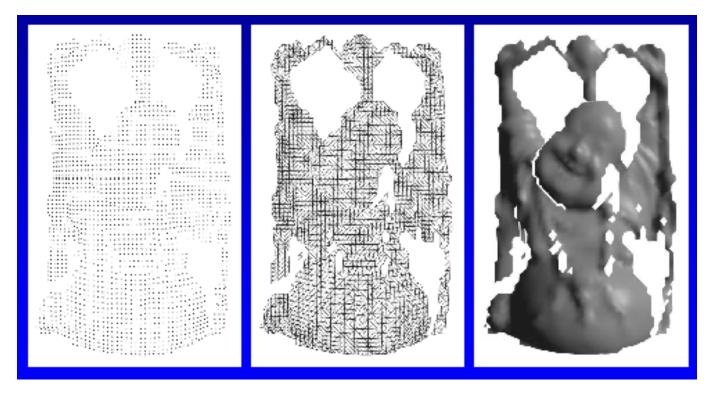
- Unstructured set of polygons
 - Created with interactive modeling systems



Larson

Range Image

- An image storing depth (as well as color)
 - Acquired from 3D scanners



Range Image

Tesselation

Range Surface

Brian Curless SIGGRAPH 99 Course #4 Notes

3D Object Representations

- Raw data
 - Point cloud
 - Polygon soup
 - Range image

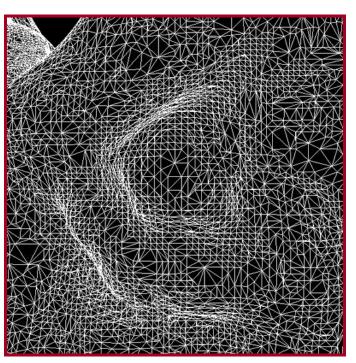
- Surfaces
 - Mesh
 - Subdivision
 - Parametric

- Solids
 - Implicit
 - Voxels
 - CSG

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

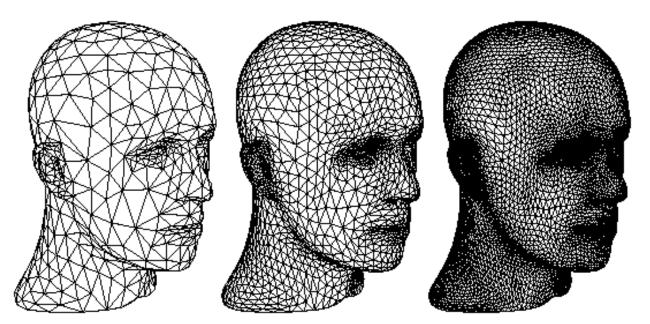
(Manifold) Meshes

- Connected set of polygons (usually triangles)
 - Merging range images, etc.



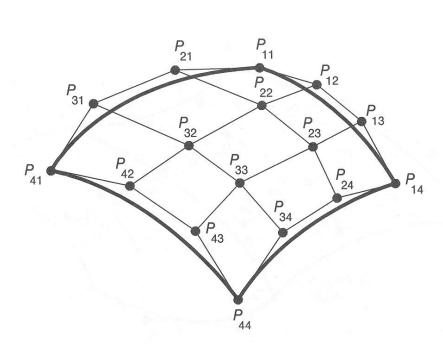
Subdivision Surfaces

- Coarse mesh & subdivision rule
 - Define a smooth surface as limit of a hierarchical sequence of refinements

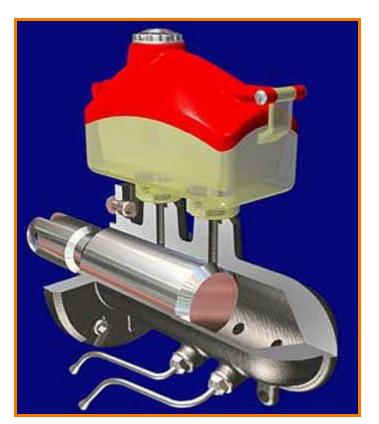


Parametric Surfaces

- Tensor product spline patches
 - Used for real-world simulation



FvDFH Figure 11.44



3D Object Representations

- Raw data
 - Point cloud
 - Polygon soup
 - Range image

- Surfaces
 - Mesh
 - Subdivision
 - Parametric

- Solids
 - Implicit
 - Voxels
 - CSG

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Implicit Surfaces

• Points satisfying: F(x, y, z) = 0



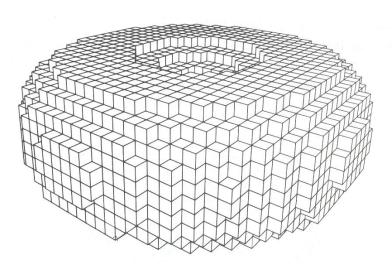
Polygonal Model

Implicit Model

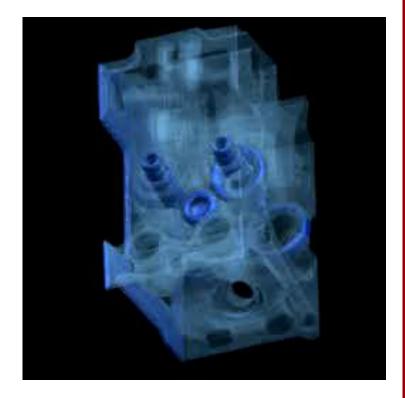
Bill Lorensen SIGGRAPH 99 Course #4 Notes

Voxels

- Uniform grid of volumetric samples
 - Acquired from CT, MRI, etc.



