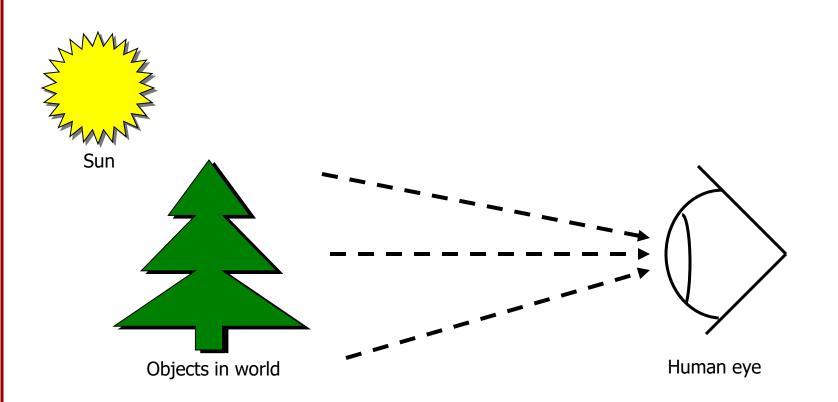


# **Image Processing**

Michael Kazhdan

(601.457/657)

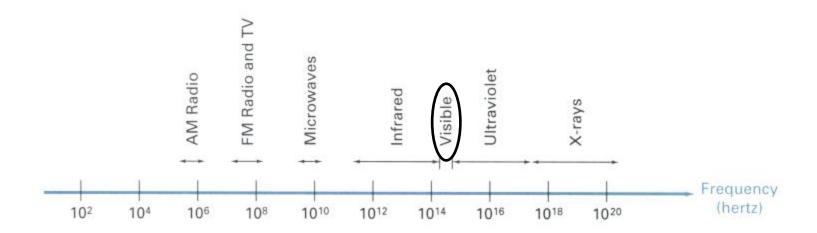
#### **Outline**




- Human Vision
- Image Representation
- Reducing Color Quantization Artifacts
- Basic Image Processing

#### **Human Vision**

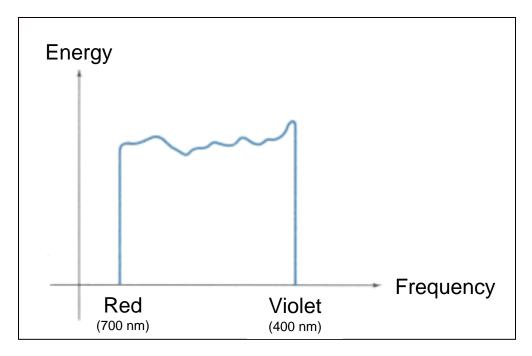



#### Model of Human Visual System



# Electromagnetic Spectrum




- Visible light frequencies range between ...
  - $\circ$  Red = 4.3 x 10<sup>14</sup> hertz (700nm)
  - $\circ$  Violet = 7.5 x 10<sup>14</sup> hertz (400nm)



## Visible Light



 What we see as "color" is described by the distribution of light across the visible range.

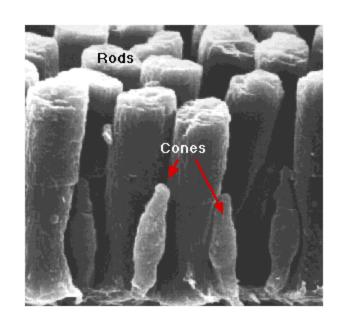


White Light

Figure 15.3 from H&B

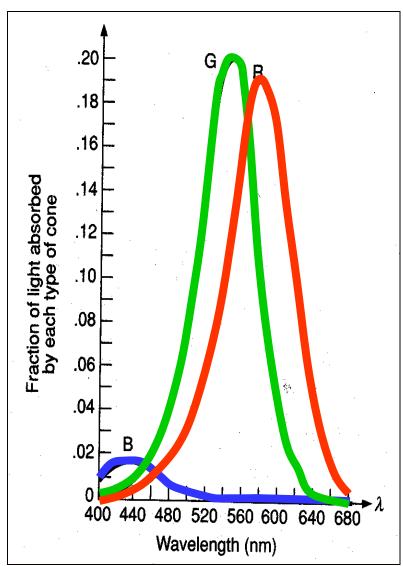
#### **Human Vision**




The human retina contains two types of photoreceptors, cones and rods.

