

3D Rendering and Ray Casting

Michael Kazhdan

(601.457/657)

Rendering

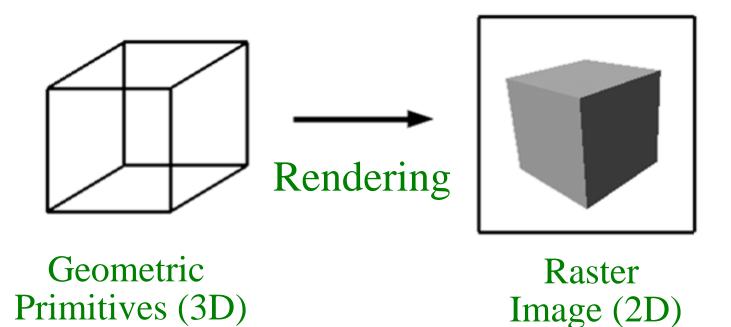
Generate an image from geometric primitives



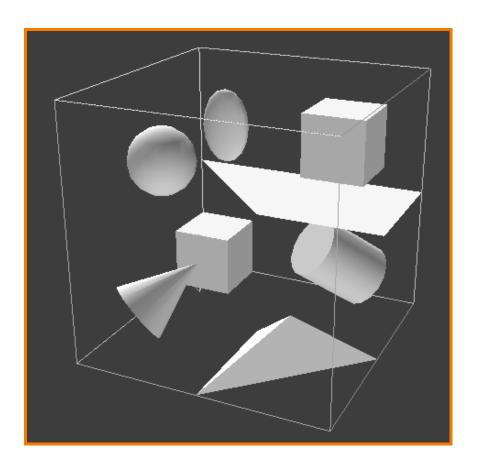
Geometric Primitives (3D)

Rendering

Generate an image from geometric primitives



3D Rendering Example

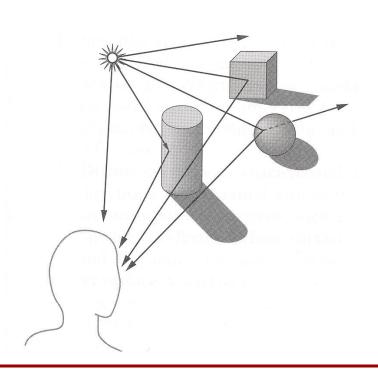


What issues must be addressed by a 3D rendering system?

Overview

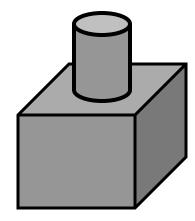
- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?

How is the 3D scene described in a computer?



3D Scene Representation

- Scene is usually approximated by 3D primitives
 - Point
 - Line segment
 - Triangles
 - Polygon
 - Curved surface
 - Solid object
 - o etc.



3D Point

Specifies a location

3D Point

- Specifies a location
 - Represented by three coordinates
 - Infinitely small

```
template< unsigned int Dim >
struct Point
{
    float c[Dim];
};
```

```
\bullet(x, y, z)
```


3D Vector

• Specifies a direction and a magnitude

3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 - Has no location

```
template< unsigned int Dim >
struct Vector
{
    float d[Dim];
};
```

```
\vec{v} = (dx, dy, dz)
```

3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 - Has no location
- Dot product of two vectors

- $\circ \langle \vec{v}_1, \vec{v}_2 \rangle = \|\vec{v}_1\| \cdot \|\vec{v}_2\| \cdot \cos \theta$
- Cross product of <u>two 3D</u> vectors
 - $\vec{v}_1 \times \vec{v}_2$ = Vector normal to v_1 and v_2
 - $||\vec{v}_1 \times \vec{v}_2|| = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \sin \theta$
 - Aligned with the right-hand-rule

$$\vec{v}_1 = (dx_1, dy_1, dz_1)$$

$$\vec{v}_2 = (dx_2, dy_2, dz_2)$$

Cross Product: Review

Let

$$\vec{v}_i = (dx_i, dy_i, dz_i)$$
 with $i \in \{1,2,3\}$

Then $\vec{v}_1 = \vec{v}_2 \times \vec{v}_3$ is expressed as:

- $\circ dx_1 = dy_2 \cdot dz_3 dz_2 \cdot dy_3$
- $\circ dy_1 = dz_2 \cdot dx_3 dx_2 \cdot dz_3$
- $\circ dz_1 = dx_2 \cdot dy_3 dy_2 \cdot dx_3$
- Anti-symmetric: $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$

Can similarly define the cross-product of (d-1) vectors in d dimensional space.

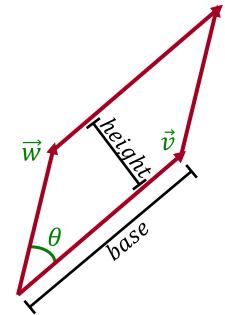
Cross Product: Review

$$\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \cdot \|\vec{w}\| \cdot \sin \theta$$

Geometrically speaking, we can consider the parallelogram defined by \vec{v} and \vec{w} .

The area of the parallelogram is the product of the base and the height.

