

Michael Kazhdan

(601.457/657)

Overview

- Ray Tracing Revisited
- Radiosity

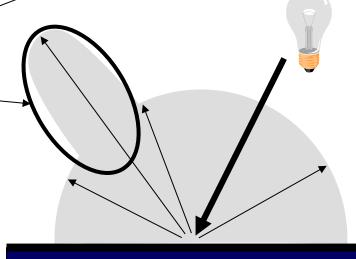
Ray Casting

Ray tracing is based on the Phong lighting model:

 A surface reflects light non-uniformly, with stronger reflection in the specular direction:

$$I = I_E + \sum_{L} \left[K_A \cdot I_L^A + \left(K_D \cdot \langle \vec{N}, \vec{L} \rangle + K_S \cdot \langle \vec{V}, \vec{R} \rangle^n \right) \cdot I_L \cdot S_L \right]$$

Specular Contribution Specular Lobe-

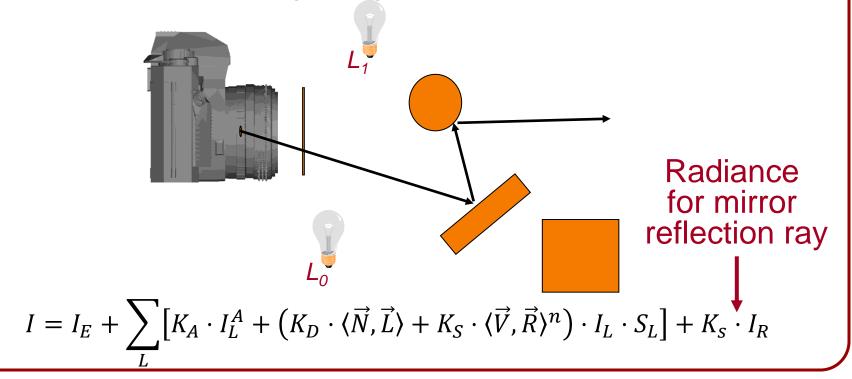


Surface

Ray Tracing

Ray tracing is based on the Phong lighting model:

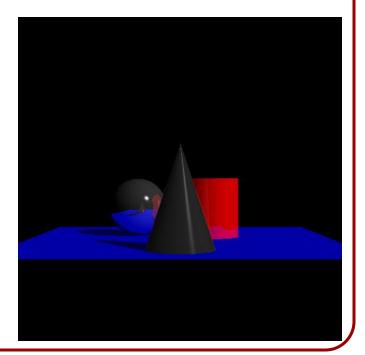
For the same reason, we only cast secondary rays in the reflected direction – to maximize the contribution to the lighting computation.



Ray Tracing

Advantage:

Good at capturing the specular properties of materials



Ray Tracing

Advantage:

Good at capturing the specular properties of materials

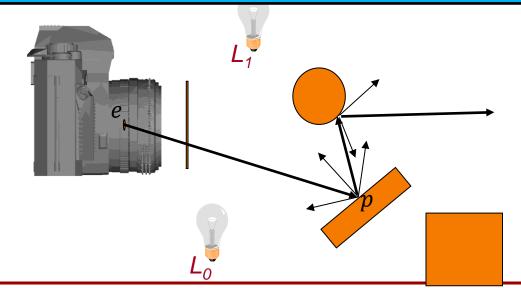
Disadvantages:

- Difficult to support soft shadows from area lights
- Difficult to support caustics
- Need the ambient term as a hack for the global illumination

What do we really want to compute?

The accumulation of light coming in from **all** directions, **modulated** by how much the light is reflected in/from that direction.

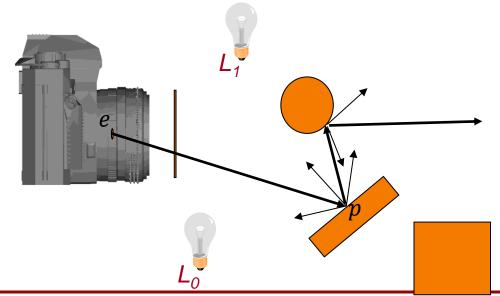
In practice, use Monte-Carlo integration with importance sampling to generate more reflected rays in directions that contribute more strongly.