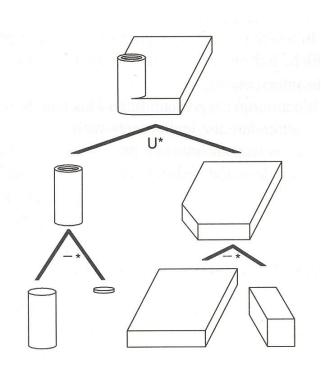
FvDFH Figure 12.20



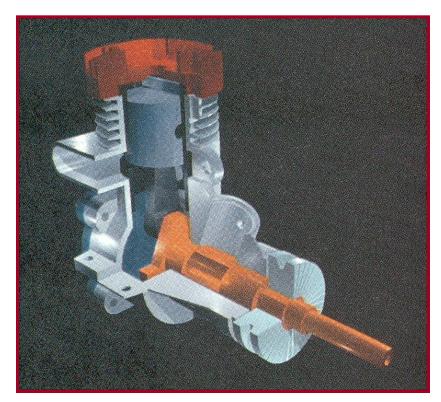
Stanford Graphics Laboratory

Constructive Solid Geometry (CSG)

 Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes



FvDFH Figure 12.27



H&B Figure 9.9

3D Object Representations

- Raw data
 - Point cloud
 - Polygon soup
 - Range image

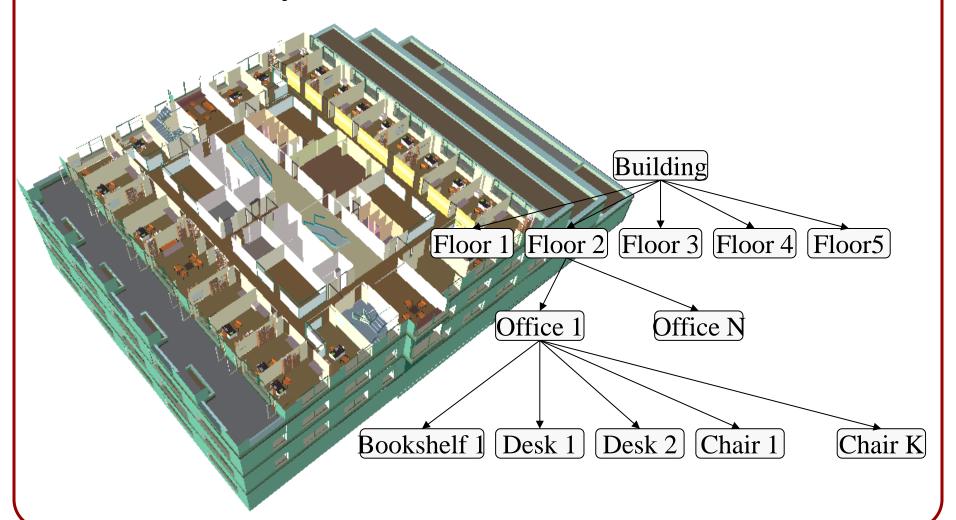
- Surfaces
 - Mesh
 - Subdivision
 - Parametric

- Solids
 - Implicit
 - Voxels
 - · CSG

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

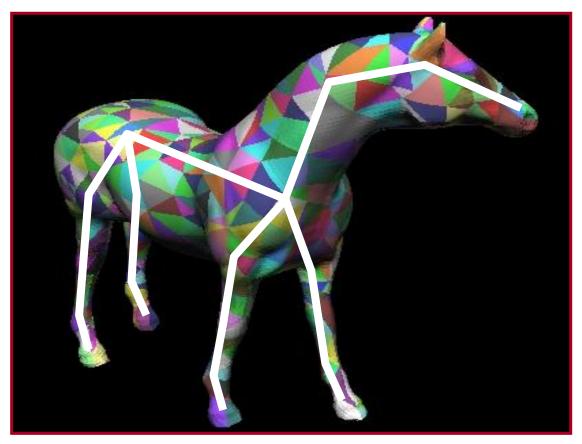
Scene Graphs

Union of objects at leaf nodes



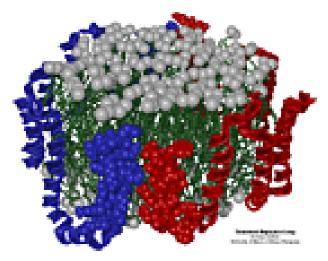
Skeletons

Graph of curves with geometry associated to individual curve positions

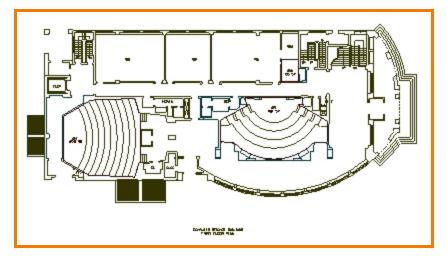


Stanford Graphics Laboratory

Application Specific



Apo A-1
(Theoretical Biophysics Group,
University of Illinois at Urbana-Champaign)

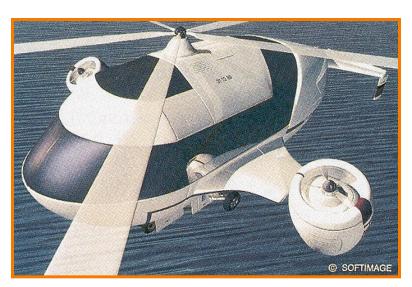


Architectural Floorplan

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

smooth \neq complex



H&B Figure 10.46

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

edits are localized

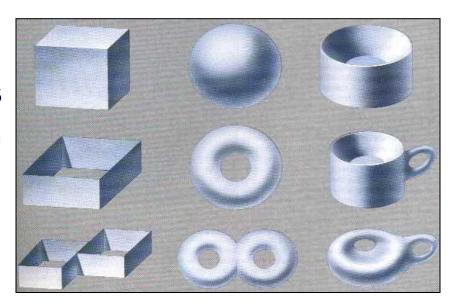
Not Local Support

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

applying an affine transformation (linear+translation) to the surface does not fundamentally change its representation.