- $base = \|\vec{v}\|$
- $height = \sin(\theta) \cdot ||\vec{w}||$
- $\Rightarrow \operatorname{Area}(\vec{v}, \vec{w}) = \|\vec{v}\| \cdot \|\vec{w}\| \cdot \sin \theta$ $= \|\vec{v} \times \vec{w}\|$



3D Line Segment

Linear path between two points

3D Line Segment

- Linear path between two points
 - Parametric representation:

```
p(t) = p_1 + t \cdot (p_2 - p_1), \quad (0 \le t \le 1)
```

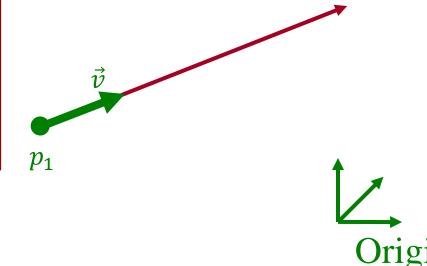
```
template< unsigned int Dim > struct Segment {
    Point< Dim > p1 , p2;
};
```


3D Ray

- Line segment with one endpoint at infinity
 - Parametric representation:

```
p(t) = p_1 + t \cdot \vec{v}, \quad (0 \le t < \infty)
```

```
template< unsigned int Dim >
struct Ray
{
    Point< Dim > p1;
    Vector< Dim > v;
};
```

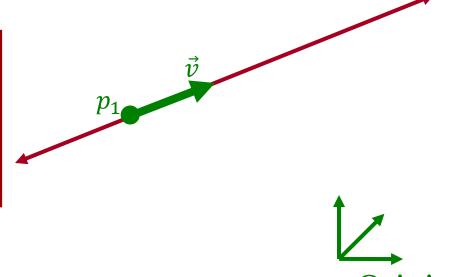


3D Line

- Line segment with both endpoints at infinity
 - Parametric representation:

```
p(t) = p_1 + t \cdot \vec{v}, \quad (-\infty < t < \infty)
```

```
template< unsigned int Dim > struct Line {
    Point< Dim > p1;
    Vector< Dim > v;
};
```



Geometry in 3D

So far, we represented geometry parametrically – defining a function which takes in a parameter and returns a position on the geometry.

2D geometry in 3D can also be represented by an implicit function – a function $\Phi: \mathbb{R}^3 \to \mathbb{R}$ which:

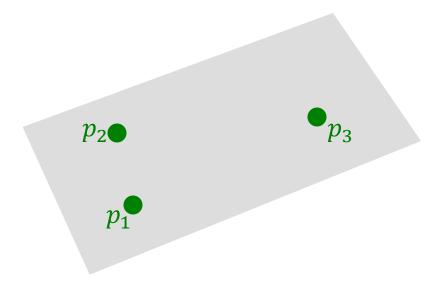
- Equals zero on the geometry
- Is positive outside the geometry
- Is negative inside the geometry

We can also represent 1D geometry using a function $\Phi: \mathbb{R}^3 \to \mathbb{R}^2$, with both coordinates of the output equal to zero on the geometry.

This makes it easy to evaluate if a point is on the surface.

3D Plane

A linear combination of three points



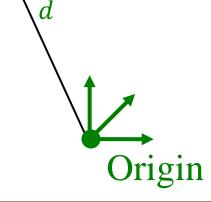
3D Plane

- A linear combination of three points
 - Implicit representation:

```
 \Rightarrow \Phi(p) = ap_x + bp_y + cp_z - d = 0 \\ \Rightarrow \Phi(p) = \langle p, \vec{n} \rangle - d = 0 \\ \text{Template< unsigned int Dim > struct Plane}
```

{ Vector n; float d; };

- \circ \vec{n} is the plane normal
 - » (May be) unit-length vector
 - » Perpendicular to plane
- d is the signed (weighted) distance
 of the plane from the origin.

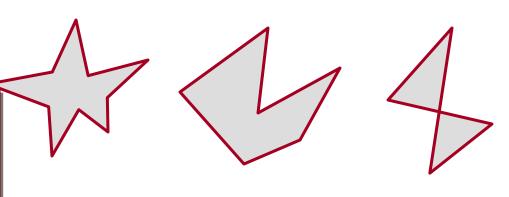


 p_3

3D Polygon

- Area "inside" a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```
Template< unsigned int Dim > struct Polygon {
    Point< Dim > *points;
    size_t size;
};
```



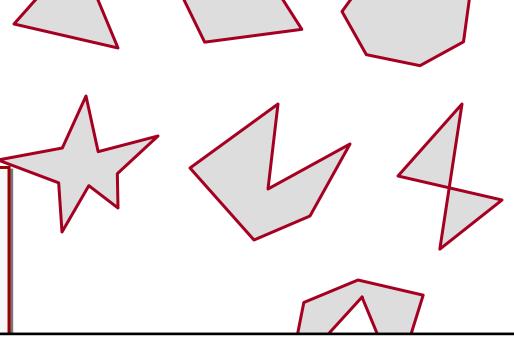
Points are in counter-clockwise order

Holes (use > 1 polygon struct)

3D Polygon

- Area "inside" a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```
Template< unsigned int Dim > struct Polygon {
    Point< Dim > *points;
    size_t size;
    1.
```



Note: If a 3D polygon has more than three points, the points may not be coplanar, so "interior" may not be well-defined.

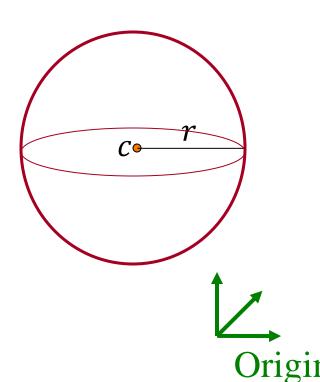
3D Sphere

- All points at distance r from center point $c = (c_x, c_y, c_z)$
 - Implicit representation:

$$\Phi(p) = \|p - c\|^2 - r^2 = 0$$

Parametric representation:

```
template< unsigned int Dim >
struct Sphere
{
    Point< Dim > center;
    float radius;
};
```



Other 3D primitives

- Cone
- Cylinder
- Ellipsoid
- Box
- Etc.

