
November 15, 2003

SOFT: SO(3) Fourier Transforms

Peter J. Kostelec
Daniel N. Rockmore

Department of Mathematics
Dartmouth College
Hanover, NH 03755

{geelong,rockmore}@cs.dartmouth.edu

SOFT, version 1.0, is a collection of C routines which compute the discrete Fourier transforms of functions
defined on SO(3), the group of orthogonal matrices of determinant 1, i.e. the Rotation Group. SOFT is free
software and is distributed under the terms of the GNU General Public License.

The routines are based on the “Separation of Variables” technique, e.g. see [3]. Both forward (spatial →
spectral) and inverse (spectral → spatial) Fourier transform routines are provided, as well as examples of how
they may be used. A subset of SpharmonicKit [7], necessary for doing Cooley-Tukey FFTs and for some of these
examples (such as correlation), is also included within this collection. Finally, variations of some routines are
provided which use the more efficient FFTW [2] collection (version 3, to be precise), and not our home-grown
code, to compute the Cooley-Tukey FFTs.

The code was developed and tested in the GNU/Linux environment. Some of the code has also been
successfully compiled and executed on an SGI running Irix 6.5, an HP/Compaq Alpha running Tru64 V5.1, and
even (under VMware) OpenStep 4.2 for Intel! I do not have access to a Windows machine. However, I do not
see there being any reason why the code won’t compile and run under Windows. A minor modification or two
might be required, but I do not believe anything drastic should be necessary.

This document is structured as follows:

1. Theoretical Background - p. 2

• Definitions and properties of functions - p. 2

• Recurrences satisfied - p. 4

• Definitions of the transforms being done - p. 4

2. The SOFT Package - p. 5

• How to compile - p. 5

• Major files; Ordering of samples and coefficients - p. 6

• Example routines and data provided - p. 9

• Memory - p. 12

3. Correlation examples - p. 12

We provide theoretical background with the intention of giving the user a precise understanding of what it is
the routines in SOFT are actually calculating. Within this section, on occasion, a comment on some pertinent
implementation detail is made. So it behooves the reader to not skip this portion of the document!

Admittedly, the background is rather on the terse side. More theoretical details, as well as a discussion of
the performance of SOFT, are to be found in the preprint FFTs on the Rotation Group [1]. This preprint
is part of the Santa Fe Institute’s “Working Papers” series [6]. It may be downloaded either from the Institute
itself, or through a link at www.cs.dartmouth.edu/~geelong/soft/.

The source code for SOFT is also available at this website. Questions concerning the software can be sent
to the contact person, Peter Kostelec, geelong@cs.dartmouth.edu.

1

http://www.cs.dartmouth.edu/~geelong/soft/

1 Theoretical Background

Since there are many conventions when dealing with functions defined on SO(3), e.g. normalizations, powers
of −1, etc. etc., we say at the outset that the definitions and normalizations we give henceforth are taken from
[8].

1.1 Euler Angle Decomposition

An arbitrary rotation about the origin, i.e. any element g ∈ SO(3), may be expressed as the product of two
rotations about the z-axis, and one about the y-axis. Let

Rz(A) =

cos A − sinA 0
sinA cos A 0

0 0 1

 Ry(A) =

 cos A 0 sinA
0 1 0

− sinA 0 cos A

 (1)

so Rz(A) describes a rotation about the z-axis, and Ry(A) describes a rotation about the y-axis. Then g has
the Euler Angle Decomposition

g = Rz(α) Ry(β) Rz(γ)

where 0 ≤ α, γ < 2π and 0 ≤ β ≤ π. Note then that a function f defined on SO(3) can be written as a function
of the three Euler angle variables: α, β and γ.

1.2 Wigner D-functions

A Wigner D-function, DJ
MM ′(α, β, γ), has three integer indeces: J , M , M ′. The degree J ranges over the

non-negative integers. For each J , the order indeces satisfy the constraint −J ≤ M,M ′ ≤ J . The Wigner
D-function is of the form

DJ
MM ′(α, β, γ) = e−iMα dJ

MM ′(β) e−iM ′γ , (2)

where dJ
MM ′(β), the Wigner-d function, is related to a Jacobi polynomial. An exact definition will be given

in the next section.
The collection of Wigner D-functions {DJ

MM ′(α, β, γ)} form a complete set of orthogonal functions with
respect to integration over SO(3):∫ 2π

0

dα

∫ π

0

dβ sinβ

∫ 2π

0

dγ DJ2∗
M2M ′2

(α, β, γ)DJ1
M1M ′1

(α, β, γ) =
8π2

2J1 + 1
δJ1J2 δM1M2 δM ′1M ′2 . (3)

Hence, any function f ∈ L2(SO(3)) has the following decomposition:

f(α, β, γ) =
∑
J≥0

J∑
M=−J

J∑
M ′=−J

f̂J
MM ′DJ

MM ′(α, β, γ) (4)

where

f̂J
MM ′ =

〈
f,DJ

MM ′

〉
=

2J + 1
8π2

∫ 2π

0

dα

∫ π

0

dβ sinβ

∫ 2π

0

dγ f(α, β, γ)DJ∗
MM ′(α, β, γ) (5)

and DJ∗
MM ′(α, β, γ) is the complex conjugate of DJ

MM ′(α, β, γ). The collection of numbers {f̂J
MM ′} is the Fourier

transform of f .

Definition 1.1 A continuous function f on SO(3) is band-limited with band-limit (or bandwidth) B if
f̂ l

MM ′ = 0 for all l ≥ B.