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

can represent surfaces with arbitrary on topology



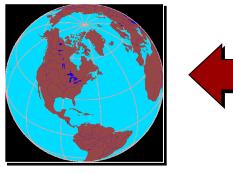
Topological Genus Equivalences

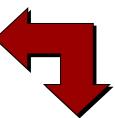
- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

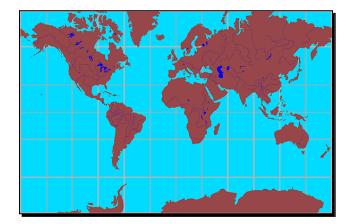
positions/normal vary continuously/smoothly over the surface

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

supports texture mapping







A Parameterization (not necessarily natural)

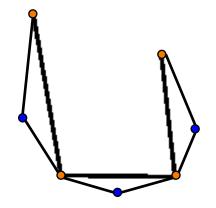
- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

supports efficient ray-tracing / real-time rendering

Subdivision

Q: How can we interpret a coarse set of samples as a smooth curve?

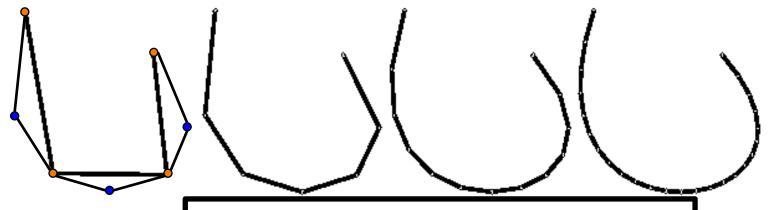
A: Introduce new in-between vertices that smooth out the severe angles



Subdivision

Q: How can we interpret a coarse set of samples as a smooth curve?

A: Introduce new in-between vertices that smooth out the severe angles

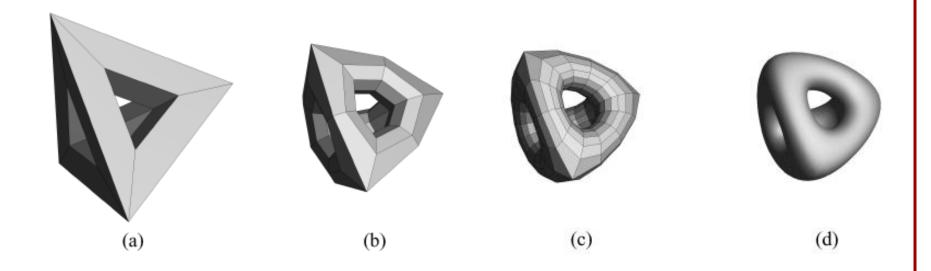


User: Specifies coarse geometry

Algorithm: Defines refined geometry

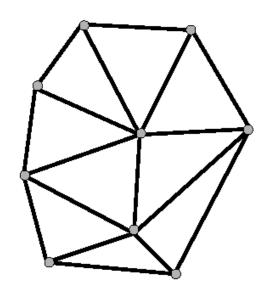
Subdivision Surfaces

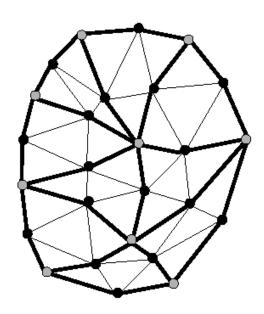
- Coarse mesh & subdivision rule
 - Define smooth surface as limit of a sequence of refinements



Key Questions

- How to subdivide the mesh?
 - Aim for properties like smoothness
- How to store the mesh? (Next time)
 - Aim for efficiency of implementing subdivision rules





General Subdivision Scheme

How to subdivide the mesh?

Two parts:

» Refinement (topology):

Add new vertices and connect

» Smoothing (geometry):

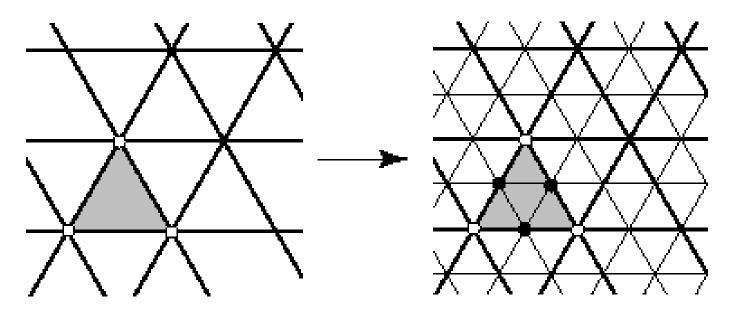
Move vertex positions

Loop Subdivision Scheme

How to subdivide the mesh?

» Refinement:

Subdivide each triangle into 4 by introducing edge mid-points and connecting the vertices

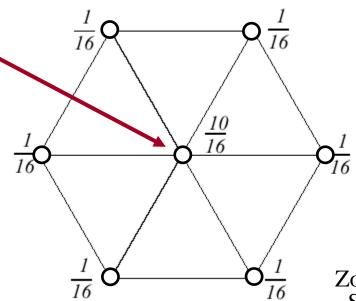


Loop Subdivision Scheme

- How to subdivide the mesh?
 - » Refinement
 - » Smoothing (existing vertices):

Choose *new* location as weighted average of *original* vertex and its neighbors

Existing vertex being moved from one level to the next



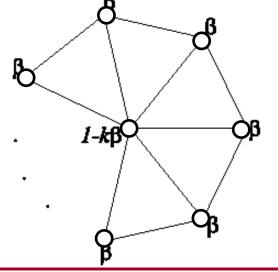
Loop Subdivision Scheme

- How to subdivide the mesh?
 - » Refinement
 - » Smoothing (existing vertices):

Choose *new* location as weighted average of *original* vertex

and its neighbors

What about *extraordinary* vertices with more/less than 6 neighboring faces?