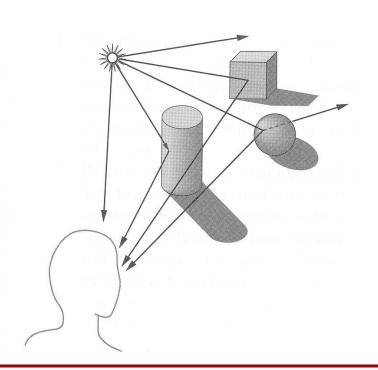
3D Geometric Primitives

- More detail on 3D modeling later in course
 - Point
 - Line segment
 - Triangle
 - Polygon
 - Curved surface
 - Solid object
 - o etc.

Overview

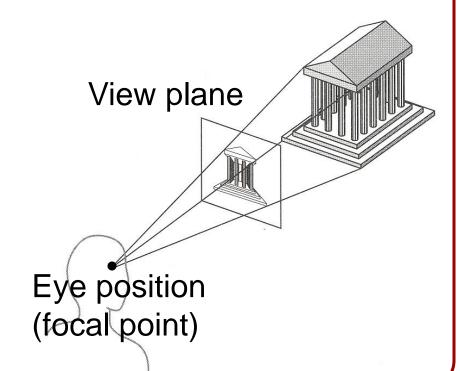
- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?

How is the viewing device described in a computer?



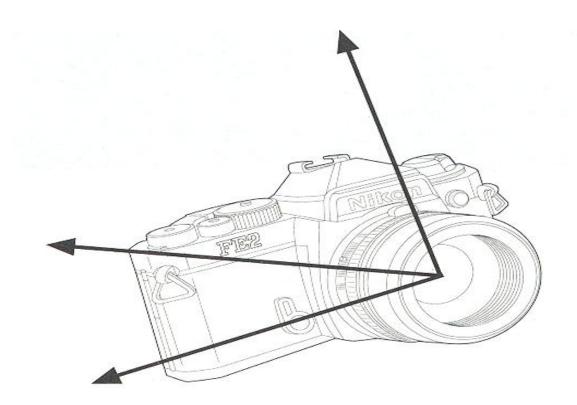
Camera Models

- The most common model is pin-hole camera
 - All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)



Camera Parameters

What are the parameters of a camera?



Camera Parameters

View

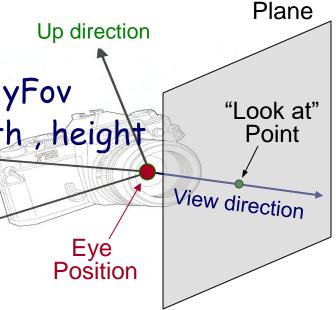
- Position
 - Eye position: Point3 > eye
- Orientation
 - View direction: Vector3 > view
 - Up direction: Vector< 3 > up

Aperture

Field of view angle: float xFov, yFov

Resolution of film plane: int width, height

right



Other Models: Depth of Field

Close Focused

Distance Focused

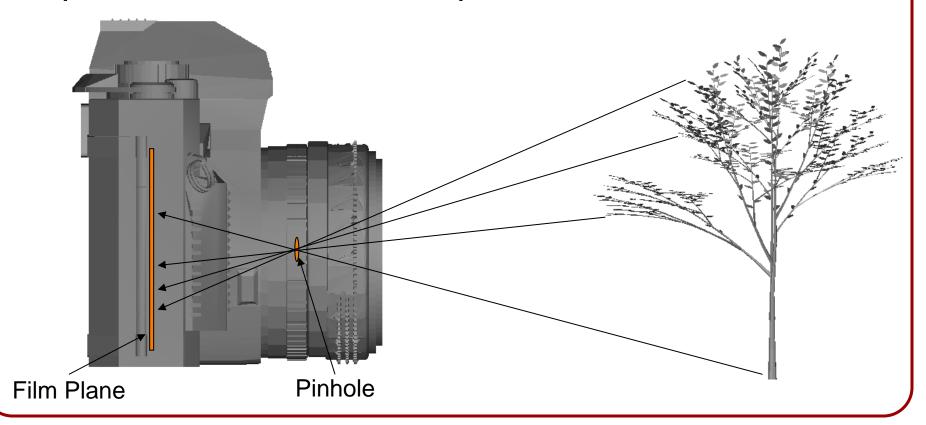
Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling

Brostow & Essa

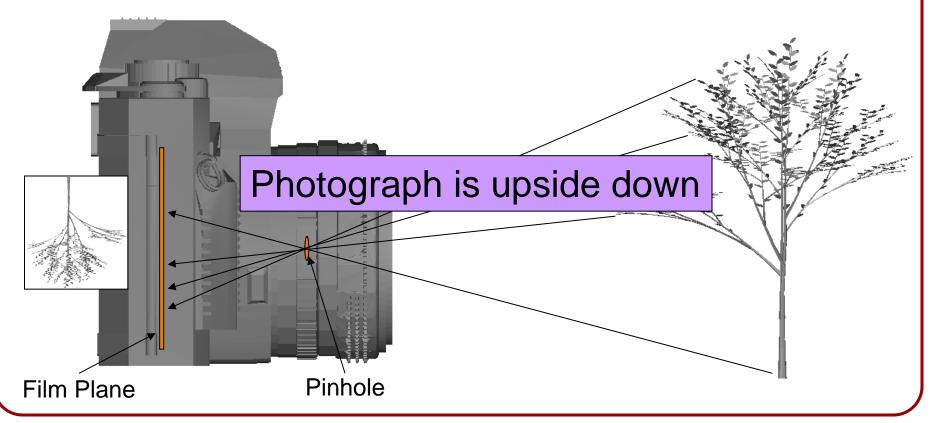
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.