#### Cones:

- 6-7 million cones in the retina
- Responsible for photopic vision
- Color sensitive:
  - 64% red, 32% green, 2% blue
- Distributed in the fovea centralis


#### Rods:

- 120 million rods in the retina
- 1000x more light sensitive than cones
- Responsible for scotopic vision
- Short-wavelength sensitive
- Responsible for peripheral vision



# **Tristimulus Theory of Color**





Spectral-response functions of each of the three types of cones on the human retina.


This motivates encoding color as a combination of red, green, and blue (RGB).

Figure 13.18 from FvDFH

## Visible Light



 What we see as "color" is described by the distribution of light across the visible range.



White Light

Figure 15.3 from H&B

## **Visible Light**



 What we see as "color" is described by the distribution of light across the visible range.

This does not mean that we can see the difference between all spectral distributions in the visible range.

Metamers = Two spectral distributions that look the same

(7 <del>00 11111)</del>

(400 nm

White Light

Figure 15.3 from H&B

#### **Outline**

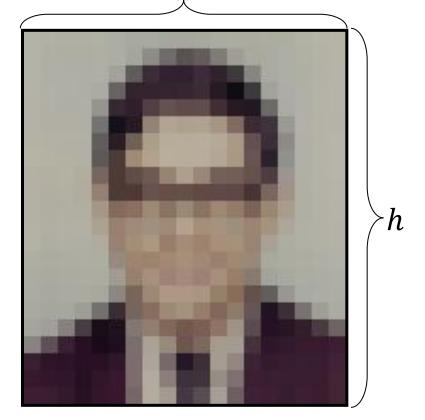


- Human Vision
- Image Representation
- Reducing Color Quantization Artifacts
- Basic Image Processing

What is an image?






An image is a 2D rectilinear array of pixels:

A width x height array where each entry of the array

stores a single pixel.



Continuous image



Digital image



What is a pixel?



Continuous image



Digital image



A pixel is something that captures the notion of color

- Luminance pixels
  - Grey-scale images (aka "intensity images")
- Red, Green, Blue pixels (RGB)
  - Color images

#### Channel value:

- Conceptually, in the continuous range [0,1)\*
- In practice, in a discrete range (e.g. {0,1,...,254,255})

\*[0,1) is the continuous range of numbers including 0 but not including 1

#### Resolutions



- Intensity/Color resolution: n bits per pixel
- Spatial resolution: width x height pixels
- Temporal resolution: n Hz (fps)

|               | width x height | bit depth | Hz  |
|---------------|----------------|-----------|-----|
| Handheld      | 2220 x 1080    | 24        | 60  |
| Monitor (4K)  | 3840 x 2160    | 24        | 144 |
| CCDs          | 6000 x 4000    | 36        | 50  |
| Laser Printer | 6600 x 5100    | 3         | -   |

# **Image Quantization Artifacts**



- With only a small number of bits associated to each color channel of a pixel there is a limit to intensity resolutions of an image
  - A black and white image allocates a single bit to the luminance channel of a pixel.
    - » The number of different colors that can be represented by a single pixel is 2.
  - A 24 bit image allocates 8 bits to the red, green, and blue channels of a pixel.
    - » The number of different colors that can be represented by a single pixel is 2<sup>24</sup>=~16,000,000.

#### **Outline**



- Human Vision
- Image Representation
- Reducing Color Quantization Artifacts
  - Halftoning and Dithering
- Basic Image Processing

# **Pixel Representation**



#### **Disclaimer**:

In the next few slides, we will assume that images are gray-scale (single-channel).

We assume that the <u>original</u> image has continuous pixel values,  $I(x,y) \in [0,1)$ .

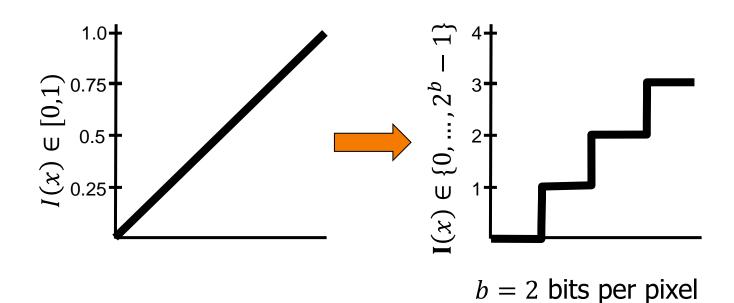
In practice, gray images are represented using a finite number of bits per pixel so that color/gray values are discrete  $I(x, y) \in \{0, ..., n-1\}$ .