2

Implementation Notes

• The C code uses the L2-normalized versions of the D-functions:

D̃J
MM ′(α, β, γ) =

1
2π

√
2J + 1

2
DJ

MM ′(α, β, γ) (6)

This means we have (comparing with Eq. 3)∫ 2π

0

dα

∫ π

0

dβ sinβ

∫ 2π

0

dγ D̃J2∗
M2M ′2

(α, β, γ)D̃J1
M1M ′1

(α, β, γ) = δJ1J2 δM1M2 δM ′1M ′2 . (7)

In this normalized situation, we then have

f(α, β, γ) =
∑
J≥0

J∑
M=−J

J∑
M ′=−J

f̂J
MM ′D̃J

MM ′(α, β, γ) (8)

where

f̂J
MM ′ =

〈
f, D̃J

MM ′

〉
=

∫ 2π

0

dα

∫ π

0

dβ sinβ

∫ 2π

0

dγ f(α, β, γ)D̃J∗
MM ′(α, β, γ) (9)

• Of the many symmetries DJ
MM ′(α, β, γ) observes, one that may be used within the code, when the signal

is real-valued, is the following:

DJ
MM ′(α, β, γ) = (−1)M ′−MDJ∗

−M−M ′(α, β, γ). (10)

1.3 Wigner d-functions

As promised earlier, we now give a precise definition of the Wigner d-function, dJ
MM ′(β):

dJ
MM ′(β) = ζMM ′

√
s!(s + µ + ν)!

(s + µ)!(s + ν)!

(
sin

β

2

)µ(
cos

β

2

)ν

× P (µ,ν)
s (cos β) (11)

where
µ = |M −M ′| ν = |M + M ′| s = J − µ + ν

2
and

ζMM ′ =
{

1 if M ′ ≥ M

(−1)M ′−M if M ′ < M.

and P
(µ,ν)
s (cos β) is a Jacobi polynomial. Note that unless J ≥ max(|M |, |M ′|), we have dJ

MM ′(β) = 0.
This function satisfies the following orthogonality condition:∫ π

0

dJ
MM ′(β)dJ′

MM ′(β) sinβ dβ =
2

2J + 1
δJJ ′ , (12)

Implementation Notes

• The C code uses the L2-normalized versions of the d-functions:

d̃J
MM ′(β) =

√
2J + 1

2
dJ

MM ′(β). (13)

3

• In order to reduce (by a factor of 8!) the number of Wigner-d functions necessary for performing a Fourier
transform, the following symmetries are used within most of the C routines (the exceptions will be clearly
stated later):

dJ
MM ′(β) = (−1)M−M ′

dJ
−M−M ′(β) = (−1)M−M ′

dJ
M ′M (β) = dJ

−M ′−M (β) (14)

= (−1)J−M ′
dJ
−MM ′(π − β) = (−1)J+MdJ

M−M ′(π − β) (15)

= (−1)J−M ′
dJ
−M ′M (π − β) = (−1)J+MdJ

M ′−M (π − β) (16)

1.4 Recurrences

The Wigner-d functions satisfy the following 3-term recurrence:

0 =

√[
(J + 1)2 −M2

] [
(J + 1)2 −M ′2

]
(J + 1)(2J + 1)

dJ+1
MM ′(β) +

(
MM ′

J(J + 1)
− cos β

)
dJ

MM ′(β)

+

√
(J2 −M2)(J2 −M ′2)

J(2J + 1)
dJ−1

MM ′(β) (17)

Since the C code uses the L2-normalized versions of the d-functions, here is the the normalized version of
the 3-term recurrence (which is used in the C code):

d̃J+1
MM ′(β) =

√
2J + 3
2J + 1

(J + 1)(2J + 1)√[
(J + 1)2 −M2

] [
(J + 1)2 −M ′2

] (
cos β − MM ′

J(J + 1)

)
d̃J

MM ′(β)

−
√

2J + 3
2J − 1

√
[J2 −M2]

[
J2 −M ′2

]√[
(J + 1)2 −M2

] [
(J + 1)2 −M ′2

] J + 1
J

d̃J−1
MM ′(β). (18)

The recurrence has been verified stable through bandwidths B = 512, and it’s probably still ok for B = 1024.
To properly initialize the normalized recurrence, the C code uses the following identities:

d̃J
JM (β) =

√
2J + 1

2

√
(2J)!

(J + M)!(J −M)!

(
cos

β

2

)J+M(
− sin

β

2

)J−M

d̃J
−JM (β) =

√
2J + 1

2

√
(2J)!

(J + M)!(J −M)!

(
cos

β

2

)J−M(
sin

β

2

)J+M

d̃J
MJ(β) =

√
2J + 1

2

√
(2J)!

(J + M)!(J −M)!

(
cos

β

2

)J+M(
sin

β

2

)J−M

d̃J
M−J(β) =

√
2J + 1

2

√
(2J)!

(J + M)!(J −M)!

(
cos

β

2

)J−M(
− sin

β

2

)J+M

. (19)

1.5 The Transforms

We first define the quadrature weights necessary for a bandwidth B transform:

wB(j) =
2
B

sin
(

π(2j + 1)
4B

) B−1∑
k=0

1
2k + 1

sin
(
(2j + 1)(2k + 1)

π

4B

)
(20)

where j = 0, . . . , 2B − 1.