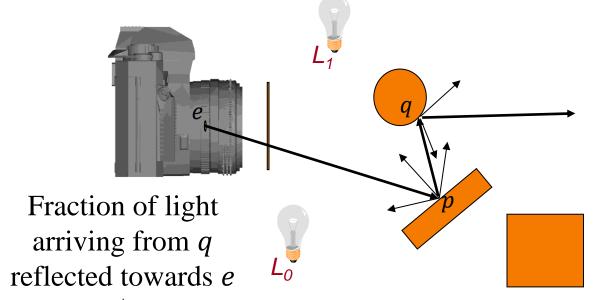
What do we really want to compute?

The brightness of the light reaching the camera eye, e, from a point, p, in the scene is the sum of:

- 1. The light emitted from p, to e, and
- 2. The light emanating from all points in the scene scaled by the extent to which it is reflected through p to e.



What do we really want to compute?



Amount of light from *p* going towards *e*

Amount of light emitted from *p* going towards *e*

Amount of light from q going towards p

$$B(p \to e) = E(p \to e) + \int_{\Omega} F_r(q \to p \to e) \cdot B(q \to p) dq$$

Challenge:

The integral needs to be estimated precisely to capture

discontinuities.

 The function is recursive since the amount of light entering a point depends on the amount of light leaving it.

Jensen

$$B(p \to e) = E(p \to e) + \int_{\Omega} F_r(q \to p \to e) \cdot B(q \to p) dq$$

Ray-Tracing

Specular assumption:

 The surface only reflects lights from the reflected ray direction:

$$F_r(q \to p \to e) = \begin{cases} K_s(p) & q = I(p, \text{Ref}(p \to e)) \\ 0 & \text{otherwise} \end{cases}$$

$$B(p \to e) = E(p \to e) + \int_{\Omega} F_r(q \to p \to e) \cdot B(q \to p) dq$$

$$B(p \to e) = E(p \to e) + K_s(p) \cdot B(I(p, \text{Ref}(p \to e)) \to p)$$

 $I(p, \text{Ref}(p \to e))$ is the first intersection of the ray in the reflected view direction.

Lambertian assumption:

 The apparent brightness a patch of surface is constant (i.e. independent of the view direction).

$$B(p \to e) = E(p \to e) + \int_{\Omega} F_r(q \to p \to e) \cdot B(q \to p) dq$$

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian assumption:

- The apparent brightness a patch of surface is constant (i.e. independent of the view direction).
 - » Emitters appear equally bright from all directions

Emission ≠ 0

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Given an emitter at point q, the apparent brightness point p is independent of its orientation w.r.t. to q.

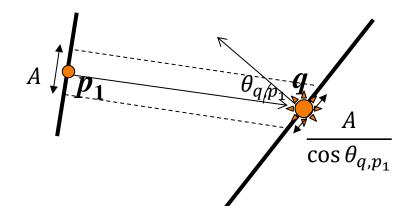
By assumption, the apparent brightness of q is independent of the view direction of p.

$$p_1$$

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Given an emitter at point q, the apparent brightness point p is independent of its orientation w.r.t. to q.

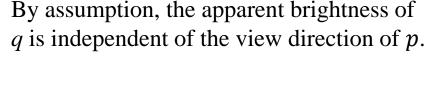
By assumption, the apparent brightness of q is independent of the view direction of p.

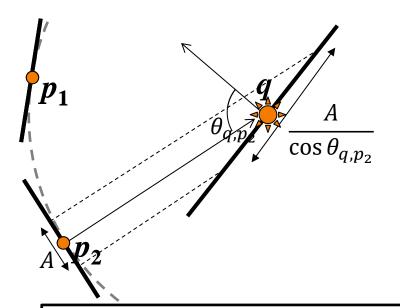


But a patch about p receives more of q's surface as angle $\theta_{q,p}$ is more grazing.

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Given an emitter at point q, the apparent brightness point p is independent of its orientation w.r.t. to q.



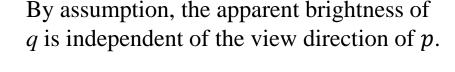


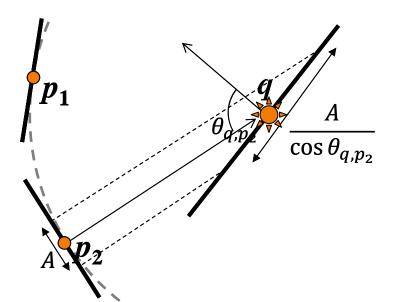
But a patch about p receives more of q's surface as angle $\theta_{q,p}$ is more grazing.