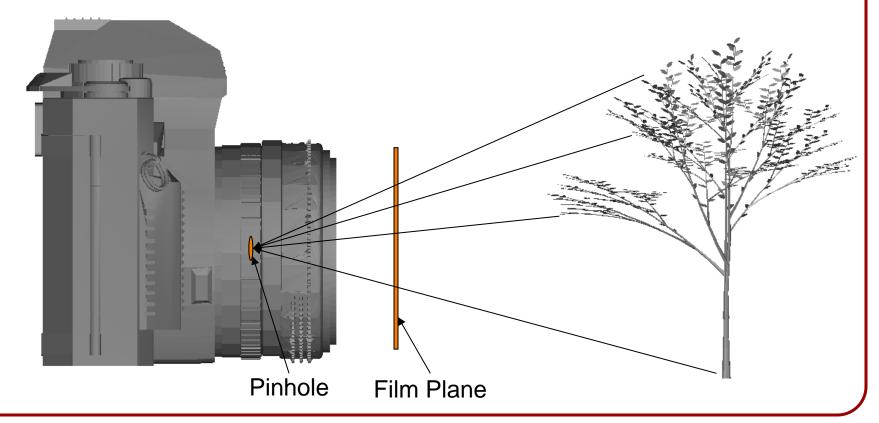
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.



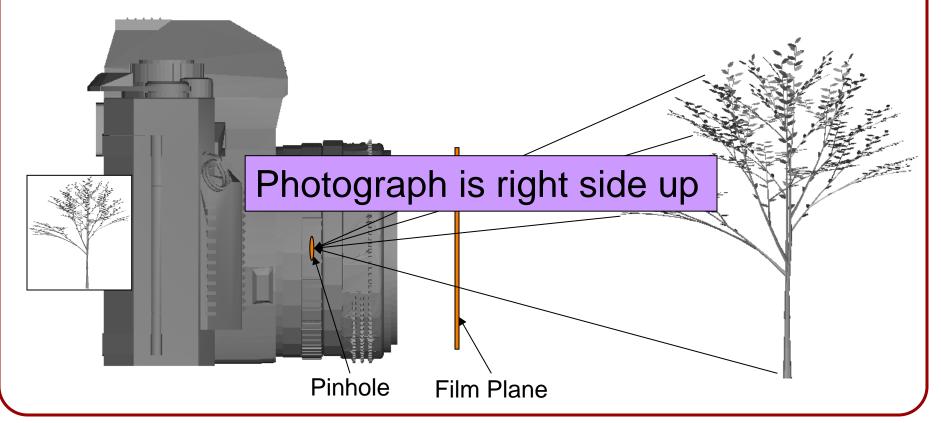
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.



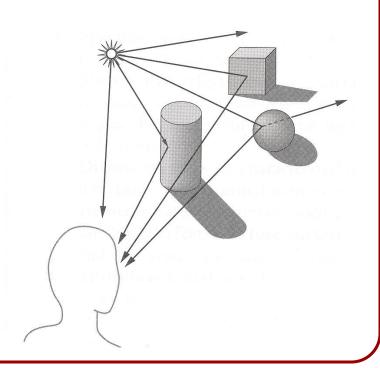
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.

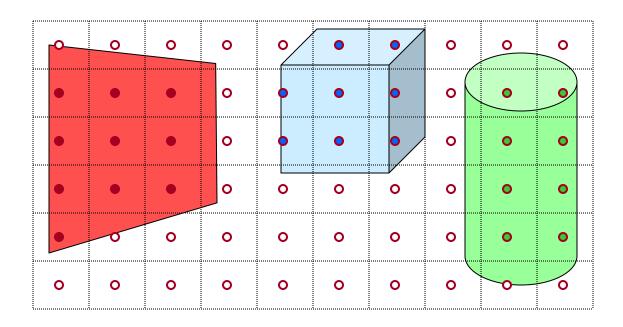


Overview

- 3D scene representation
- 3D viewer representation
- Ray Casting
 - Where are we looking?
 - What do we see?
 - How does it look?



- For each sample ...
 - Where: Construct ray from eye through view plane
 - What: Find first surface intersected by ray through pixel
 - How: Compute color sample based on surface radiance