New_position = $(1 - k\beta)$ original_position + sum $(\beta * each_original_vertex)$

- How to subdivide the mesh?
 - » Refinement
 - » Smoothing (existing vertices):

Choose *new* location as weighted average of *original* vertex and its neighbors

$0 \le \beta \le 1/k$:

Wha

- As β increases, the contribution from adjacent vertices plays a more important role.
- If $\beta = 0$, the subdivision is interpolatory.

New_position = $(1 - k\beta)$ original_position + sum $(\beta *each_original_vertex)$

Zorin & Schroeder SIGGRAPH 99 Course Notes

- Choose β so that the limit surface has guaranteed smoothness properties
 - » Original Loop

$$\beta = \frac{1}{k} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)$$

» Warren

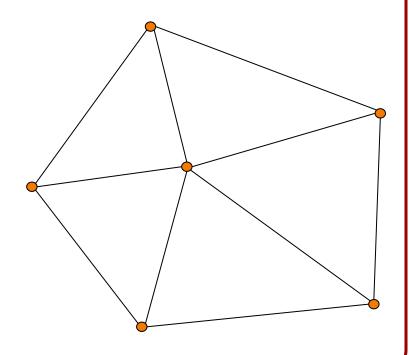
$$\beta = \begin{cases} \frac{3}{8k} & k > 3\\ \frac{3}{16} & k = 3 \end{cases}$$

Definition:

Given an undirected graph, the *valence* of a vertex/node in the graph is the number of edges emanating from it.

Subdivision:

Q: What happens after we refine?

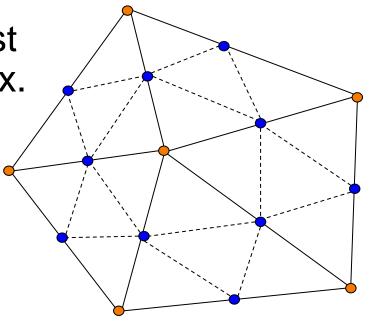


Subdivision:

Q: What happens after we refine?

A: Valence of old vertices is unchanged. Valence of new vertices is six.

⇒ As we continue refining most vertices will have valence six.



Euler Characteristic:

For connected, water-tight meshes, the number of vertices, edges, and faces satisfy:

$$|V| - |E| + |F| = 2 - 2g$$

where g is the genus of the surface (how many topological holes it has).

For water-tight <u>triangle</u> meshes, each face has three edges and each edge is shared by two faces, so the number of edges is

$$|E| = \frac{3}{2}|F|$$

Euler Characteristic:

$$|V| - |E| + |F| = 2 - 2g$$

For water-tight triangle meshes:

$$|E| = \frac{3}{2}|F|$$

Putting this together we get:

$$|V| - |E| + \frac{2}{3}|E| = 2 - 2g$$
$$|V| - \frac{1}{3}|E| = 2 - 2g$$
$$3|V| \approx |E|$$

$$3|V| \approx |E|$$

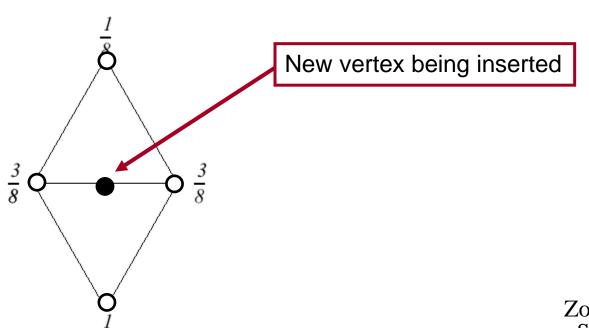
 \bigcup

Average Valence =
$$\frac{1}{|V|} \sum_{v \in V} valence(v)$$
=
$$\frac{1}{|V|} (2|E|)$$

$$\approx \frac{1}{|V|} (6|V|)$$
=
$$6$$

- How to subdivide the mesh?
 - » Refinement
 - » Smoothing (inserted vertices):

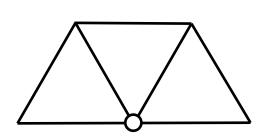
Choose location as weighted average of *original* vertices in local neighborhood

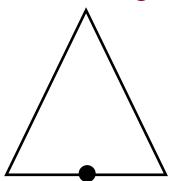


Zorin & Schroeder SIGGRAPH 99 Course Notes

Boundary Cases?

- What about boundary vertices / edges?
 - Existing vertex adjacent to an incomplete "triangle fan"
 - New vertex bordered by only one triangle



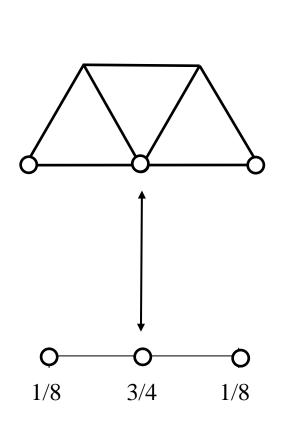


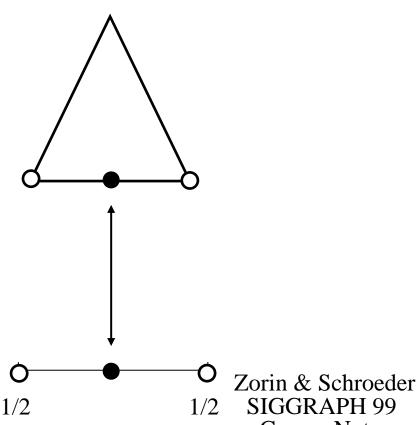
Boundary Cases?