 \Rightarrow A patch of size A about p receives a patch of size A/ cos $\theta_{q,p}$ about q.

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Given an emitter at point q, the apparent brightness point p is independent of its orientation w.r.t. to q.





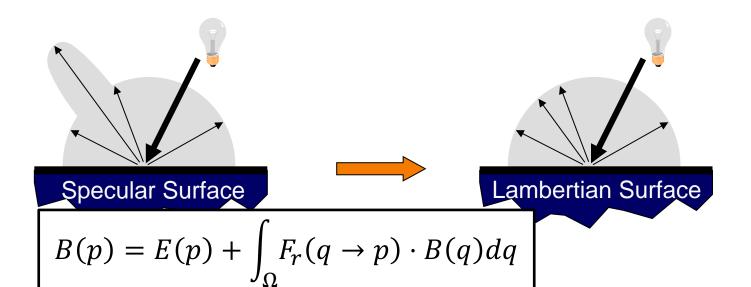
But a patch about p receives more of q's surface as angle $\theta_{q,p}$ is more grazing.

- \Rightarrow A patch of size A about p receives a patch of size A/ cos $\theta_{q,p}$ about q.
- \Rightarrow The amount of light emitted from a patch of area about q in direction p falls off as $\cos \theta_{q,p}$.

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian assumption:

- The apparent brightness a patch of surface is constant (i.e. independent of the view direction).
 - » Emitters appear equally bright from all directions
 - » Reflectors appear equally bright from all directions



Lambertian Reflectors

How does the amount of light going from q reflected through p depend on:

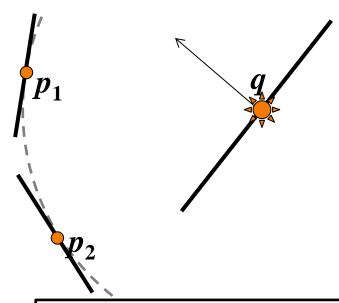
- 1. The direction to p relative to the orientation at q,
- 2. The direction to q relative to the orientation at p,
- 3. The distance between p and q?

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian Reflectors (1)

Treating q as an emitter, the light emitted from q in direction p falls off as $\cos \theta_{q,p}$ – with $\theta_{q,p}$ the angle between the normal at q and direction to p.

 \Rightarrow Reflected brightness at p falls off as $\cos \theta_{q,p}$

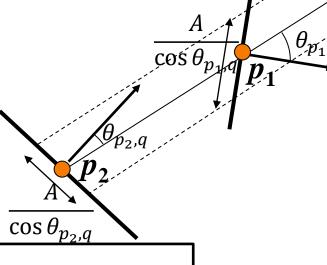


$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian Reflectors (2)

A beam of cross-sectional area A leaving q towards p, will spread out across a patch of area $A/\cos\theta_{p,q}$ at p — with $\theta_{p,q}$ the angle between the normal at p and direction to q.

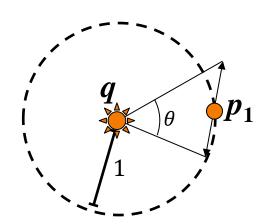
 \Rightarrow Reflected brightness at p falls off as $\cos \theta_{p,q}$



$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian Reflectors (3)

The apparent brightness at p is proportional to the subtended spherical angle by a unit area patch at p.

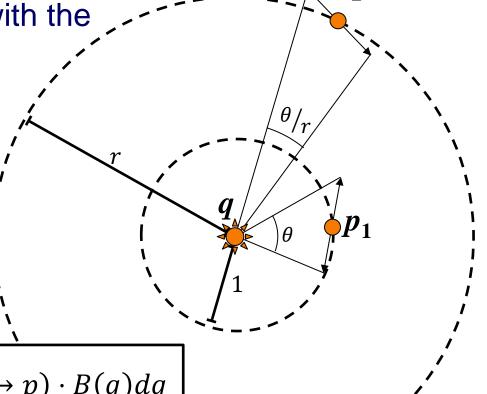


$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian Reflectors (3)

The apparent brightness at p is proportional to the subtended spherical angle by a unit area patch at p.