4

• Discrete Wigner-d transform: For given integers (M,M ′), define the Discrete Wigner Transform
(DWT) of a data vector s to be the collection of sums of the form

ŝ(l,M,M ′) =
2B−1∑
k=0

wB(k) d̃l
M,M ′(βk)[s]k max(|M |, |M ′|) ≤ l < B (21)

where d̃l
M,M ′ is a nomralized Wigner d-function of degree l and orders M , M ′, and βk =

π(2k + 1)
4B

.

Eqn. 21 is what the C code naively evaluates.

We can express the DWT in matrix terms. Let s = the data vector, ŝ = the coefficient vector, w = the
diagonal matrix whose entries are the weights, and d = the sampled Wigner-ds, dij = di

MM ′(βj). Then
we can write the forward (analysis) transform as

d ∗w ∗ s = ŝ.

The inverse (synthesis) transform is
dT ∗ ŝ = s

where dT is the transpose of d.

• Discrete SO(3) Fourier transform at bandwidth B: The Discrete SO(3) Fourier transform (DSOFT)
at bandwidth B of a function f ∈ L2(SO(3)), denoted DSOFT(f), is the collection of sums of the form:

f̂ l
MM ′ =

(π

B

)2 2B−1∑
j1=0

2B−1∑
j2=0

2B−1∑
k=0

wB(k)f(αj1 , βk, γj2)D̃
l∗
MM ′(αj1 , βk, γj2) (22)

=
π

(2B)2

2B−1∑
k=0

wB(k)d̃l
MM ′(βk)

2B−1∑
j2=0

eiM ′γj2

2B−1∑
j1=0

eiMαj1 f(αj1 , βk, γj2) (23)

where l = 0, . . . , B − 1, and −l ≤ M,M ′ ≤ l. The function is sampled on the 2B × 2B × 2B grid

αj1 =
2πj1
2B

, βk =
π(2k + 1)

4B
, γj2 =

2πj2
2B

. Eqn. 23 is the discrete version of Eqn. 9.

Eqn. 23 is what the C code evaluates via the Separation of Variables technique. The scalars in
front of the summations may look odd, but they are different because of the way we defined the normalized
Wigner-D and Wigner-d functions.

2 The SOFT Package

In this section, we cover such topics as what the package includes, some of the conventions observed (mostly
having to do with the format of input and output arrays of the test routines), and how to compile the routines
in the first place.

2.1 How To Compile

If all you want to do is compute the forward or inverse discrete SO(3) Fourier transform, and you don’t care
about doing this as fast as possible, then the SOFT package is completely self-contained. Otherwise, you should
use one of the flavours of the routines which depend on FFTW. Taking the discrete Fourier transform of a
function defined on SO(3) involves performing Cooley-Tukey FFTs. While SOFT includes such routines, the
ones provided by FFTW are more efficient. This being said ...

• If FFTW is on your system: If FFTW is on your system, then

5

1. In the Makefile, set the variables FFTWINC and FFTWLIB so the compiler knows where to find the
FFTW header file and libraries, e.g.

FFTWINC = -I/net/misc/geelong/local/linux/include
FFTWLIB = -L/net/misc/geelong/local/linux/lib -lfftw3

The default setting for each is blank, i.e.

FFTWINC =
FFTWLIB =

When you define them, don’t forget the -lfftw3 at the end of FFTWLIB !!!

2. Make sure the variable CFLAGS is defined the way you like. These options are passed to the compiler.
The default setting is

CFLAGS = -O3 $FFTWINC

3. Type

make all

to compile all the test routines in the package.

• If FFTW is not on your system: If FFTW is not on your system, then

1. Make sure the variable CFLAGS in the Makefile is defined the way you like. These options are passed
to the compiler. The default setting is

CFLAGS = -O3 $FFTWINC

Since, by default, $FFTWINC has no value, you can still leave it in CFLAGS.

2. Type

make allnonfftw

to compile all the test routines which do not depend on FFTW. You will still be able to take the
discrete Fourier transform of a function defined on SO(3). You just won’t do it that quickly.

In Section 2.3, in case you were wondering, we list and describe the test routines the above steps compile.

2.2 Major Files; Data Conventions

While there are lots of source files within the SOFT package, the following files contain the functions the user
will most likely want to use. The test routines (to be outlined in the next section), will exercise and provide
examples of how to use these functions. The source code includes instructions as to how to use the functions,
e.g. function arguments.

2.2.1 The Files

We will try to list these files in some logical order, but no promises! First, those related to the Wigner-d
functions and the DWT (Eqn. 21).

• makeWigner.c: Functions necessary for generating the Wigner-d functions.

• wignerTransforms.c: Functions that compute the DWT. Also used in computing the DWT portion of
the DSOFT, i.e. Eqn. 23.

• wignerTransforms sym.c: Functions that compute the DWT portion of the DSOFT, but expected to be
used in soft sym.c (see below).

• wignerTransforms fftw.c: Functions that compute the DWT portion of the DSOFT, but expected to
be used in soft fftw.c (see below).

Now those having to do with taking the discrete SO(3) Fourier transform of a function (Eqn. 23).

6

• soft.c: Functions for computing the forward and inverse DSOFT; uses the homegrown FFT routines;
does not use any symmetries of the Wigner-D or Wigner-d functions; computes the necessary Wigner-d
functions on the fly.

• soft sym.c: As soft.c, but uses the symmetries of the Wigner-d functions (14-16). If the spatial data is
known to be strictly real, can tell the routines to take advantage of this, and so use one of the symmetries
observed by the Wigner-D function, i.e. Eqn. 10.