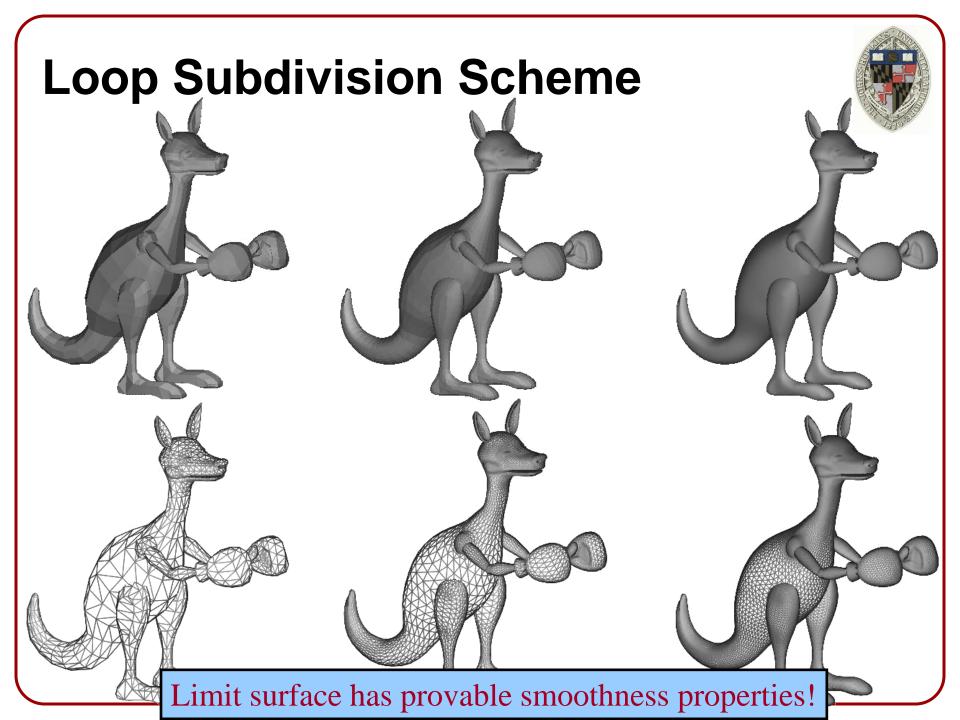
SIGGRAPH 99

Course Notes

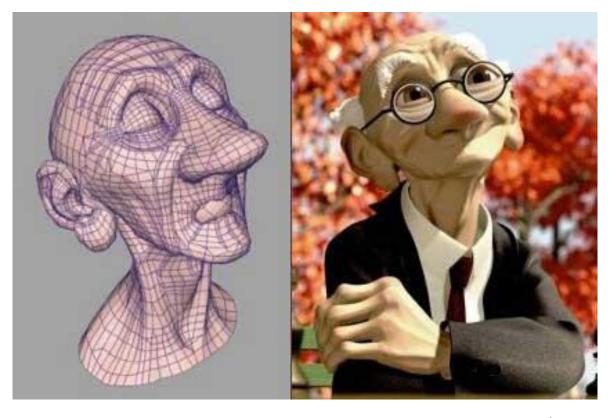
- Rules for boundary vertices / edges:
 - Refine <u>as though</u> the vertices/edges are on the (boundary) curve





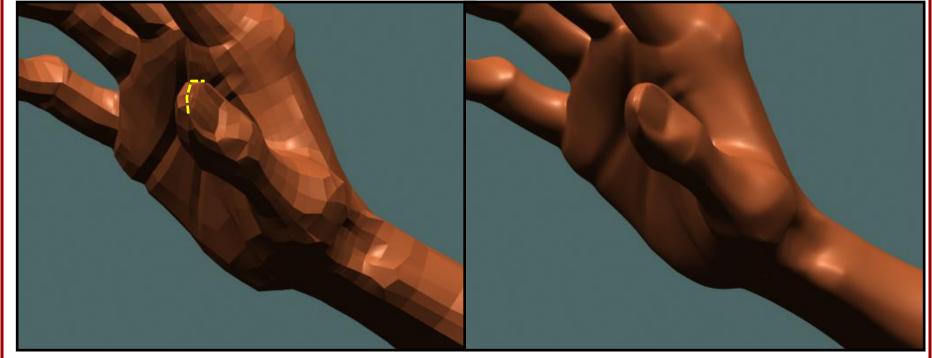


Geri's Game, Pixar



Pixar

Smooth surfaces can be constructed from coarse meshes!



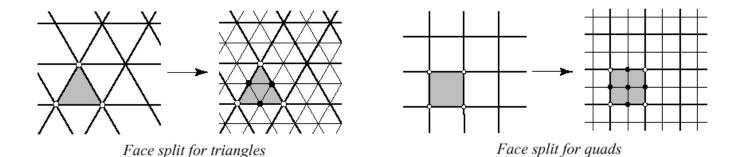
Pixar

Sharp creases can be specified by specifying that certain curves should subdivide as boundary curves.