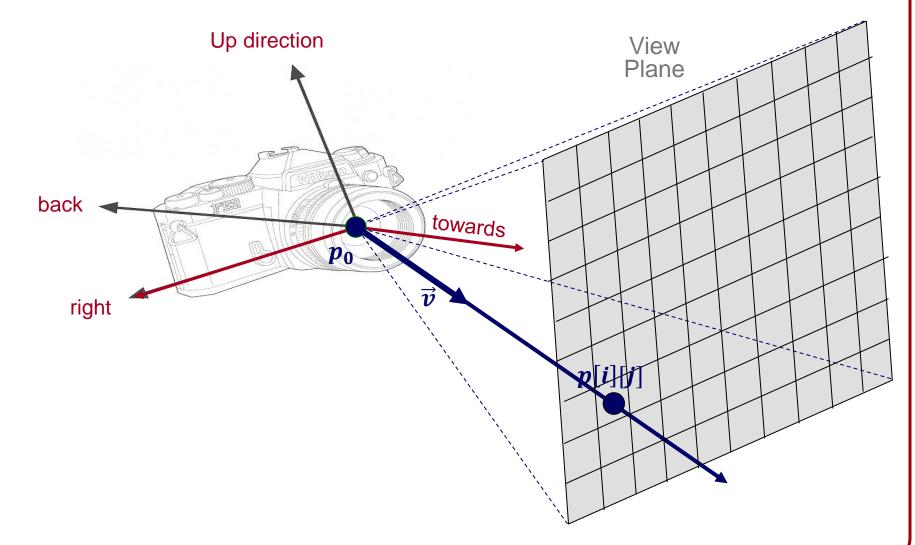


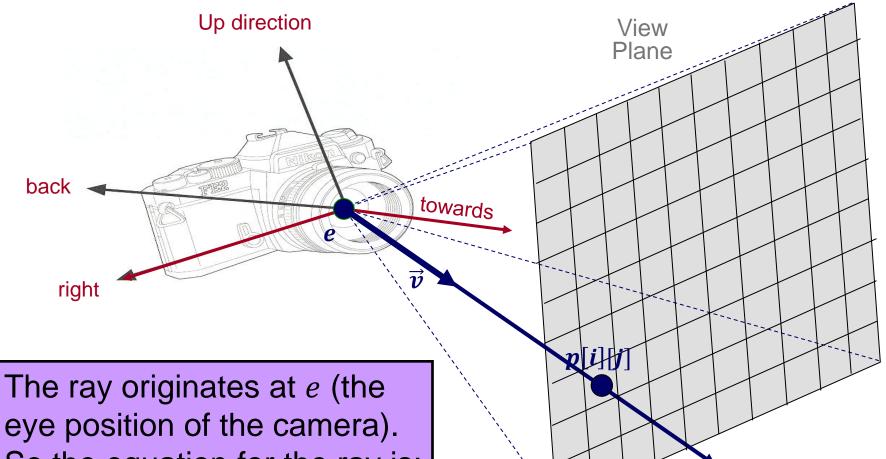
Simple implementation:

```
Image RayCast(Camera camera, Scene scene, int width, int height)
   Image image (width , height );
   for(int j=0; j<height; j++) for(int i=0; i<width; i++)
       Ray< 3 > ray = ConstructRayThroughPixel(camera, i, j);
       Intersection hit = FindIntersection( ray , scene );
       image[i][j] = GetColor( hit );
   return image;
```

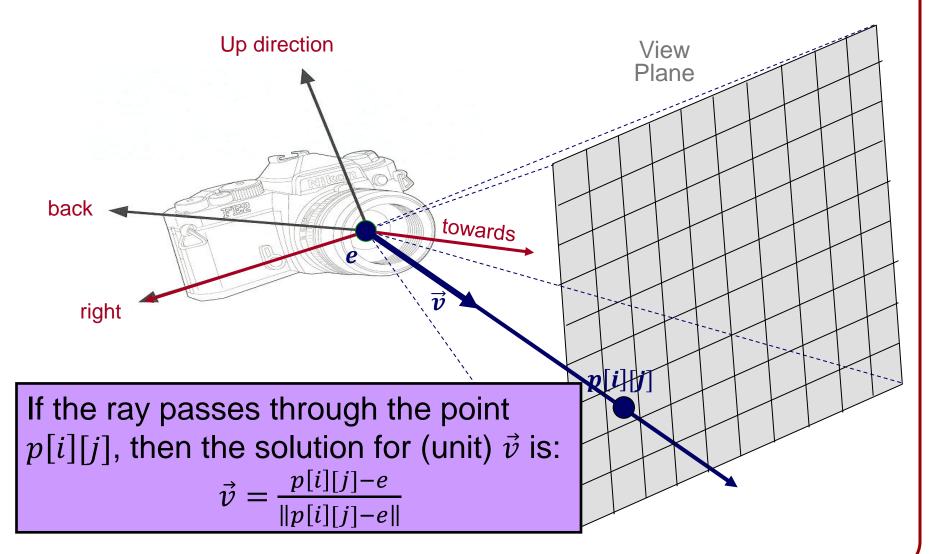

Where?

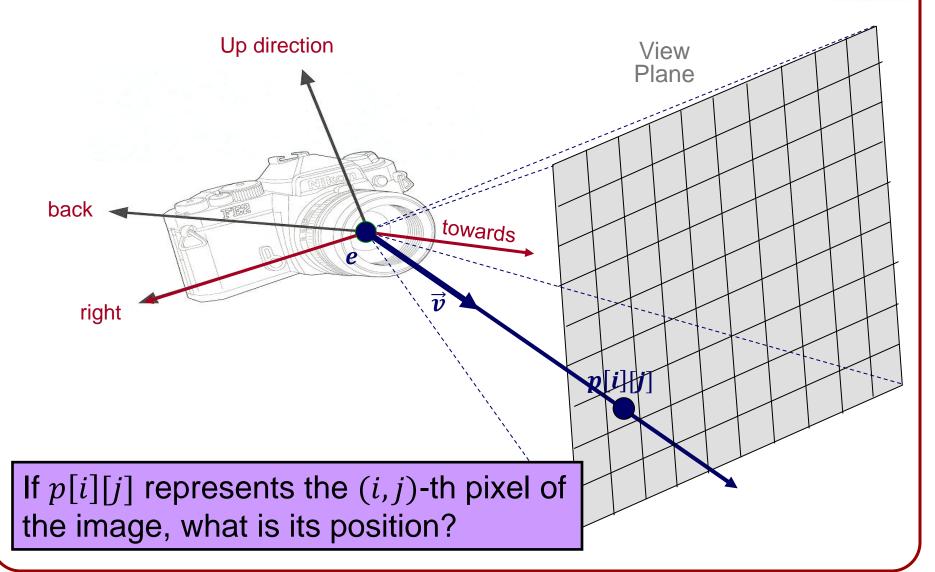
```
Image RayCast(Camera camera, Scene scene, int width, int height)
   Image image (width , height );
   for(int j=0; j<height; j++) for(int i=0; i<width; i++)
       Ray< 3 > ray = ConstructRayThroughPixel(camera, i, j);
       Intersection hit = FindIntersection( ray , scene );
       image[i][j] = GetColor( hit );
   return image;
```



eye position of the camera). So the equation for the ray is: $Ray(t) = e + t \cdot \vec{v}$





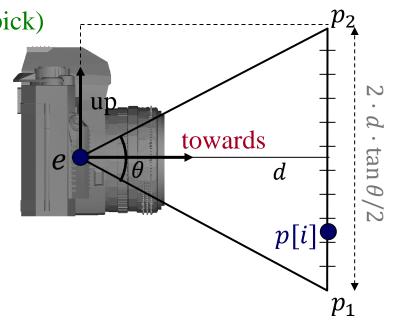
- 2D Example: Side view of camera at p_0
 - Where is the *i*-th pixel, p[i], with $i \in [0, height)$?