#### **Discretization**



In particular, using b bits per pixel, we can represent  $n=2^b$  different colors.

⇒ Images take value in the range:

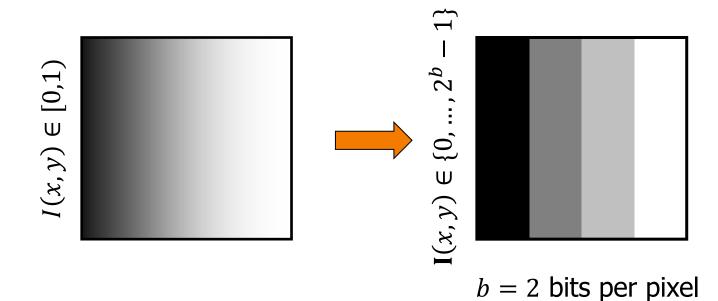

$$\mathbf{I}(x,y) \in \{0, \dots, 2^b - 1\}$$

#### Quantization



 With b bits per pixel, you can coarsely represent an image by quantizing the color values:

$$\mathbf{I}(x,y) = Q_b(I(x,y)) = \text{floor}(I(x,y) \cdot 2^b)$$




#### Quantization



 With b bits per pixel, you can coarsely represent an image by quantizing the color values:

$$\mathbf{I}(x,y) = Q_b(I(x,y)) = \text{floor}(I(x,y) \cdot 2^b)$$



#### Quantization



#### Image with decreasing bits per pixel

With quantization, get contours away from image edges.



b = 8 bits



b = 4 bits



b = 2 bits



b = 1 bits

# Reducing Color Quantization Artifacts

For (still) images, the combination of image resolution and intensity/color resolution define the total informational content.

#### Key Idea:

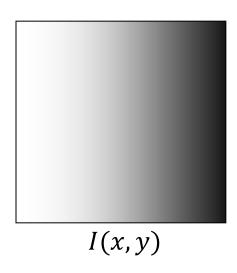
We can trade off between these to achieve different visual effects.

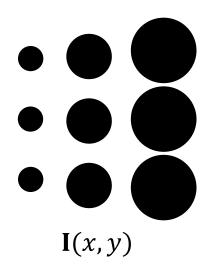
# **Reducing Effects of Quantization**



Trade spatial resolution for intensity resolution:

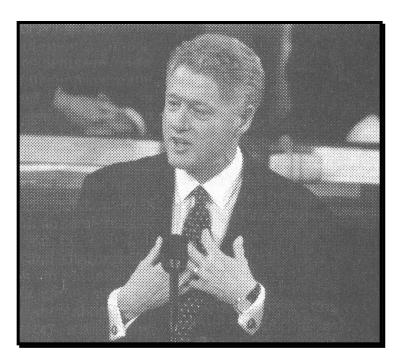
- Half-toning
- Dithering


Both exploit spatial integration in our eye to display a greater range of *perceptible* intensities.

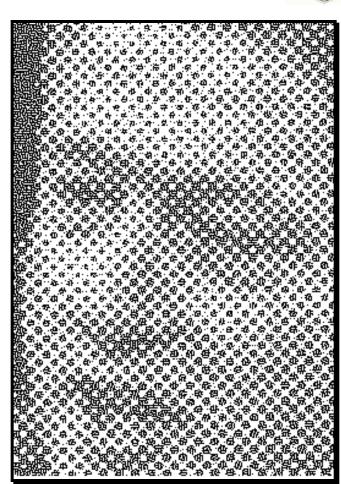

# **Classical Half-Toning**



#### Half-toning:


- Consider the average intensity in a region
- Draw varying-size dots representing the average
  - » Area of dots determined by the average intensity in the covered area






# **Classical Half-Toning**

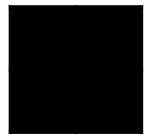


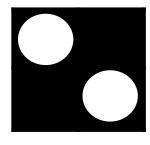


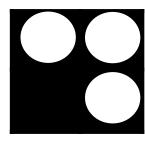
Newspaper Image

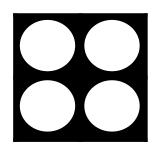


From New York Times, 9/21/99


# **Digital Half-Toning**





- $\circ$  Consider the **average** intensity in a  $k \times k$  block
- Turn on a variable number of the pixels in the block
  - » Number of pixels determined by the average intensity in the covered area


#### Note:

- Half-toning pattern matters
  - » Want to avoid vertical, horizontal lines
- Loss of information
  - » 16 configurations → 5 intensities









 $0 \le I < 0.2$ 

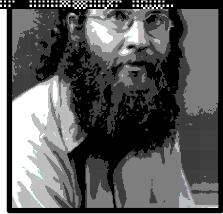
 $0.2 \le I < 0.4$ 

 $0.4 \le I < 0.6$ 

 $0.6 \le I < 0.8$ 

 $0.8 \le I < 1$ 

# **Digital Half-Toning**


 The use of a regular grid still causes contouring.