Zorin & Schroeder SIGGRAPH 99 Course Notes

Subdivision Schemes

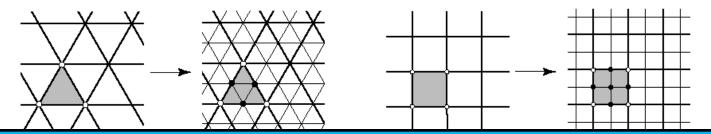
- There are different subdivision schemes
 - Different methods for refining topology
 - Different rules for positioning vertices
 - » Interpolating versus approximating



Face split		
	Triangular meshes	Quad. meshes
Approximating	Loop (C^2)	Catmull-Clark (C2)
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C1)

Subdivision Schemes

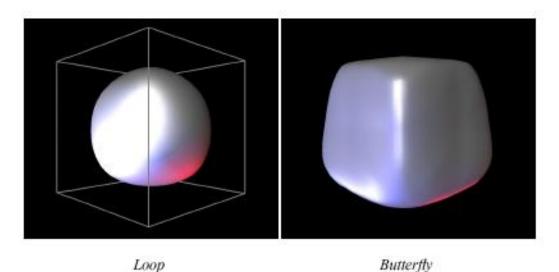
- There are different subdivision schemes
 - Different methods for refining topology
 - Different rules for positioning vertices
 - » Interpolating versus approximating



In general, forcing the subdivision to be interpolating removes degrees of freedom, making the solution less smooth.

	Triangular meshes	Quad. meshes
Approximating	Loop (C^2)	Catmull-Clark (C2)
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C1)

Subdivision Schemes



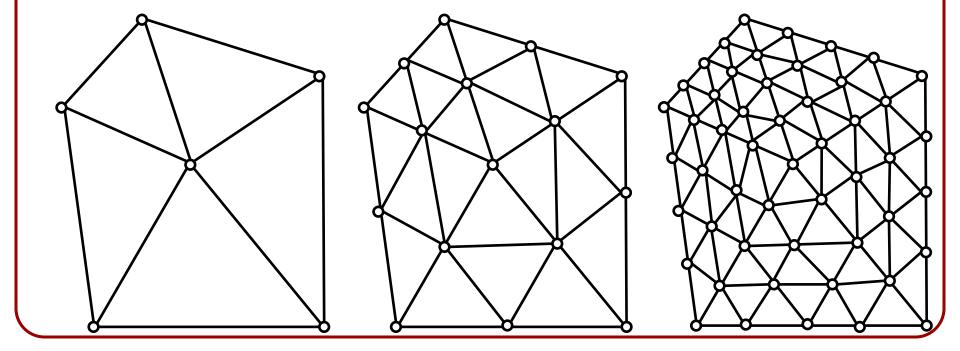
Catmull-Clark

Zorin & Schroeder SIGGRAPH 99 Course Notes

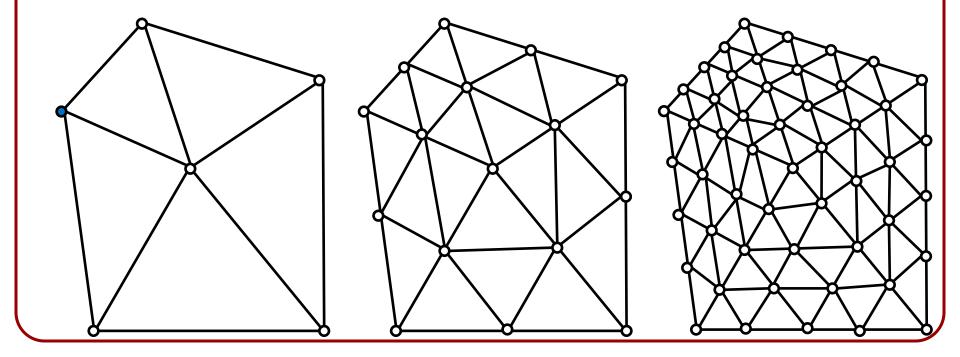
Doo-Sabin

Properties:

- √ Concise
- Local support
- Affine invariant
- Arbitrary topology
- Guaranteed smoothness
- Natural parameterization
- Efficient display
- Efficient intersections