 θ = field of view angle (given)

d = distance to view plane (arbitrary = you pick)

$$p_1 = e + d \cdot \text{towards} - d \cdot \tan \frac{\theta}{2} \cdot \text{up}$$

 $p_2 = e + d \cdot \text{towards} + d \cdot \tan \frac{\theta}{2} \cdot \text{up}$
 $p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot (p_2 - p_1)$

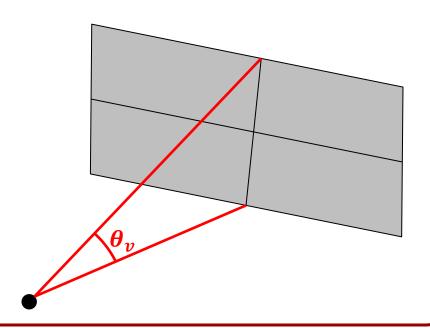


Figuring out how to do this in 3D is assignment 2

Figuring out how to do this in 3D is assignment 2

Assuming square pixels:

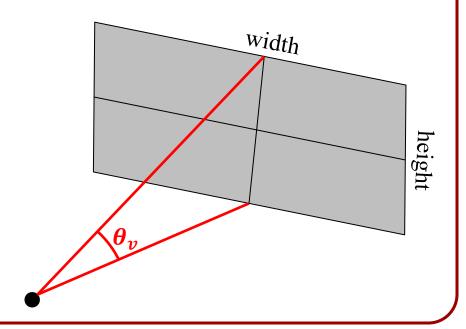
 \circ Given the vertical field of view angle, θ_v



Figuring out how to do this in 3D is assignment 2

Assuming square pixels:

- \circ Given the vertical field of view angle, θ_v
- And the aspect ratio, $ar = \frac{height}{width}$

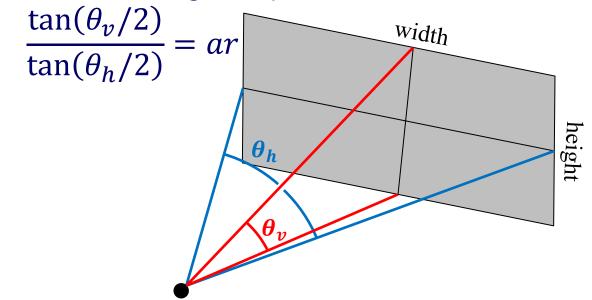


Figuring out how to do this in 3D is assignment 2

Assuming square pixels:

- \circ Given the vertical field of view angle, θ_v
- And the aspect ratio, $ar = \frac{height}{width}$

The horizontal field of view angle, θ_h , satisfies:



What?

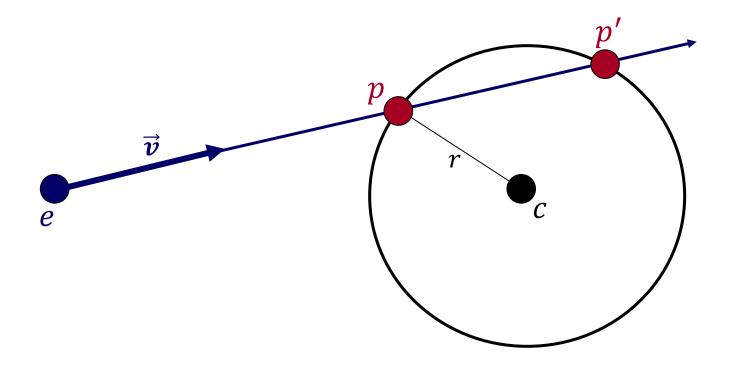
```
Image RayCast(Camera camera, Scene scene, int width, int height)
   Image image (width , height );
   for(int j=0; j<height; j++) for(int i=0; i<width; i++)
       Ray< 3 > ray = ConstructRayThroughPixel(camera, i, j);
       Intersection hit = FindIntersection( ray , scene );
       image[i][j] = GetColor( hit );
   return image;
```

Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle

Ray: $p(t) = e + t \cdot \vec{v}$, $(0 \le t < \infty)$

Sphere: $\Phi(p) = ||p - c||^2 - r^2 = 0$



Ray:
$$p(t) = e + t \cdot \vec{v}$$
, $(0 \le t < \infty)$

Sphere:
$$\Phi(p) = ||p - c||^2 - r^2 = 0$$

Substituting for p, we get:

$$\Phi(t) = \|e + t \cdot \vec{v} - c\|^2 - r^2 = 0$$

Solve quadratic equation:

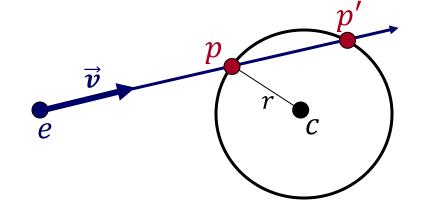
$$a \cdot t^2 + b \cdot t + c = 0$$

where:

$$a = 1$$

$$b = 2\langle \vec{v}, e - c \rangle$$

$$c = ||e - c||^2 - r^2$$



Ray:
$$p(t) = e + t \cdot \vec{v}$$
, $(0 \le t < \infty)$

Sphere:
$$\Phi(p) = ||p - c||^2 - r^2 = 0$$

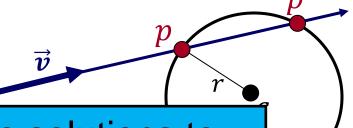
Substituting for p, we get:

$$\Phi(t) = \|e + t \cdot \vec{v} - c\|^2 - r^2 = 0$$

Solve quadratic equation:

$$a \cdot t^2 + b \cdot t + c = 0$$

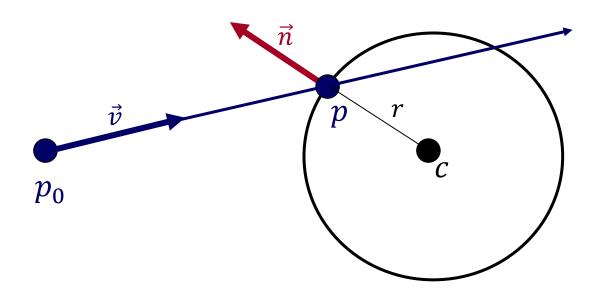
where:



Generally, there are two solutions to the quadratic equation, giving two points of intersection, p and p'. Want to return the first positive hit.

 Need normal vector at intersection for lighting calculations:

$$\vec{n} = \frac{p - c}{\|p - c\|}$$



 More generally, if the shape is given as the set of points p satisfying:

$$\Phi(p) = 0$$

for some function $\Phi: \mathbb{R}^3 \to \mathbb{R}$, then the normal of the surface will be parallel to the gradient.

Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - » Triangle

1. Intersect ray with plane

2. Check if the point is inside the triangle

Ray-Plane Intersection

Ray: $p(t) = e + t \cdot \vec{v}$, $(0 \le t < \infty)$

Plane: $\Phi(p) = \langle p, \vec{n} \rangle - d = 0$

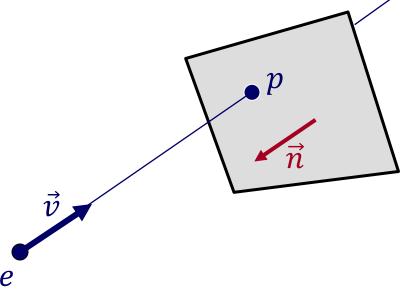
Substituting for *p* we get:

$$\Phi(t) = \langle e + t \cdot \vec{v}, \vec{n} \rangle - d = 0$$

Solving gives:

$$t = -\frac{\langle e, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle}$$

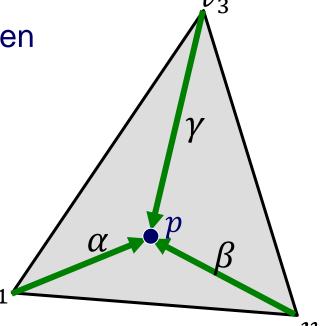
Algebraic Method



What are the implications of $\langle \vec{v}, \vec{n} \rangle = 0$?

Check for point-triangle intersection parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that: $p = \alpha v_1 + \beta v_2 + \gamma v_3$



p is in the plane spanned by $\{v_1, v_2, v_3\}$ if and only if (iff.):

 $\alpha + \beta + \gamma = 1$

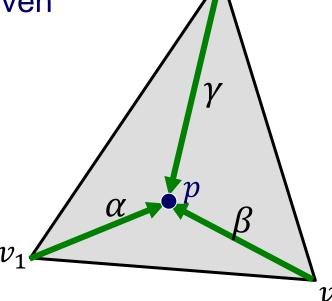
p is inside the triangle with vertices $\{v_1, v_2, v_3\}$ iff.:

$$\alpha, \beta, \gamma \geq 0$$

Check for point-triangle intersection parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that:

$$p = \alpha v_1 + \beta v_2 + \gamma v_3$$



Naively, to get α , β , γ , we could try to solve the system:

$$\begin{pmatrix} v_1^x & v_2^x & v_3^x \\ v_1^y & v_2^y & v_3^y \\ v_1^z & v_2^z & v_3^z \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} p^x \\ p^y \\ p^z \end{pmatrix}$$

Check for point-triangle intersection parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that: $p = \alpha v_1 + \beta v_2 + \gamma v_3$

 v_1

 v_z

Naively, to get α , β , γ , we could try to solve the system:

$$\begin{pmatrix} v_1^x & v_2^x & v_3^x \\ v_1^y & v_2^y & v_3^y \\ v_1^z & v_2^z & v_3^z \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} p^x \\ p^y \\ p^z \end{pmatrix} \qquad \Leftrightarrow \qquad \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} v_1^x & v_2^x & v_3^x \\ v_1^y & v_2^y & v_3^y \\ v_1^z & v_2^z & v_3^x \end{pmatrix}^{-1} \begin{pmatrix} p^x \\ p^y \\ p^z \end{pmatrix}$$

Check for point-triangle intersection parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that: $p = \alpha v_1 + \beta v_2 + \gamma v_3$

This will fail if the vertices $\{v_1, v_2, v_3\}$ lie in a plane through the origin.

 v_2

Naively, to get α , β , γ , we could try to solve the system:

$$\begin{pmatrix} v_1^x & v_2^x & v_3^x \\ v_1^y & v_2^y & v_3^y \\ v_1^z & v_2^z & v_3^z \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} p^x \\ p^y \\ p^z \end{pmatrix} \qquad \Leftrightarrow \qquad \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} v_1^x & v_2^x & v_3^x \\ v_1^y & v_2^y & v_3^y \\ v_1^z & v_2^z & v_3^z \end{pmatrix}^{-1} \begin{pmatrix} p^x \\ p^y \\ p^z \end{pmatrix}$$

<u>Intuitively</u>:

The weights $\alpha, \beta, \gamma \in \mathbb{R}$ describe how close p is to $v_1, v_2, v_3 \in \mathbb{R}^3$.