- \Rightarrow The subtended spherical angle falls off quadratically with the distance of p from q.
- ⇒ Perceived brightness decays as the square of the distance.



$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian Reflectors

- \Rightarrow The fraction of light from q that is reflected off p is determined by:
 - \circ The angle: $\theta_{q,p}$
 - \circ The angle: $\theta_{p,q}$
 - The square distance from q to p: ||q p||

$$F_r(q \to p) = \frac{\cos \theta_{q,p} \cdot \cos \theta_{p,q}}{\|q - p\|^2}$$

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian Reflectors

- \Rightarrow The fraction of light from q that is reflected off p is determined by:
 - The angle: $\theta_{q,p}$
 - \circ The angle: $\theta_{p,q}$
 - The square distance from q to p: ||q p||
 - The visibility of p from q: V(q,p)
 - The albedo at p: $\rho(p)$

$$F_r(q \to p) = \frac{\cos \theta_{q,p} \cdot \cos \theta_{p,q}}{\|q - p\|^2} \cdot \rho(p) \cdot V(q,p)^{\Delta}$$

$$B(p) = E(p) + \int_{\Omega} F_r(q \to p) \cdot B(q) dq$$

Lambertian assumption:

- The apparent brightness a patch of surface is constant (i.e. independent of the view direction).
 - » Emitters appear equally bright from all directions
 - » Reflectors appear equally bright from all directions

$$B(p) = E(p) + \rho(p) \int_{\Omega} V(q, p) \cdot \frac{\cos \theta_{q, p} \cdot \cos \theta_{p, q}}{\|q - p\|^2} \cdot B(q) dq$$

The radiosity equation

Approximate the integral by decomposing surfaces into patches and doing a discrete summation:

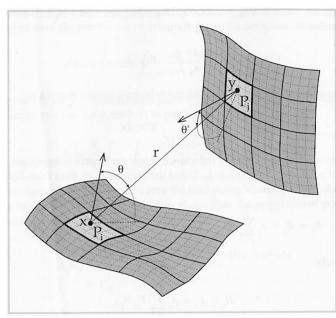
$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{n} F_{ij} \cdot B_{j}$$
Form Factor

For patch i:

∘ *B_i*: Total brightness

∘ *E_i*: Total emissivity

 \circ ρ_i : Albedo



University of Wisconsin

$$B(p) = E(p) + \rho(p) \int_{\Omega} V(q, p) \cdot \frac{\cos \theta_{q, p} \cdot \cos \theta_{p, q}}{\|q - p\|^2} \cdot B(q) dq$$

The radiosity equation

Form Factor

The **form factor** $0 \le F_{ij} \le 1$ is the proportion of the power leaving patch P_i , received by patch P_i :

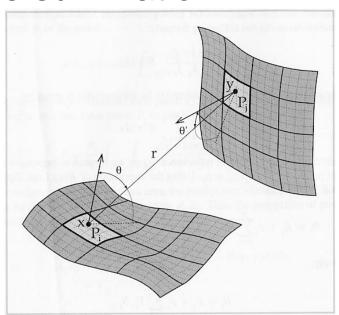
- Symmetry/Reciprocity: $A_j F_{ij} = A_i F_{ji}$
- Definiteness: $F_{ii} = 0$ unless the patch is concave
- Partition of unity: $\sum_{i} F_{ij} = 1$

Approximate the integral by decomposing surfaces into patches and doing a discrete summation:

$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{n} F_{ij} \cdot B_{j}$$
Form Factor

This amounts to solving a linear system of equations

- \circ E_i , ρ_i , and F_{ij} are given
- \circ B_i are the unknowns.



University of Wisconsin

Re-ordering terms in the equation gives:

$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{n} F_{ij} \cdot B_{j}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Solving the System of Equations

- Challenges:
 - Size of matrix
 - Cost of computing form factors

$$\begin{pmatrix} E_1 \\ E_2 \\ \vdots \\ E_n \end{pmatrix} = \begin{pmatrix} 1 - \rho_1 \cdot F_{1,1} & -\rho_1 \cdot F_{2,1} & \cdots & -\rho_1 \cdot F_{n,1} \\ -\rho_2 \cdot F_{1,2} & 1 - \rho_2 \cdot F_{2,2} & \cdots & -\rho_2 \cdot F_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_n \cdot F_{1,n} & -\rho_n \cdot F_{2,n} & \cdots & 1 - \rho_n \cdot F_{n,n} \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{pmatrix}$$