• soft fftw.c: Just like soft sym.c, but uses FFTW.

• soft fftw pc.c: Just like soft fftw.c, but assumes that all the Wigner-d functions necessary for a
complete Fourier transform have been precomputed.

• soft fftw wo.c: Just like soft fftw.c; does not precompute the Wigner-d functions (computes them
on the fly); writes over input as much as possible in order to conserve memory, hence it’s not so fast.

And finally, those having to do with some applications of Wigner-D functions, and the DSOFT.

• so3 correlate sym.c: Functions necessary for correlating two functions f, h ∈ L2(S2). The DSOFT
required uses soft sym.c.

• so3 correlate fftw.c: As above, but the DSOFT required uses soft fftw.c.

• rotate so3.c: Functions necessary for rotating a function f ∈ L2(S2) by massaging f ’s spherical coeffi-
cients with Wigner-D functions.

• rotate so3 mem.c: As above, but a slightly more memory friendly version, since it writes over the original
signal samples with the rotated signal samples.

2.2.2 Ordering of Samples and Coefficients

For all that follows, we’re dealing with a fixed bandwidth B.
Let’s first deal with the samples. Recall that for a DSOFT at bandwidth B, the function f needs to be

sampled on the 2B × 2B × 2B grid

{(αj1 , βk, γj2) | 0 ≤ k, j1, j2 ≤ 2B − 1}

where αj1 =
2πj1
2B

, βk =
π(2k + 1)

4B
, and γj2 =

2πj2
2B

. The C code expects the samples to be ordered as follows:

f(α0, β0, γ0)
f(α0, β0, γ1)

...
f(α0, β0, γ2B−1)

f(α1, β0, γ0)
f(α1, β0, γ1)

...
f(α2B−1, β0, γ2B−1)

f(α0, β1, γ0)
f(α0, β1, γ1)

...
f(α2B−1, β2B−1, γ2B−1)

So of the three indeces, j2 iterates the fastest, and k the slowest. Think of it as sampling at all legal longitudes
for each latitude. That’s how the S2 transform works.

7

Since the function can be complex-valued, the samples are always in “complex” format. Even if the function
is real-valued, you still need to set the imaginary parts of the samples to 0.

Now, and this is important, some routines expect the samples to be in separate, real-imaginary arrays,
and others expect the samples to be a single, interleaved real-imaginary array. The rule-of-thumb is simple: if
the routine does not use FFTW, the samples are divided into separate real-imaginary arrays. Otherwise, the
samples are interleaved.

For example, suppose there are four sample values: 1 + 2ı, 3 + 4ı, 5 + 6ı, 7 + 8ı. A non-FFTW routine
will expect two arrays - one holding the real part: 1, 3, 5, 7, and the other holding the imaginary part: 2, 4, 6, 8.
Otherwise, the samples are in the single, real-imaginary interleaved array 1, 2, 3, 4, 5, 6, 7, 8.

The example routines, which will be listed in the next section, include examples of both ... including one
exception (sorry).

Now for the Fourier coefficients. First, to get the easy part over with, what was said about the samples is
true here. The real-imaginary parts of the coefficients will be in separate arrays for the non-FFTW routines,
and real-imaginary interleaved otherwise. And how are the coefficients ordered? Well, it might seem a little
weird, but bear with me.

Consider a matrix A whose rows are indexed by M as follows:

M = 0, 1, 2, ..., B − 1,−(B − 1),−(B − 2), ...,−1

This is the order they occur, e.g. if B = 4, then the fifth row corresponds to M = −3. Similarly for the columns,
indexed by M ′:

M ′ = 0, 1, 2, ..., B − 1,−(B − 1),−(B − 2), ...,−1

E.g. the seventh column corresponds to M ′ = −1. Ok, now I reveal that the element at A(i, j) is actually an
array which contains the Fourier coefficients

{f̂ l
ij =< f, D̃l

ij > | max(|i|, |j|) ≤ l ≤ B − 1}

Now, finally, write down this matrix A in row-major format. E.g. First write down the set of coefficients for
M = 0,M ′ = 0, then for M = 0,M ′ = 1, then for ... , then for M = 0,M ′ = −(B − 1), then for ..., then for
M = 0,M ′ = −1, then for M = 1,M ′ = 0, and then M = 1,M ′ = 1, and so on. You get the idea. Believe me,
in some sense, this is natural.

To make things easier, here are four formulæ which will tell you where in the list the coefficient f l
MM ′ occurs.

There are four functions, depending on the signs of M,M ′. These formulæ can be simplified, but then they
might seem a little more mysterious.

Let B denote the bandwidth, h(M,M ′, B) = B −max(|M |, |M ′|). Then the location of f l
MM ′ in the file is

M−1∑
k=0

(B2 − k2) +
M ′−1∑
k=0

h(M,k,B) + (l −max(M,M ′)) + 1 if M,M ′ ≥ 0 (24)

M∑
k=0

(B2 − k2)−
−1∑

k=M ′

h(M,k,B) + (l −max(M, |M ′|)) + 1 if M ≥ 0, M ′ < 0 (25)

4B3 −B

3
−

|M |∑
k=1

(B2 − k2) +
M ′−1∑
k=0

h(M,k,B) + (l −max(|M |,M ′)) + 1 if M < 0, M ′ ≥ 0 (26)

4B3 −B

3
−

|M |−1∑
k=1

(B2 − k2)−
−1∑

k=M ′

h(M,k, B) + (l −max(|M |, |M ′|)) + 1 if M,M ′ < 0 (27)

If you program this in C, you don’t have to do that “+1”. I.e. as it’s written now, the formula for M = M ′ = 0
will tell you that the location of f̂0

00 is 1.
There is a C version of the above formulæ. Defined in utils so3.c, the function so3CoefLoc() takes as

inputs: the bandwidth B, degree l, and orders M , M ′. It returns the index of f̂ l
MM ′ in the coefficient array (so

it does not have that “+1” in it).