Original (8 bits)



Quantized (1 bit)



Half-toned (1 bit)

## **Dithering**



- Distribute errors among pixels
  - Consider individual pixel colors
  - Like quantization:
    - » round up/down based on pixel value
  - Unlike quantization:
    - » Rounding threshold is not fixed

# **Ordered Dither (Binary Displays)**



Pseudo-random quantization thresholds described by a  $k \times k$  matrix  $D_k$  with entries in the range  $\{1, ..., k^2\}$ 

```
// For a pixel at position (x,y):
// Locate the index in the matrix:
       i = x \mod k
      j = y \mod k
// Get fractional component
       e = I(x, y)
// Round up/down
       if\left(e > \frac{D_k(i,j)}{k^2+1}\right)I(x,y) = 1
                \mathbf{I}(x,y)=0
```

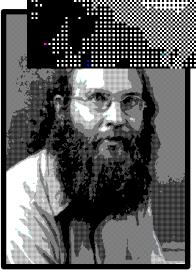
# Ordered Dither (b-Bit Displays)



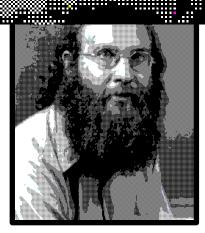
Pseudo-random quantization thresholds described by a  $k \times k$  matrix  $D_k$  with entries in the range  $\{1, ..., k^2\}$ 

```
// For a pixel at position (x,y):
// Locate the index in the matrix:
        i = x \mod k
       j = y \mod k
// Get fractional component
       c = I(x, y) \cdot (2^b - 1)
       e = c - floor(c)
// Round up/down
        if \left(e > \frac{D_k(i,j)}{k^2+1}\right) \mathbf{I}(x,y) = \text{ceil}(c)
                  I(x, y) = floor(c)
        else
```

#### **Ordered Dither**


 Very similar to half-toning results. (And a similar issue with contouring.)



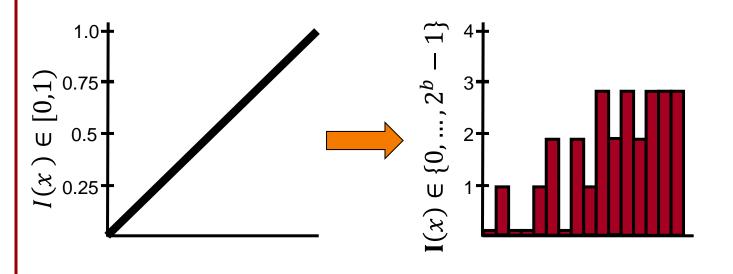

Original (8 bits)



Uniform (1 bit)



Half-toned (1 bit)




Ordered (1 bit)

#### **Random Dither**



- Randomize quantization errors
- Errors appear as noise



$$\mathbf{I}(x,y) = Q_b \left( I(x,y) + \frac{\text{noise}(x,y)}{2^b} \right)$$

If a pixel is black, adding random noise to it, you are less likely to turn it into a white pixel then if the pixel were dark gray.

#### Random Dither



- Randomize quantization errors
- Errors appear as noise

 $I(x) \in [0,1)$ 

Q: How much noise should we add?

A: Just enough so that we make it to lck, the previous/next intensity value: noise(x, y)  $\in$  (-1.0,1.0)

to

#### Note:

Adding noise may take you out of the [0,1) range.