Solving the System of Equations

- Solution methods:
 - Invert the matrix $-\theta(n^3)$
 - Gathering methods $O(n^2)$
 - Shooting methods $< O(n^2)$

$$\begin{pmatrix} E_1 \\ E_2 \\ \vdots \\ E_n \end{pmatrix} = \begin{pmatrix} 1 - \rho_1 \cdot F_{1,1} & -\rho_1 \cdot F_{2,1} & \cdots & -\rho_1 \cdot F_{n,1} \\ -\rho_2 \cdot F_{1,2} & 1 - \rho_2 \cdot F_{2,2} & \cdots & -\rho_2 \cdot F_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_n \cdot F_{1,n} & -\rho_n \cdot F_{2,n} & \cdots & 1 - \rho_n \cdot F_{n,n} \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{pmatrix}$$

Gathering Iteration

Initialization:

• For each patch P_i , initialize its total radiosity to be equal to its total emissivity:

$$B_i = E_i$$

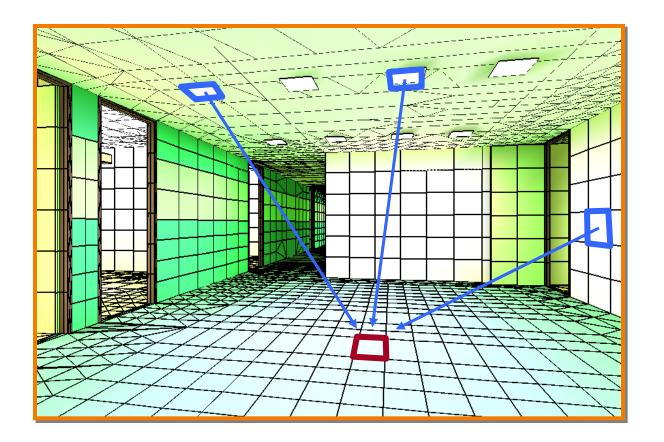
Iteration:

• At each iteration, update the values of each of the B_i based on the values of all the other B_i :

$$B_i = E_i + \rho_i \sum_{j \neq i} F_{ij} \cdot B_j$$

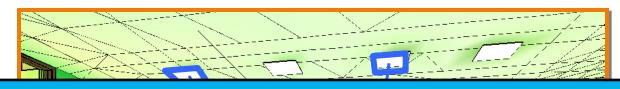
Gathering Iteration

- Geometric interpretation
 - Iteratively gather radiosity from elements



Gathering Iteration

- Geometric interpretation
 - Iteratively gather radiosity from elements



Note:

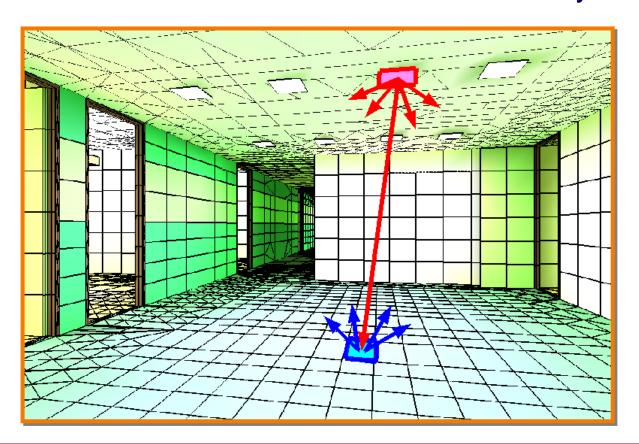
This simulates how light distributes through the scene after we "turn the emitters on".

Limitation:

Can spend a lot of time gathering radiosity from patches that don't contribute much.

Shooting Iteration

- Geometric interpretation:
 - Iteratively shoot "unshot" radiosity from elements
 - Select shooters in order of unshot radiosity



Summary

If we could, we would compute the lighting by recursively reflecting secondary rays in all directions to compute the brightness of a single point.

Ray-Tracing:

 Assume that surfaces are specular so that you only need to bounce in a single (specular) direction.

Radiosity:

 Assume that surfaces are Lambertian so that they reflect light in the same way in all directions.

Reality:

Surfaces reflect in all directions, but not uniformly.