8

2.3 The Test Routines

Here are the example routines compiled with make all. If you forget how the arguments go, just type the
command and it will return them to you. Hopefully, the examples will provide a sufficient introduction as to
how adapt the routines for your own use.

First, here are the routines which involve the Wigner-d functions.

• test wigSpec: Example routine to generate the Wigner-d function to jump-start the recurrence for orders
M , M ′ and bandwidth B, i.e. Eqns. 19. Saves the results in a user-specified file. E.g.

test_wigSpec m1 m2 bw output_file_name

• test genWig: Generate all the Wigner-d functions needed for a DWT at bandwidth B, orders M , M ′.
Saves the results in a user-specified file. E.g.

test_genWig m1 m2 bw output_file_name

• test Wigner Analysis: Does a DWT, i.e. Eqn. 21, at a user-specified bandwidth and orders. Needs a
strictly real (no 0s for imaginary part!) input array to read samples in from, and the name of an output
file to write the results to. E.g.

test_Wigner_Analysis m1 m2 bw input_file output_file

• test Wigner Synthesis: Does an inverse DWT at a user-specified bandwidth and orders. Needs a strictly
real (no 0s for imaginary part!) input array to read samples in from, and the name of an output to write
the results to. E.g.

test_Wigner_Synthesis m1 m2 bw input_file output_file

• test Wigner Naive: To test speed and stability, does X-many inverse-forward DWTs (X defined by the
user) on randomly generated Wigner-d coefficients. No user input required, can save the errors if you’d
like. E.g.

test_Wigner_Naive m1 m2 bw loops [output_file]

or do 100 loops at bandwidth B = 16, orders M = M ′ = 0, not bothering to save the errors:

test_Wigner_Naive 0 0 16 100

Now, those routines dealing with the DSOFT.

• test soft: To test speed and stability; does X-many inverse-forward DSOFTs at bandwidth B, via
soft.c. The coefficients are randomly generated, resulting in a complex-valued signal. Computes the
Wigner-d functions on the fly. No user input required, can save the errors if you’d like in separate
real-imaginary files!. E.g.

test_soft bw loops [realError_file imagError_file]

or do 10 loops at bandwidth B = 16, not bothering to save the errors:

test_soft 16 10

• test soft for: Does a forward DSOFT at bandwidth B via soft.c; user-input expected; uses separate
real-imaginary arrays; can order the output coefficients in either the algorithm’s order, as described in
Sec. 2.2.2, or in “human order,” which goes as follows:

9

for l = 0 : bw - 1
for m1 = -l : l
for m2 = -l : l
coefficient of degree l, orders m1, m2

Set order flag to 0 for the algorithm’s order, 1 for human order. E.g.

test_soft_for bw realSam_file imagSam_file realCoef_file imagCoef_file order_flag

• test soft inv: Just like test soft for, but does an inverse DSOFT. E.g.

test_soft_inv bw realCoeff imagCoeff realSam imagSam

The ordering of the input coefficients must be the algorithm’s order, and not the human order.

• test soft sym: Just like test soft, but uses the Wigner-d symmetries (Eqns. 14-16); soft sym.c rou-
tines; uses separate real-imaginary arrays. As it’s “packaged,” the routines generate random coefficients
with no restrictions whatsoever, in the sense that it is possible, by commenting and uncommenting the
appropriate block of code within the test routine, to generate random coefficients such that the inverse
transform results in a (random) real-valued signal.

If you do generate random real-valued signals this way, don’t forget to adjust the “real/complex” flags in
the forward and inverse routines appropriately, to take advantage of the real-valuedness, i.e. get to use a
symmetry of the Wigner-D functions to make the routine a little more efficient. Look at the documentation
in soft sym.c.

• test soft sym for: Just like test soft for, but uses the Wigner-d symmetries (Eqns. 14-16); uses
separate real-imaginary arrays

• test soft sym inv: Just like test soft inv, but uses the Wigner-d symmetries (Eqns. 14-16); uses
separate real-imaginary arrays

• test soft fftw: Just like test soft, but uses the Wigner-d symmetries (Eqns. 14-16) and FFTW;
soft fftw.c routines; uses interleaved real-imaginary arrays

• test soft fftw pc: Just like test soft fftw, but precomputes all the Wigner-ds necessary in advance
of any transforming.

• test soft fftw wo: Just like test soft fftw, but routines try to save memory, e.g. in-place FFTs.

Now, some application-type examples.