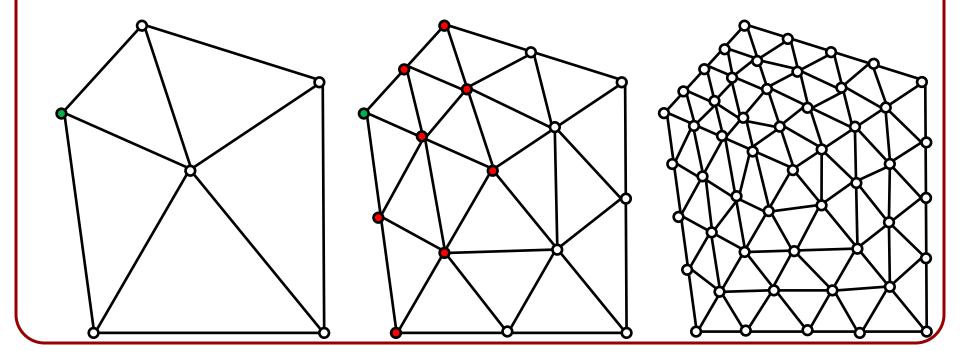


Modifying a vertex position at the coarser level



Modifying a vertex position at the coarser level

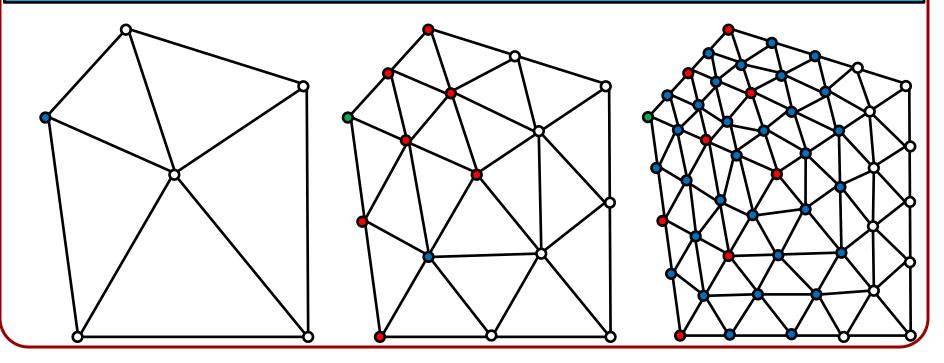
We modify positions in the one-ring at the next level



Modifying a vertex position at the coarser level

- We modify positions in the one-ring at the next level
 - » Which modifies positions in the one-ring at the next level

Because we refine by a factor of two at each level, the effects are limited within the two-ring at the original level.

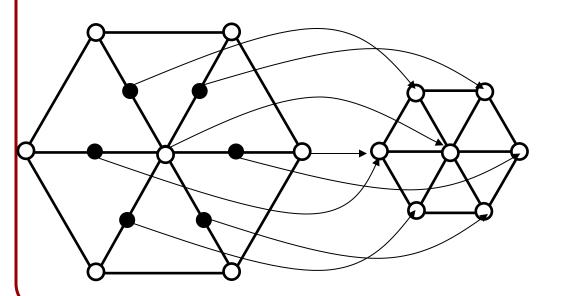


Properties:

- √ Concise
- √ Local support
- ✓ Affine invariant
- ✓ Arbitrary topology
- Guaranteed smoothness
- Natural parameterization
- Efficient display
- Efficient intersections

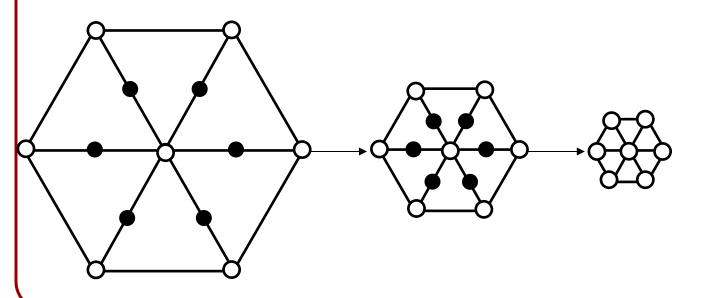
To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit



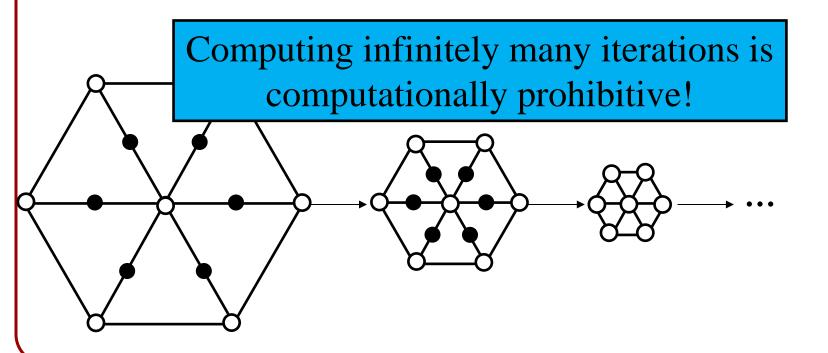
To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

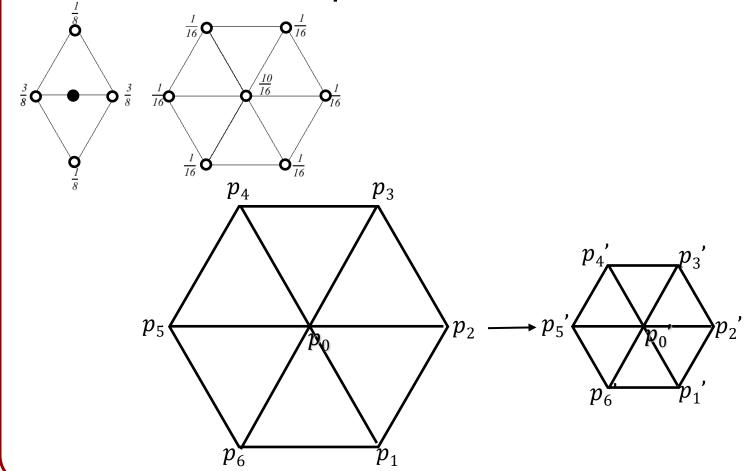


To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

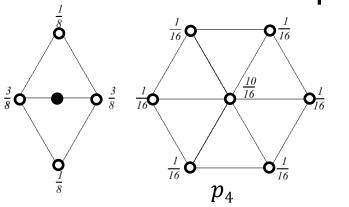


 Compute the new positions/vertices as a linear combination of previous ones.