#### **Random Dither**



Original (8 bits)

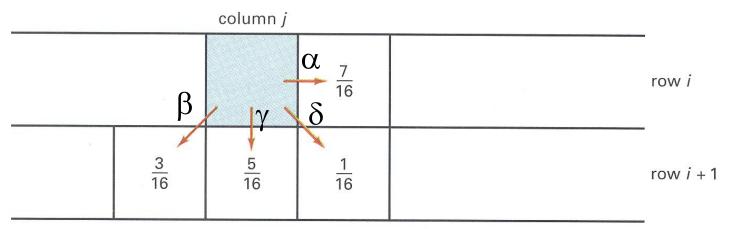


Uniform (1 bit)



Ordered (1 bit)




(1 bit)

#### **Error Diffusion Dither**



- Spread quantization error over neighbor pixels
  - Error dispersed to pixels right and below

Floyd-Steinberg Method



$$\alpha + \beta + \gamma + \delta = 1$$

Figure 14.42 from H&B

#### **Error Diffusion Dither**



```
for (j=0; j<height; j++)
for (i=0; i<width; i++)

Dest<sub>i,j</sub> = quantize(Source<sub>i,j</sub>)
error = Source<sub>i,j</sub> - Dest<sub>i,j</sub>

Source<sub>i+1,j</sub> += \alpha * error

Source<sub>i-1,j+1</sub> += \beta * error

Source<sub>i,j+1</sub> += \gamma * error

Source<sub>i+1,i+1</sub> += \delta * error
```

$$\alpha = \frac{7}{16}$$

$$\beta = \frac{3}{16}$$

$$\gamma = \frac{5}{16}$$

$$\delta = \frac{1}{16}$$

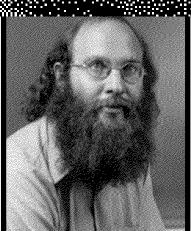
Floyd-Steinberg Dither

#### **Error Diffusion Dither**



Original (8 bits)




Uniform (1 bit)



Ordered (1 bit)



Random (1 bit)



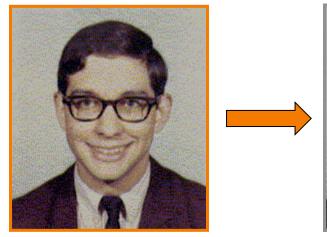
Floyd-Steinberg (1 bit)

#### **Outline**



- Human Vision
- Image Representation
- Reducing Color Quantization Artifacts
- Basic Image Processing
  - Single Pixel Operations

# **Computing Grayscale**




 The human retina perceives red, green, and blue as having different levels of brightness.

To compute the luminance (perceived brightness)

of a pixel, we need to take the weighted average of the RGBs:

$$\bullet \ \mathbf{L}_p = 0.30 \cdot \mathbf{r}_p + 0.59 \cdot \mathbf{g}_p + 0.11 \cdot \mathbf{b}_p$$



Original



Grayscale

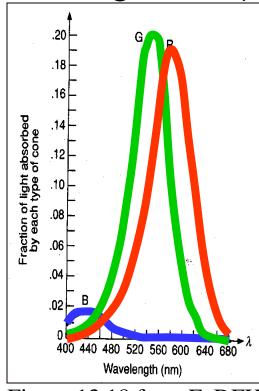
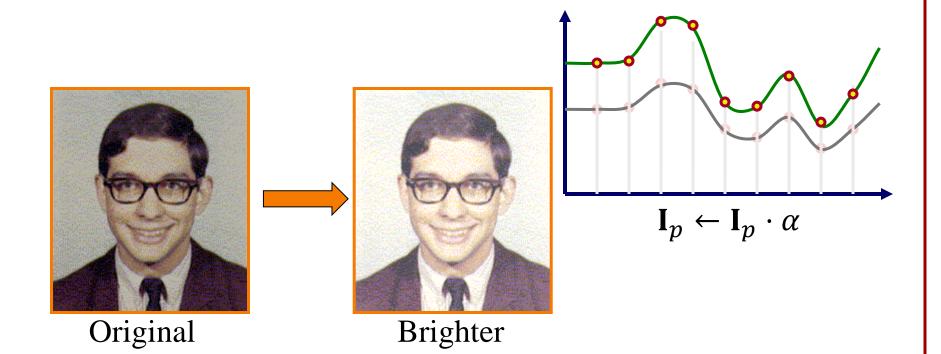




Figure 13.18 from FvDFH

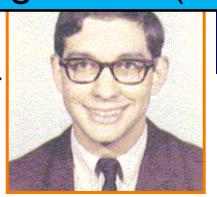
# **Adjusting Brightness**



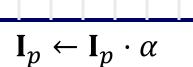
- Scale pixel components
  - Must clamp to range -- e.g. to [0,255)



# **Adjusting Brightness**




- Scale pixel components
  - Must clamp to range -- e.g. to [0,255)


What happens if we set the image to have no brightness ( $\alpha = 0$ )?