• test soft sym correlate: Routine to correlate two functions f, h ∈ L2(S2) of bandwidth B. The inputs
are the spherical (not SO(3)!!!) coefficients of f and h in interleaved format. The ordering of
the coefficients is that produced by the routines in SpharmonicKit. The function seanindex(), defined
in primitive FST.c from SpharmonicKit (this file is provided in the SOFT distribution), takes as its
arguments the bandwidth B, degree l, and order m, and returns the location of the spherical coefficient
f̂m

l in the coefficient array. Uses soft sym.c, so3 correlate sym.c. Also has the additional parameter
degLim, which allows you to choose the highest degree coefficients you’re willing to use. E.g. Even though
the two functions are of bandwidth B = 8, you might want to use only the Wigner-Ds through degree 5.
The routine returns the (α, β, γ) which maximizes the correlation, i.e. the g = g(α, β, γ) ∈ SO(3) which
maximizes

C(g) =
∫

S2
f(ω) Λ(g)h(ω) dω

The user has the option of saving all the correlation values, E.g.

test_soft_sym_correlate sigCoefs patCoefs bw degLim [result]

10

The test routine assumes that the two functions f and h are real-valued, so the correlation values
returned are strictly real numbers. If f and h are complex-valued, you will have to make the appropriate
adjustments in test soft sym correlate.c.

• test soft sym correlate2: Just like test soft sym correlate except the user-provided inputs are the
samples values (not the coefficients!) of f and h in interleaved format. The functions are sampled on
the following S2 grid (which is the same as SpharmonicKit expects them):

{(θj , φk) | 0 ≤ j, k ≤ 2B − 1}

where θj =
π(2j + 1)

4B
is colatitude, and φk =

2πk

2B
is longitude. The samples are ordered so that k

iterates faster than j, e.g. (θ0, φ0), (θ0, φ1), ..., (θ1, φ0), (θ1, φ1), ..., (θ2B−1, φ2B−1). This ordering should
look familiar.

Another exception to test soft sym correlate: along with degLim, can also specify the bandwidth of
the inverse SO(3) Fourier transform. E.g. So you can correlate two B = 256 functions f, h ∈ S2 by doing
a bandwidth B = 32 inverse SO(3) Fourier transform. However, it must be the case that bwIn ≥ bwOut.
As above, can save the correlation values:

test_soft_sym_correlate2 signalFile patternFile bwIn bwOut degLim [result]

• test soft fftw correlate2: Just like test soft sym correlate2 but uses FFTW; uses soft fftw.c
and so3 correlate fftw.c. E.g.

test_soft_fftw_correlate2 signalFile patternFile bwIn bwOut degLim [result]

• test s2 rotate: test function to rotate a function f ∈ S2 by specifying the three Euler angles α, β and γ.
The samples input and output are interleaved. Can up- or down-sample by specifying the input and out
bandwidths. To generate the Wigner-D functions necessary for massaging the spherical coefficients, we
adapt an algorithm of Risbo’s [5]. In some sense, in this situation it is more natural to use this algorithm
than the usual 3-term recurrence.

test_s2_rotate bwIn bwOut degOut alpha beta gamma input_filename output_filename

Here are the order of rotation events:

1. First rotate by γ about the z-axis

2. Then rotate by β about the y-axis

3. And finally rotate by α about the z-axis.

• test s2 rotate mem: Just like test s2 rotate but a little friendlier on the memory. Assumes that bwIn
equals bwOut.

test_s2_rotate_mem bwIn degOut alpha beta gamma input_filename output_filename

2.4 The Test Data

Included in the SOFT distribution are the following function samples. They can be used to verify that things
are working as they should.

• D101real bw4.dat, D101imag bw4.dat: The real and imaginary parts of (2 + ı)D̃1
01(α, β, γ), i.e. J = 1,

M = 0, and M ′ = 1, sampled on the bandwidth B = 4 grid. This can be verified by doing

test_soft_for 4 D101real_bw4.dat D101imag_bw4.dat rCoeff.dat iCoeff.dat 1

and then checking rCoeff.dat and iCoeff.dat, the real and imaginary parts of the Fourier coefficients.

11

• D3-11real bw4.dat, D3-11imag bw4.dat: The real and imaginary parts of D̃3
−11(α, β, γ), i.e. J = 3,

M = −1, and M ′ = 1, sampled on the bandwidth B = 4 grid. This can be verified by doing

test_soft_sym_for 4 D3-11real_bw4.dat D3-11imag_bw4.dat rCoeff.dat iCoeff.dat 1

• dSum real bw4.dat, dSum imag bw4.dat: The real and imaginary parts of

(2 + ı
√

2)D̃1
10(α, β, γ) + (7 + ı

√
3)D̃3

0−2(α, β, γ) + (−
√

5 + 11ı)D̃2
22(α, β, γ)

sampled on the bandwidth B = 4 grid. This can be verified by doing

test_soft_sym_for 4 dSum_real_bw4.dat dSum_imag_bw4.dat rCoeff.dat iCoeff.dat 1

• randomS2sig bw8.dat: A strictly real-valued, bandlimited function on S2, with bandwidth B = 8. Since
this file is expected to be used with the correlation routines, it is interleaved, and the imaginary parts
are all 0.

• randomS2sigA bw8.dat: The signal randomS2sig bw8.dat rotated by the Euler angles α = π/8, β =
11π/32, and γ = π/4. As with the original signal, this one is strictly real-valued, with bandlimit B = 8.
Note that the angles I am rotating by are exactly on the 2B × 2B × 2B grid necessary for a bandlimit
B = 8 forward or inverse DSOFT. This is not a coincidence.

• randomS2sigB bw8.dat: The signal randomS2sig bw8.dat rotated by the Euler angles α = 0.452, β =
1.738, and γ = 2.378. As with the original signal, this one is strictly real-valued, with bandlimit B = 8.
Note that these angles are not on the 2B × 2B × 2B grid necessary for a bandlimit B = 8 forward or
inverse DSOFT. This is not a coincidence, either.