Compute the new positions/vertices as a linear

combination of prev



Subdivision Matrix

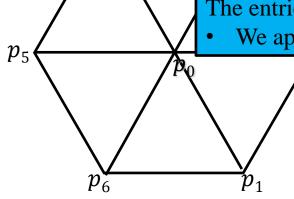
$$\begin{pmatrix} p'_0 \\ p'_1 \\ p'_2 \\ p'_3 \\ p'_4 \\ p'_5 \\ p'_6 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 10 & 1 & 1 & 1 & 1 & 1 & 1 \\ 6 & 6 & 2 & 0 & 0 & 0 & 2 \\ 6 & 2 & 6 & 2 & 0 & 0 & 0 \\ 6 & 0 & 2 & 6 & 2 & 0 & 0 \\ 6 & 0 & 0 & 2 & 6 & 2 & 0 \\ 6 & 0 & 0 & 0 & 2 & 6 & 2 \\ 6 & 2 & 0 & 0 & 0 & 2 & 6 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \\ p_6 \end{pmatrix}$$

Note:

 p_3

The entries of the left and right vectors are 3D positions.

• We apply the matrix to each coordinate independently





- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the **subdivision matrix.**
- Use eigenvalue decomposition to compute the nth power of the matrix efficiently.

$$\begin{pmatrix} p_0^{(n)} \\ p_1^{(n)} \\ p_2^{(n)} \\ p_3^{(n)} \\ p_4^{(n)} \\ p_5^{(n)} \\ p_6^{(n)} \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 6 & 6 & 2 & 0 & 0 & 0 & 2 \\ 6 & 2 & 6 & 2 & 0 & 0 & 0 \\ 6 & 0 & 2 & 6 & 2 & 0 & 0 \\ 6 & 0 & 0 & 2 & 6 & 2 & 0 \\ 6 & 0 & 0 & 2 & 6 & 2 & 0 \\ 6 & 0 & 0 & 0 & 2 & 6 & 2 \\ 6 & 2 & 0 & 0 & 0 & 2 & 6 & 2 \\ 6 & 2 & 0 & 0 & 0 & 2 & 6 & 2 \\ \end{bmatrix}^n \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \\ p_6 \end{pmatrix}$$

If, after a change of basis we have $S = A^{-1}DA$, where **D** is a diagonal matrix, then:

$$\mathbf{S}^{n} = (\mathbf{A}^{-1}\mathbf{D}\mathbf{A})(\mathbf{A}^{-1}\mathbf{D}\mathbf{A})\cdots(\mathbf{A}^{-1}\mathbf{D}\mathbf{A})(\mathbf{A}^{-1}\mathbf{D}\mathbf{A})$$
$$= \mathbf{A}^{-1}\mathbf{D}^{n}\mathbf{A}$$

Since **D** is diagonal, raising **D** to the n^{th} power just amounts to raising each of the diagonal entries of **D** to the n^{th} power.

$$\mathbf{D}^{n} = \begin{pmatrix} \lambda_{0} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{6} \end{pmatrix}^{n} = \begin{pmatrix} \lambda_{0}^{n} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{6}^{n} \end{pmatrix} \begin{vmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{vmatrix}$$

$$\begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

 p_3

 p_4

 p_5

 p_6

- If $|\lambda_i| > 1$ for any $0 \le i \le 6$, then \mathbf{D}^n blows up as $n \to \infty$.
- If $|\lambda_i| < 1$ for all $0 \le i \le 6$, then \mathbf{D}^n collapses as $n \to \infty$.
 - If $\lambda_i = -1$ for any $0 \le i \le 6$, then \mathbf{D}^n does not converge as $n \to \infty$.

Set S^{∞} to be the matrix:

$$\mathbf{S}^{\infty} = \mathbf{A}^{-1} \begin{pmatrix} \lambda_0^{\infty} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_6^{\infty} \end{pmatrix} \mathbf{A}$$

with $\lambda_i^{\infty} = 1$ if $\lambda_i = 1$, and $\lambda_i^{\infty} = 0$ otherwise.

The limit of the point p_0 and its 1-ring neighborhood under repeated subdivision is:

$$\left(\frac{p_0^{\infty}}{\vdots}\right) = \mathbf{S}^{\infty} \left(\frac{p_0}{\vdots}\right)$$

Note that if the subdivision scheme is continuous:

$$p_0^{\infty} = p_1^{\infty} = p_2^{\infty} = p_3^{\infty} = p_4^{\infty} = p_5^{\infty} = p_6^{\infty}$$

Set S^{∞} to be the matrix:

$$\mathbf{S}^{\infty} = \mathbf{A}^{-1} \begin{pmatrix} \lambda_0^{\infty} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_6^{\infty} \end{pmatrix} \mathbf{A}$$

with $\lambda_i^{\infty} = 1$ if $\lambda_i = 1$, and $\lambda_i^{\infty} = 0$ otherwise.

The limit of the point p_0 and its 1-ring neighborhood under repeated subdivision is:

Using a similar approach we can derive an expression for the normal at the limit point.

• For the normal to be well-defined, we get additional constraints on diagonal values.

Properties:

- √ Concise
- √ Local support
- ✓ Affine invariant
- ✓ Arbitrary topology
- ✓ Guaranteed smoothness
- ✓ Natural parameterization
- Efficient display
- Efficient intersections

Given texture coordinates at the vertices of the base mesh, the weights used to set the positions at the subdivision level can also be used to set the texture coordinates.

Note:

Could be problematic if using a texture atlas (with seams).

Pixar

Properties:

- √ Concise
- √ Local support
- ✓ Affine invariant
- ✓ Arbitrary topology
- ✓ Guaranteed smoothness
- √ Natural parameterization
- ✓ Efficient display
- Efficient intersections

Can refine so that triangle projections are pixel-sized. (Can even use the limit positions as the vertex coordinates.)

Properties:

- √ Concise
- √ Local support
- ✓ Affine invariant
- ✓ Arbitrary topology
- ✓ Guaranteed smoothness
- √ Natural parameterization
- ✓ Efficient display
- **×** Efficient intersections

Given a ray, cannot tell where it would intersect the limit surface.