If we consider the triangle opposite vertex v_k , $\{p, v_{k+1}, v_{k+2}\}$, the area of the triangle:

- \circ Tends to zero as p moves away from v_k
- Tends to the area of triangle $\{v_1, v_2, v_3\}$ as p moves towards v_k .

 v_2

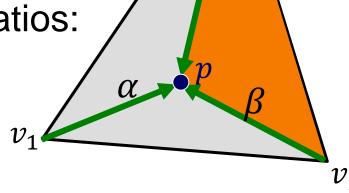
<u>Intuitively</u>:

The weights $\alpha, \beta, \gamma \in \mathbb{R}$ describe how close p is to $v_1, v_2, v_3 \in \mathbb{R}^3$.

 \Rightarrow Define $\alpha, \beta, \gamma \in \mathbb{R}$ in terms of the <u>signed</u> triangle area ratios:

$$\alpha = \frac{\text{SignedArea}(\{p, v_2, v_3\})}{\text{SignedArea}(\{v_1, v_2, v_3\})}$$
$$\beta = \frac{\text{SignedArea}(\{p, v_3, v_1\})}{\text{SignedArea}(\{v_1, v_2, v_3\})}$$

$$\gamma = \frac{\text{SignedArea}(\{p, v_1, v_2\})}{\text{SignedArea}(\{v_1, v_2, v_3\})}$$



 \overrightarrow{W}_1

Recall:

Given vectors $\vec{w}_1, \vec{w}_2 \in \mathbb{R}^3$, the (unsigned) area of the parallelogram spanned by \vec{w}_1 and \vec{w}_2 is:

ParallelogramArea $(\vec{w}_1, \vec{w}_2) = |\vec{w}_1 \times \vec{w}_2|$

Assuming that we are given a unit vector $\vec{n} \in \mathbb{R}^3$ perpendicular to both \vec{w}_1 and \vec{w}_2 :

$$\langle \vec{n}, \vec{w}_1 \rangle = \langle \vec{n}, \vec{w}_2 \rangle = 0$$

we can obtain the signed area (relative to \vec{n}) by taking the dot-product:

SignedParallelogramArea
$$(\vec{w}_1, \vec{w}_2) = \langle \vec{w}_1 \times \vec{w}_2, \vec{n} \rangle$$

Recall:

Given vectors $\vec{w}_1, \vec{w}_2 \in \mathbb{R}^3$, the (unsigned) area of the parallelogram spanned by \vec{w}_1 and \vec{w}_2 is:

ParallelogramArea $(\vec{w}_1, \vec{w}_2) = |\vec{w}_1 \times \vec{w}_2|$

Assuming that we are given a unit vector $\vec{n} \in \mathbb{R}^3$ perpendicular to both \vec{w}_1 and \vec{w}_2 :

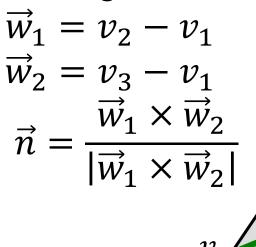
$$\langle \vec{n}, \vec{w}_1 \rangle = \langle \vec{n}, \vec{w}_2 \rangle = 0$$

we can obtain the signed area (relative to \vec{n}) by taking the dot-product:

SignedParallelogramArea
$$(\vec{w}_1, \vec{w}_2) = \langle \vec{w}_1 \times \vec{w}_2, \vec{n} \rangle$$

SignedTriangleArea $(\vec{w}_1, \vec{w}_2) = \langle \vec{w}_1 \times \vec{w}_2, \vec{n} \rangle / 2$

To compute the ratio of signed areas, set:



 v_1

Then we get:

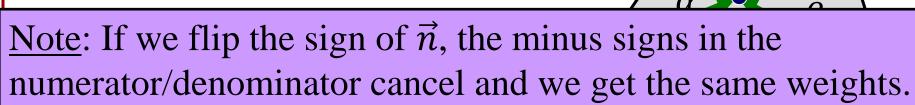
$$\alpha = \frac{\langle (v_2 - p) \times (v_3 - p), \vec{n} \rangle / 2}{\langle (v_2 - v_1) \times (v_3 - v_1), \vec{n} \rangle / 2}$$
:

To compute the ratio of signed areas, set:

$$\vec{w}_1 = v_2 - v_1$$

$$\vec{w}_2 = v_3 - v_1$$

$$\vec{n} = \frac{\vec{w}_1 \times \vec{w}_2}{|\vec{w}_1 \times \vec{w}_2|}$$



$$\alpha = \frac{\langle (v_2 - p) \times (v_3 - p), \vec{n} \rangle / 2}{\langle (v_2 - v_1) \times (v_3 - v_1), \vec{n} \rangle / 2}$$
:

Other Ray-Primitive Intersections

- Cone, cylinder, ellipsoid:
 - Similar to sphere
- Box
 - Intersect 3 front-facing planes, return closest
- Convex (planar) polygon
 - Find the intersection of the ray with the plane
 - Slightly more complex point-in-polygon test
- Concave (planar) polygon
 - Find the intersection of the ray with the plane
 - Markedly more complex point-in-polygon test