2.5 Memory

In Table 1 are the memory requirements for the DSOFT test routines. The ones involving the Wigner-d
transforms don’t use that much memory, but these guys do. They are real hogs. (It might be possible to be
more careful with the memory, to be less of a hog. I need to look into this.) Once you see the list, you’ll
understand why the sample data is of such small bandwidths (at least when compared with SpharmonicKit).

Now realize that this is for the test routines themselves, e.g. some of the memory is allocated for storing
original values of things like samples and coefficients, in order to compare them with what’s computed (e.g.
for computing errors). If you’re not interested in those things, if you’re just using the “transform” C functions
themselves, then memory use won’t be as bad.

2.6 Correlation Examples

In this section, we go through a couple of examples of how to correlate two real-valued functions defined on
S2. That is, given two functions f, h ∈ L2(S2), we will determine the rotation g = g(α, β, γ) ∈ SO(3) which
maximizes the correlation

C(g) =
∫

S2
f(ω) Λ(g)h(ω) dω.

where α, β, γ are the Euler angles defining the rotation. Briefly, from the S2 Fourier coefficients of f and h,
one constructs the SO(3) Fourier coefficients of C(g). Taking the inverse SO(3) Fourier transform yields C(g)
evaluated on the 2B × 2B × 2B grid (where B equals the bandwidth of the inverse SO(3) Fourier transform).
Finding the location of the maximum value on the grid tells you how to rotate h.

2.6.1 First Example

The main purpose of this example is just to make sure the code is working properly after compilation. The
two functions we will correlate are those whose samples are contained in the files randomS2sig bw8.dat and
randomS2sigA bw8.dat.

12

Routines B = 8 B = 16 B = 32 B = 64 B = 128 B = 256
test soft 0.21 2 14 107 854 6828
test soft sym
test soft fftw
test soft for 0.21 2 13 101 811 6487
test soft sym for
test soft inv
test soft sym inv
test soft fftw pc 1 3 20 197 2252 29000 (wow!)
test soft fftw wo 0.5 2 10 74 600 4780
test soft sym correlate < 0.5 1 9 70 560 4500
test soft sym correlate2
test soft fftw correlate2
test s2 rotate < 0.5 < 0.5 0.5 2 12 80
test s2 rotate mem < 0.5 < 0.5 0.3 1.3 8 52

Table 1: Very approximate memory requirements of DSOFT-related test routines, in megabytes (220 bytes =
1 megabyte), assuming using C type double. In those routines where it is relevant, it is assumed that the
“bandwidth in” equals the “bandwidth out.” Note that I have not run all the routines at all the bandwidths
listed in this table.

Ok. Let f be the function whose samples are in randomS2sigA bw8.dat, and h be the function whose samples
are in randomS2sig bw8.dat. We wish to determine how to rotate h so that the correlation is maximized. We
can think of this graphically: how do we rotate h so that its graph matches that of f ’s? We know what the
answer should be:

α = π/8 (about 0.392699)
β = 11π/32 (about 1.07922)
γ = π/4 (about 0.785398).

Hopefully this is what the answer will be when you run it yourself. We can use either test soft sym correlate2
or test soft fftw correlate2. Let’s use the latter.

Now our signal is f and our pattern is h. The bandwidth is B = 8. Therefore, we execute the command:

test_soft_fftw_correlate2 randomS2sigA_bw8.dat randomS2sig_bw8.dat 8 8 7

I will explain the 8 8 7 shortly. Meanwhile, here’s what you should see (the name of my machine is gallant):

gallant 240: test_soft_fftw_correlate2 randomS2sigA_bw8.dat randomS2sig_bw8.dat 8 8 7
Generating seminaive_naive tables...
Reading in signal file
now taking spherical transform of signal
Reading in pattern file
now taking spherical transform of pattern
freeing seminaive_naive_table and seminaive_naive_tablespace
about to combine coefficients
combine time = 0.0000e+00
about to inverse so(3) transform
finished inverse so(3) transform
inverse so(3) time = 0.0000e+00
ii = 5 jj = 1 kk = 2
alpha = 0.392699
beta = 1.079922
gamma = 0.785398
gallant 241:

13

Bingo! We get the correct Euler angles! We know how to rotate h to match f . The indeces ii, jj and kk refer
to the location, in the 2B × 2B × 2B grid, where the maximum correlation value occurs: ii is the index for β
(really - recall how the SO(3) samples are arranged - if you forgot, see Sec. 2.2.2), jj for α, and kk for γ.

Remark Note that you will get an answer different from the one above if you instead do

test_soft_fftw_correlate2 randomS2sig_bw8.dat randomS2sigA_bw8.dat 8 8 7

This will tell you how much to rotate f to match h. Be careful not to get confused!

If in addition to the Euler angles, for whatever reasons, you want to save all the correlation values, too, say
in a file called corValues.dat, then instead execute

test_soft_fftw_correlate2 randomS2sigA_bw8.dat randomS2sig_bw8.dat 8 8 7 corValues.dat

We now address the 8 8 7. The first 8 refers to the bandwidth of the two input functions. The second 8
refers to the bandwidth you want the inverse DSOFT done at. Why wouldn’t you always want the bandwidth
for DSOFT equal to the bandwidth of the input signals? To answer in a word: memory. Suppose the two S2

functions you want to correlate are of bandwidth B = 256. A quick check of Table 1 will probably show that
your machine does not have sufficient memory for a SO(3) Fourier transform at bandwidth B = 256.