Original



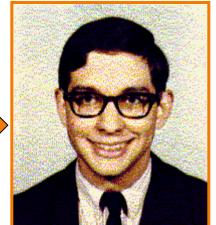
Brighter



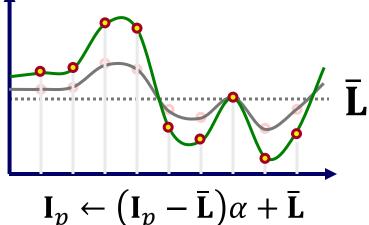
# **Adjusting Contrast**



• Compute  $\underline{\text{mean image}}$  luminance  $\overline{L}$  (averaged over all pixels)


$$\circ \ \overline{\mathbf{L}} = \text{Average}(0.30 \cdot \mathbf{r}_p + 0.59 \cdot \mathbf{g}_p + 0.11 \cdot \mathbf{b}_p)$$

Scale <u>deviation</u> from <u>L</u> for each pixel component


Must clamp to range -- e.g. to [0,255)

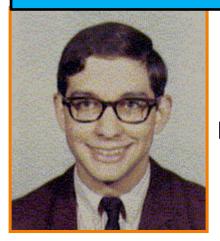


Original

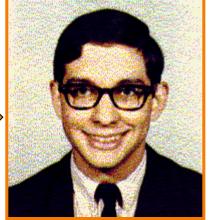


More Contrast

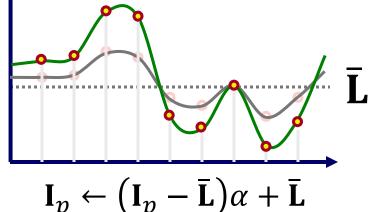



# **Adjusting Contrast**




Compute <u>mean image</u> luminance <u>L</u> (averaged over all pixels)

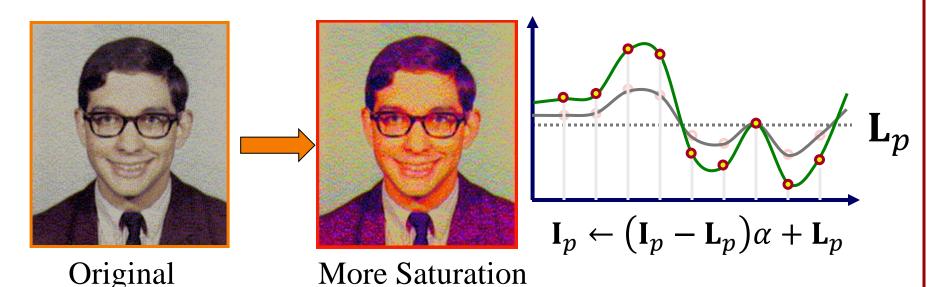
$$\circ \ \overline{\mathbf{L}} = \text{Average}(0.30 \cdot \mathbf{r}_p + 0.59 \cdot \mathbf{g}_p + 0.11 \cdot \mathbf{b}_p)$$


What happens if we set the image to have no contrast ( $\alpha = 0$ )?



Original




More Contrast

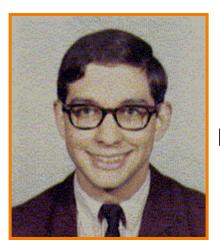


# **Adjusting Saturation**

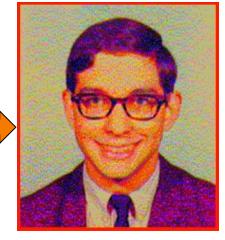


- Compute per-pixel luminance  $L_p$ 
  - $\bullet \mathbf{L}_p = 0.30 \cdot \mathbf{r}_p + 0.59 \cdot \mathbf{g}_p + 0.11 \cdot \mathbf{b}_p$
- Scale <u>deviation</u> from L<sub>p</sub> for each pixel component
  - Must clamp to range -- e.g. to [0,255)

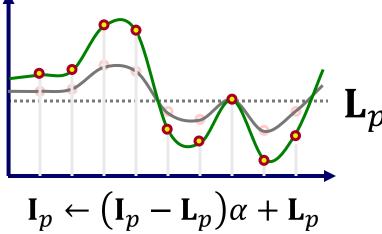



# **Adjusting Saturation**




• Compute per-pixel luminance  $L_p$ 

$$\bullet \mathbf{L}_p = 0.30 \cdot \mathbf{r}_p + 0.59 \cdot \mathbf{g}_p + 0.11 \cdot \mathbf{b}_p$$


What happens if we set the image to have no saturation ( $\alpha = 0$ )?



Original



More Saturation