However, all is not lost. You could instead do the DSOFT at B = 32, e.g.

test_soft_fftw_correlate2 signal.dat pattern.dat 256 32 31

While this will not use all the information you have available in each of the two S2 functions, you will still be
able to get a (hopefully useful) result. And you will need only barely 32 megs of RAM.

Ok, now for that 7 (to return to the original example). This refers to the maximum degree of Wigner-D
coefficient the SO(3) transform will use. That is, for a B = 8 transform, you are considering SO(3) functions
(which C(g) is)

f(α, β, γ) =
7∑

J=0

J∑
M=−J

J∑
M ′=−J

f̂J
MM ′DJ

MM ′(α, β, γ)

The 7 in the J-summation is the 7 in the input line. The maximum degree is one less the bandwidth.
Now suppose, for whatever reasons, you may not want to use all the Wigner-D functions. You may still

want to perform the DSOFT at B = 8, but you’re fine with going through degree, say 4. In this case, then, you
want to consider

f(α, β, γ) =
4∑

J=0

J∑
M=−J

J∑
M ′=−J

f̂J
MM ′DJ

MM ′(α, β, γ),

basically setting all the f̂J
MM ′ equal to 0 for 5 ≤ J ≤ 7. In this case you would do

test_soft_fftw_correlate2 signal.dat pattern.dat 8 8 4

and that’s it. You’re still doing a SO(3) transform at B = 8. You’re just not using all the coefficients you can.

2.6.2 Second Example

This will be like the first example, except the signal f will be that whose samples live in randomS2sigB bw8.dat.
Again, we know how the function was rotated:

α = 0.452
β = 1.738
γ = 2.378.

However, the critical difference between here and the previous example is that these rotation angles are not
on the B = 8 grid used when doing the DSOFT. Therefore, we will not get these exact numbers from the test
routine. The Euler angles returned will be those on the grid which will yield the largest correlation:

14

gallant 258: test_soft_fftw_correlate2 randomS2sigB_bw8.dat randomS2sig_bw8.dat 8 8 7
Generating seminaive_naive tables...
Reading in signal file
now taking spherical transform of signal
Reading in pattern file
now taking spherical transform of pattern
freeing seminaive_naive_table and seminaive_naive_tablespace
about to combine coefficients
combine time = 0.0000e+00
about to inverse so(3) transform
finished inverse so(3) transform
inverse so(3) time = 0.0000e+00
ii = 8 jj = 1 kk = 6
alpha = 0.392699
beta = 1.668971
gamma = 2.356194
gallant 259:

The Euler angles returned are still pretty close to the truth. You could then rotate the pattern by that amount,
e.g.

gallant 260: test_s2_rotate 8 8 7 0.392699 1.668971 2.356194 randomS2sig_bw8.dat xxx.dat
Generating seminaive_naive tables...
Generating seminaive_naive tables...
Generating trans_seminaive_naive tables...
reading in signal ...
about to rotate ...
finished rotating ...
rotation time = 0.0000e+00
finished writing ...
gallant 261:

and xxx.dat contains the rotated pattern.

2.6.3 Third Example

Try correlating a function with itself, e.g.

test_soft_fftw_correlate2 randomS2sig_bw8.dat randomS2sig_bw8.dat 8 8 7

You might not get the answer you expect, but it is correct. Hint: Where are we sampling C(g) ? Also, add
together the α and γ you get, and then think about the rotations these correspond to, i.e. which axis are you
rotating about?

3 Bibliography

Here are the references. Enjoy!

References

[1] P. Kostelec and D. Rockmore, FFTs on the Rotation Group, Santa Fe Institute’s Working Papers series,
Paper #: 03-11-060, 2003, www.santafe.edu/sfi/publications/wpabstract/200311060

[2] FFTW is a free collection of fast C routines for computing the Discrete Fourier Transform in one or more
dimensions. It includes complex, real, symmetric, and parallel transforms, and can handle arbitrary array
sizes efficiently. FFTW is available at www.fftw.org/.

15

http://www.santafe.edu/sfi/publications/wpabstract/200311060
http://www.fftw.org/

[3] D. Maslen and D. Rockmore, Generalized FFTs, in Proceedings of the DIMACS Workshop on Groups and
Computation, June 7-10, 1995, L. Finkelstein and W. Kantor (eds.) (1997), 183-237.

[4] D. Maslen and D. Rockmore, Separation of Variables and the Computation of Fourier Transforms on Finite
Groups I, Journal of the American Math Society, 10(1), (1997), 169-214.

[5] T. Risbo, Fourier transform summation of Legendre series and D-functions, Journal of Geodesy, 70 (1996),
p. 383 - 396.

[6] www.santafe.edu/sfi/publications/working-papers.html.

[7] SpharmonicKit is a freely available collection of C programs for doing Legendre and scalar spherical trans-
forms. Developed at Dartmouth College by S. Moore, D. Healy, D. Rockmore and P. Kostelec, it is available
at www.cs.dartmouth.edu/~geelong/sphere/

[8] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, World
Scientific Publishing, Singapore, 1988.

16

http://www.santafe.edu/sfi/publications/working-papers.html
http://www.cs.dartmouth.edu/~geelong/sphere/

	Theoretical Background
	Euler Angle Decomposition
	Wigner D-functions
	Wigner d-functions
	Recurrences
	The Transforms

	The SOFT Package
	How To Compile
	Major Files; Data Conventions
	The Files
	Ordering of Samples and Coefficients

	The Test Routines
	The Test Data
	Memory
	Correlation Examples
	First Example
	Second Example
	Third Example

	Bibliography

